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Abstract
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big datasets: many assets, many characteristics for each of them, many macro predictors, and

various sources of unstructured data. Thus, we deliberately focus on applications rather than

methods. We also include brief reviews of the �nancial theories underlying asset management,

which provide the relevant background to assess the plethora of recent contributions to such

an active research �eld.
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1 Introduction

Big data, machine learning and arti�cial intelligence are increasingly popular concepts fre-

quently treated as close substitutes in the media. And although it is true that arti�cial intel-

ligence often relies on machine learning methods, which in turn are trained on big datasets,

they re�ect di¤erent concepts. The focus of our survey is big data. Speci�cally, we attempt to

summarize the academic literature that studies some of the ways in which portfolio management

has been a¤ected in recent years by the availability of large datasets. These include prices and

returns for many assets, as well as many characteristics for each of them, multiple macro predic-

tors and their non-linear transformations, and various sources of unstructured data, including

texts and photos, and potentially audios and videos. Therefore, we focus on applications rather

than methods, which we do not review in detail.

Readers interested in a deeper understanding of some of the machine learning methods

employed in the di¤erent applications that we discuss could read the references in the papers

that we review, as well as the recent surveys and books we mention next, which cover di¤erent

aspects. For example, Israel, Kelly and Moskowitz (2020) emphasize that �nance is di¤erent from

the typical machine learning application because of smaller datasets, low signal-to-noise ratios,

non-stationary environments, and the need for interpretability. In turn, Bartram, Branke and

Motahari (2020), Mirete-Ferrer et al. (2022) and Guidolin (2024) focus on asset management,

Giglio, Kelly and Xiu (2022) on asset pricing models, while Kelly and Xiu (2023) review empirical

�nance applications more widely, including the construction of optimal portfolios.

In terms of books, López de Prado (2018) and Dixon, Halperin and Bilokon (2020) can serve

as an introduction to machine learning for readers with a background in �nancial econometrics,

while the main focus of Guida (2019), Capponi and Lehalle (2023) and Cao (2023) is investment

applications of big data and machine learning. Given that dependence is an important property

of �nancial data, Peña and Tsay (2021) is also useful for its pedagogical review of statistical

learning methods applied to big dependent datasets.

Like many of those references, we must emphasize that the concept of big data in the context

of asset management applications is relative to the size of the typical datasets available at the

end of the twentieth century. Consequently, with the exception of the alternative data sources

that we discuss in the last part of our survey, the datasets that we refer to are often noticeably

smaller and more structured than those regularly analyzed in other data science applications.

In line with most of the literature, our review covers mainly stock market applications, al-

though it also discusses some other asset classes, such as �xed-income, foreign exchange and

commodities. Moreover, we focus on either cash assets or forwards and futures rather than

1



options and other �nancial derivatives (see chapter 6 in Hull (2021) and section 3 of Bartram,

Branke and Motahari (2020) for additional references). Given our interest in asset management,

we also exclude many papers whose only objective is the mere forecasting of asset returns or

prices, as well as those whose scope is asset pricing but ignoring its potential portfolio manage-

ment implications.

In the interest of space, we by and large ignore two important areas that have been revolu-

tionized in the twenty �rst century by the availability of high frequency data: realized volatility

and correlation (see Barndor¤-Nielsen and Shephard (2007), Andersen, Bollerslev and Diebold

(2010) and Aït-Sahalia and Jacod (2014)), and algorithmic trading through execution manage-

ment systems that e¢ ciently process trading orders by minimizing both standard transaction

costs and market impact (see López de Prado (2020) and chapters 7 and 8 of Cao (2023)). We

have also excluded a review of the impact on portfolio evaluation of the massive growth in the

number of mutual funds and other investment vehicles that have become available in the last few

decades, whose main consequence is the so-called multiple testing problem (see Barras, Scaillet

and Wermers (2010, 2018), Harvey and Liu (2020) and Giglio, Liao and Xiu (2021)).

To provide the relevant background to the plethora of recent contributions to this incredibly

active �eld of research, we include brief reviews of the �nancial theories underlying asset man-

agement in practice. In particular, we study the relationship between mean-variance analysis

and stochastic discount factors to introduce the reader to the terminology that pervades the

modern empirical �nance literature. We do so both when investors rely exclusively on the un-

conditional distribution of asset returns in making their decisions and when they exploit other

sources of information at their disposal at the time they design their trading strategies. Finally,

we also present the theory of intertemporal portfolio decisions, which is relevant when important

aspects of the investment opportunity set are changing over time in predictable ways.

The rest of the survey is organized as follows. First, in section 2 we consider a large cross-

section of assets in an unconditional set up. Then, we extend our analysis to conditioning

information in section 3, considering situations in which investors exploit a large number of asset

characteristics or macroeconomic indicators in constructing their portfolios. In turn, section 4

discusses two areas that are still relatively small, but which o¤er substantial research potential:

intertemporal portfolio decisions using big data, and what one may call alternative data. Finally,

section 5 includes our conclusions, followed by the reference list.
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2 Static mean-variance frontiers and stochastic discount factors

2.1 Theoretical background

Mean-variance (MV) analysis is widely regarded as the cornerstone of modern investment

theory. Despite its simplicity, and the fact that over seven decades have elapsed since Markowitz�s

(1952) seminal work on the theory of portfolio allocation under uncertainty, it remains the most

widely used asset allocation method. There are several reasons for its popularity. First, it

provides a very intuitive assessment of the relative merits of alternative portfolios, as their risk

and expected return characteristics can be compared in a two-dimensional graph. Second, the

portfolios on the MV frontiers de�ned below are spanned by two funds at most, a property

that simpli�es their calculation and interpretation, and that also led to the derivation of the

Capital Asset Pricing Model (CAPM). Third, MV analysis becomes the natural approach if

we assume Gaussian or elliptical distributions for asset returns because in that case it is fully

compatible with expected utility maximization regardless of investor preferences. Finally, MV

frontiers for returns are intimately related to MV frontiers for stochastic discount factors (SDFs)

put forward by Hansen and Jagannathan (1991). As is well known, these frontiers represent a

major breakthrough in the way �nancial economists look at data on asset returns to discern

which asset pricing theories are not empirically falsi�ed.

For simplicity, we focus on the case in which all investable assets have zero costs and there

are no restrictions on long or short positions. Let us denote by r = (r1; : : : ; ri; : : : ; rn)
0 the

vector of n excess returns available to investors. Although zero cost investments with arbitrary

short and long positions might seem totally unrealistic in practice, ri usually corresponds to

the payo¤s to a simple trading strategy implemented by buying or selling futures contracts in

organized markets. As a result, investors can freely scale up or down the payo¤s to each of those

strategies. A related advantage is that there is no need to impose a cost constraint because the

initial payo¤ of taking those positions is 0, and often any margin requirements imposed by the

market in which the futures contracts are traded will be rewarded at the safe interest rate.

Formally, the MV principle consists in choosing the weights of a portfolio that minimize the

standard deviation of its excess returns for each possible target level of expected returns. If the

�rst two moments of returns were known, then it would be straightforward to apply Markowitz�s

optimal portfolio formulas. In practice, of course, the mean vector and covariance matrix of r

are unknown, and the sample mean, standard deviations and correlations of its elements only

provide noisy estimators of the required theoretical quantities.

There are several ways of computing the optimal MV weights. We �nd it convenient to adopt
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the Generalized Method of Moments (GMM) framework in Peñaranda and Sentana (2011),

which is e¤ectively equivalent to Gaussian pseudo maximum likelihood (PML) estimation in

this context. The most natural possibility would be to implicitly de�ne the vector of risk premia

� as

E(r� �) = 0;

and either the second moment matrix � as

E(rr0 � �) = 0;

or the covariance matrix � as

E[r(r� �)0 ��] = 0:

Naturally, for MV analysis to make sense, we need to assume that r belongs to the collection

of random variables de�ned on the underlying probability space with bounded second moments,

which is equivalent to assuming that (the norm of) � is bounded. As a result, � will be well-

de�ned and � will be bounded. We also assume for simplicity that the smallest eigenvalue of

� is strictly positive, which implies that none of the zero-cost portfolios in r is either riskless

or redundant, and moreover, that it is not possible to generate a riskless portfolio from r other

than the trivial one. With these assumptions, � is invertible, and we can compute the optimal

MV portfolio weights as

��1� = (1 + �0��1�)�1��1�;

where we have exploited the Sherman-Morrison-Woodbury formula, which says that

��1 = (�+ ��0)�1 = ��1 � (1 + �0��1�)�1��1��0��1: (1)

Strictly speaking, though, estimating � and � or � is unnecessary, as it can be avoided

by resorting to the concept of mean representing portfolios introduced by Chamberlain and

Rothschild (1983), which in their uncentred and centred versions are such that E(r) = E(ra�) =

cov(r;ð�), respectively. Consequently,

a� = E(r0)[E(rr0)]�1r;

ð� = E(r0)[V (r)]�1r = [1� E(a�)]�1a�:

On this basis, one can construct the arbitrage (i.e. zero-cost) MV frontier by scaling the

mean representing portfolios, so that its elements will be of the form

rMV (�) = �
1

E(a�)
a� = �

1

E(ð�)
ð�;
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being thus de�ned for all possible values of the target expected return � as long as E(r) is not

proportional to a vector of n ones, �n, as it would happen in equilibrium if there was a single

risk neutral investor. As a result,

V [rMV (�)] =
1� E(a�)
E(a�)

�2 =
1

E(ð�)
�2:

Consequently, the function f�; V [rMV (�)]g will be a parabola tangent to the origin in MV space,

while the related function f�;
p
V [rMV (�)]g will be a re�ected straight line in mean-standard

deviation space. In addition, the weights of the di¤erent assets in rMV (�) are proportional to

their weights on the mean representing portfolios in view of the previous expressions.

Aside from those weights, the only other unknown parameter that matters is

� = E(ð�) = [1� E (a�)]�1E (a�) = �0��1�;

which we can interpret as the maximum (square) Sharpe ratio attainable. The Sharpe ratio,

de�ned as the ratio of the expected excess return of an investment to its standard deviation, is

one of the most common measures used by �nancial market practitioners to rank fund managers

and to evaluate the attractiveness of investment strategies in general (see Sharpe (1994)). Apart

from its simplicity, and the fact that it is a rather natural risk-adjusted measure of performance,

it has also the convenient property of being numerically invariant to the degree of leverage of

the position. However, the Sharpe ratio is not without limitations, as the academic literature

on performance evaluation has made clear (see for example Goetzmann et al. (2007)).

In turn, modern asset pricing theories are written in terms of SDFs, which are univariate

random variables typically denoted by m that transform asset payo¤s into asset costs by dis-

counting them di¤erently in di¤erent states of the world. In this context, the elements of the

SDF MV frontier based on arbitrage portfolios only are the univariate random variables of min-

imum variance among those that correctly price both r and a �ctitious safe asset with return

1=c as E[m(r0;1=c)] = (00; 1). Hansen and Jagannathan (1991) show that those elements will be

given by

mMV (c) =
c

1� E(a�)(1� a
�) = cf1� [g� � E(ð�)]g;

so that they are also spanned by a single �fund�. In turn, their variance will be

V ar[mMV (c)] = c2
E(a�)

1� E(a�) = c
2E(ð�);

which is a perfect square in c that depends on the reciprocal of the same single parameter

�. This con�rms the duality between the SDF and portfolio frontiers because the maximum

(squared) Sharpe ratio is equal to V ar[mMV (c)]=c2. Once again, the function fc; V ar[mMV (c)]g
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is a parabola in MV space, while fc;
p
V ar[mMV (c)]g is a half line starting from the origin in

mean-standard deviation space.

Given a vector of n excess returns r, we can estimate both frontiers from the following exactly

identi�ed system of n+ 1 moment conditions:

E

0@ rr0�� � r

r0�� � ��

1A = 0; (2)

where �� = �=(1+�) = 1=(1+�), with � = ��1, identi�es E (a�) = E
�
a�2
�
, and �� the portfolio

weights of this uncentred mean representing portfolio. Under standard regularity conditions, the

resulting GMM estimator of � will converge in probability to its true value, and the same applies

to the weights of the mean representing portfolios in ��. Therefore, the GMM estimators of

V [rMV (�)] will also converge in probability to their population counterparts for �xed �. Further,

we can easily show that the GMM estimators of the entire arbitrage and SDF MV frontiers will

converge uniformly to their population analogues over any �nite range.

Despite the uniform consistency, though, the arbitrage and SDF MV frontiers are subject to

substantial sample variability. This variability is so important that if one does not take it into

account, one would form very di¤erent optimal portfolios depending on the sample, and more

importantly, would reach rather di¤erent conclusions about the available risk-return trade-o¤s.

In particular, there is a clear tendency to reach overly optimistic conclusions about the

MV trade-o¤s that investors really face in the future (out-of-sample) by relying on statistics

obtained from historical data (in-sample). For this reason, regulators force investment managers

to systematically add the hackneyed caveat �past performance is not indicative of future results�

to their marketing material. In this respect, Kan and Zhou (2007) proved that when r is

identically and independently distributed (i:i:d:) as a multivariate normal, the �nite sample

distribution of the maximum square Sharpe ratio estimator follows a non-central distribution

whose probability mass is asymmetrically distributed above the true value.1 For that reason,

they suggest replacing the unrestricted sample estimator of �, �̂T , with the following unbiased

estimator
...
� =

(T � n� 2)�̂T � n
T

: (3)

For a �xed, relatively small number of assets, n, the main source of the problem is the

estimation error in expected returns, whose e¤ect is �rst-order (see Best and Grauer (1991) for

a study of the sensitivity of the MV weights to changes in the means). As Merton (1980) showed

when (log) asset prices follow di¤usions with constant drift and instantaneous covariance matrix,

1 In fact, Sentana (2009) shows that in the case in which the true Sharpe ratio is 0, the distribution of the
estimated one will only have probability mass on the positive side.
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standard deviations and correlations will be estimated more and more precisely as the number

of observations increases for a �xed time span when one increases the observation frequency,

while the precision of expected returns only increases if the sample span gets larger.

2.2 Big data on cross-sections of assets

The estimation methods discussed in the previous section are designed for situations in

which the number of assets n is substantially smaller than the number of observations T . When

the number of assets is large, though, the sampling uncertainty of the portfolio weights increases

even further. More importantly, the maximum Sharpe ratio in the sample can never decrease

when the number of assets grows. In fact, if there are at least as many assets as time series

observations, the sample covariance matrix will become singular, the portfolio weights underi-

denti�ed, and the law of one price seemingly violated as the maximum Sharpe ratio will become

in�nity.

At �rst sight, this might seem a largely irrelevant question. However, as its name indicates,

the S&P 500, arguably the world�s most famous stock market index, combines the prices of

�ve hundred assets traded in the New York Stock Exchange (NYSE). Similarly, the Russell

3000, another capitalization-weighted stock market index that represents approximately 97%

of the equity value of all publicly traded companies in the U.S. stock market, measures the

performance of the three thousand largest publicly held companies incorporated in the country.2

Three thousand observations correspond to roughly eleven and a half years of daily data, almost

57 years and nine months of weekly data, and 250 years of monthly data. That means we

would necessarily encounter a singular covariance matrix when working with monthly data even

though trading in the NYSE started 232 years ago in 1792. For academic research purposes, the

main source of data is the University of Chicago Center for Security Prices (CRSP) US stock

database, which contains daily and monthly data for over 32,000 active and inactive securities

with primary listings on the most important US stock markets, including among others NYSE,

NYSE American and NASDAQ.

Next, we discuss three alternative approaches that have been suggested to reduce the e¤ects

of sampling variability.

2.2.1 Parametric restrictions

Although expression (2) shows that the estimation of the portfolio weights does not require

the estimation of the mean vector or the covariance matrix of the vector of asset returns, it is

2As a comparison, the MSCI All Countries World Index (ACWI), with 2,840 constituents, represents 85% of
the global investable equity opportunity set.
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fairly straightforward to impose empirically plausible restrictions on the elements of these two

moments to reduce the sampling variability of the optimal weights. Given that the main source of

uncertainty arises because of the estimation of expected excess returns, whose precision depends

on the length of the sample span used rather than the frequency of observations, it seems natural

to impose restrictions on risk premia, such as those derived from an asset pricing model.

In principle, nothing prevents us from considering non-linear models for the SDF, m. Nev-

ertheless, the standard approach in empirical �nance is to model it as an a¢ ne transformation

of some k � n observable risk factors f , even though this ignores that m must be positive with

probability 1 to avoid arbitrage opportunities. Popular risk factors are either returns on traded

portfolios, like the market portfolio in the CAPM, or macro-variables, such as the per capita

labour income used as a proxy variable for the returns to human capital by Jagannathan and

Wang (1996).

In this context, we can express the pricing equation as

E[(�0 � �0f)r] = 0 (4)

for some real numbers (�0;�0)0. Although r only contains assets with 0 cost, which leaves the

scale and sign of m undetermined, we would like our candidate SDF to price other assets with

positive prices. Therefore, we require a scale normalization to rule out the trivial solution

(�0;�
0)0 = (0;00)0. Assuming for simplicity that f and r do not share any common elements, we

can add the pricing conditions (4) to the exactly identi�ed moment conditions (2) that de�ne

the uncentred mean representing portfolio, thereby obtaining

E

26664
r(1� f 0�)

rr0�� � r

r0�� � ��

37775 = 0;
where the unknown parameters are (�0;��0; ��). Thus, we can obtain more e¢ cient estimators

of the MV weights that exploit the pricing equations.

Let us partition r into two sets of portfolios r1 and r2 of dimensions n1 and n2, respectively,

with n = n1 + n2, so that r0 = (r01; r
0
2). A closely related alternative is to impose MV spanning

restrictions, which can be regarded as if we assumed a linear factor pricing model in which the

pricing factors f coincide with some excess returns r1, as in the Fama and French (1993, 2015)

models that we discuss in section 3.2. In that case, we say that r1 spans the zero-cost and SDF

MV frontiers generated from r1 and r2. Under the null hypothesis that this is the indeed case,

there will be only one pair of MV frontiers. Under the alternative, there will be two: the frontiers

generated from r1 alone, and the ones generated from r, which will only touch at the origin.
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In the GMM context described in the previous section, the imposition of the null hypothesis

of spanning on the weights of the uncentred moment conditions gives rise to the overidenti�ed

system

E

26664
0BBB@
r1

r2

1

1CCCA r01��1 �
0BBB@
r1

r2

��

1CCCA
37775 = 0: (5)

The optimal GMM estimator of � = ��=(1���) obtained from this conditions will generally

be more e¢ cient than the corresponding estimator obtained from the unrestricted system (2)

as long as the equality restriction ��2 = 0 holds. Moreover, this estimator will also be generally

more e¢ cient than the one obtained from the just identi�ed n1 + 1 moment conditions

E

240@ r1

1

1A r01��1 �
0@ r1

��

1A35 = 0:
Unfortunately, the reduction in sampling uncertainty resulting from this type of restriction

is noticeable but not particularly big. In fact, it completely disappears in the case of (5) when

the joint distribution of the vector of excess returns r is elliptical (see Peñaranda and Sentana

(2015)). Besides, one runs the risk of misspeci�cation, which would typically imply inconsisten-

cies in the parameter estimators and portfolio weights.

When the number of assets n is large, another popular empirical strategy is to impose some

structure on �. A suggestion with a long tradition is an exact k factor structure in which

� = BB0 +�; (6)

where B is n� k and � diagonal, so that the number of parameters to estimate increases with

n rather than n2. This covariance model is equivalent to

r = �+Bf + u;0@ f

u

1A � D

240@ 0

0

1A ;
0@ Ik 0

0 �

1A35 ;
where Ik is the identity matrix of order k and D(m;V) denotes a distribution with mean vector

m and covariance matrix V. In this context, B contains the sensitivities of the di¤erent assets

to the k orthogonal sources of systematic risk in the economy that a¤ect most of them, f ,

while the diagonal elements of � represent the variances of the idiosyncratic risks u, which are

uncorrelated across assets. An important special case is the so-called equicorrelated structure

in which the correlations between any two assets are assumed identical (see Elton and Gruber

(1973)). This assumption is so popular that the Chicago Board of Options Exchange (CBOE)
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exploits this restricted single factor model to generate an analogue to the VIX index for implied

correlations among the constituents of the S&P 500. Another example is the so-called diagonal

or market model in Sharpe (1963), in which the single common factor is the return to the market

portfolio and the factor loadings in B are the market betas multiplied by the standard deviation

of the market portfolio. Fan, Fan and Lv (2008) formally compare the precision of the sample

covariance matrix with the one obtained with a multifactor version of Sharpe�s (1963) market

model in large n and T samples. They �nd that although their observable factor structure does

not improve much the estimation of the covariance matrix itself, there are substantial gains in

the estimation of its inverse, which is the one that matters for MV portfolio allocation.

In fact, the covariance speci�cation (6) has implications for risk premia when n is large.

Speci�cally, the exact version of Ross (1976) arbitrage pricing theory (APT) implies that

� = B� (7)

for a k-dimensional vector � when the factors are pervasive so that the smallest eigenvalue of

B0B diverges as n grows. Therefore, the moment condition (4) holds, but the pricing factors f

must re�ect the k common sources of risk in the economy.3

Unfortunately, the diagonality of � is excessively restrictive unless k is rather large. A

possible solution is to use bifactor models, which combine a few pervasive factors with many

�sectoral� factors that a¤ect most �rms belonging to the same industrial category and are

orthogonal across categories (see Aït-Sahalia and Xiu (2017) for an example with high-frequency

data).

Nevertheless, Chamberlain and Rothschild (1983) proved that the APT would continue to

hold in what they called approximate factor structures, in which � is not necessarily diagonal,

but its largest eigenvalue remains bounded as n grows, so that a law of large numbers still applies

cross-sectionally to the idiosyncratic terms. They also showed that in those circumstances,

principal components analysis (PCA), an early example of unsupervised learning that performs

a data compression numerically equivalent to factor analysis when� is scalar, yields a consistent

basis of the space of portfolios that mimic the latent factors f with vanishing tracking error as

the number of asset grow. Not surprisingly, data-based selection procedures for empirically

determining the appropriate number of factors when n is large rely on suitably grouping the

eigenvalues of � into k big ones and n� k small ones.

The �rst papers that used a large cross-section of assets to test the APT were Lehmann and

3As Chamberlain (1983) highlighted, strictly speaking the APT only implies that the (Euclidean) norm of the
di¤erence between the left- and right-hand sides of (7) remains bounded as the number of asset increases, which
complicates its testing (see Dello Preite et al (2024) for recent empirical evidence on this point and Da, Nagel
and Xiu (2023) for a related discussion).
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Modest (1988) and Connor and Korajczyk (1988). They replaced the latent factors by mim-

icking portfolios obtained by maximum likelihood and PCA, respectively. In turn, Connor and

Korajczyk (1993) constitutes the �rst attempt to determine the number of factors an approxi-

mate factor model requires to �t a large cross-section of stock returns. Subsequently, Bai and

Ng (2002) proposed consistent estimators of the number of factors based on a penalized least

squares objective function associated to PCA when both the number of assets n and the number

of time series observations T go to in�nite at the same rate. The main problem, though, is the

existence of weak factors, whose associated eigenvalues grow with n but a rather slow pace (see

Onatski (2012) for their implications for PCAs).

These procedures, however, ignore the APT restriction (7) by focusing exclusively on (6). In

this respect, Lettau and Pelger (2020a) propose a modi�cation of the criterion function in Bai

(2003) that penalizes discrepancies from both (6) and (7). Thus, they can detect weak pricing

factors with high Sharpe ratios. In Lettau and Pelger (2020b), they apply their methods to the

popular Fama and French (1993) cross-section of 25 portfolios double sorted according to their

size and value characteristics (see section 3.2), and another with a larger cross-section of 370

single-sorted decile portfolios from 37 characteristics, �nding �ve economic meaningful factors

that explain returns and achieve a Sharpe ratio twice as large as standard PCA. Recently, Bryz-

galova et al. (2023) develop a framework that adds economically motivated moment targets to

PCA, thereby nesting the proposal of Lettau and Pelger (2020a). In their empirical application,

they work with the same 370 portfolios, but also consider 127 macroeconomic variables from

McCracken and Ng (2016) to enforce non-zero correlation between the underlying factors and

the fundamental shocks to the economic variables.

2.2.2 Bayesian procedures

An alternative approach is to replace parametric restrictions and instead impose either

proper or di¤use Bayesian priors in the estimation of expected returns, variances and covariances

(see Bawa, Brown and Klein (1979) for a review of the early literature and Avramov and Zhou

(2010) for a more recent one, as well as Fabozzi, Huang and Zhou (2010) for the relationship

between Bayesian and robust estimation methods). As an illustration, we focus on Frost and

Savarino (1986), who assumed that the vector of prior means is

_� = _��n; (8)

where �n denotes a vector of n ones, while the matrix of prior variances and covariances is given

by

_� = _�2
�
_��n�

0
n + (1� _�)In

�
; (9)
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with _�2 > 0 and 1=(1 � n) < _� < 1. Note that the parameters _�, _� and _� correspond to

the common prior mean, standard deviation and correlation, respectively, of the assets under

consideration. This restricted equicorrelated structure means that a priori, Frost and Savarino

(1986) regard all assets as exchangeable, with the same expected excess returns and standard

deviations, and equal pairwise correlations. E¤ectively, this means that before looking at the

actual return data, their ignorance would be equally spread across assets.

The Sherman-Morrison-Woodbury formula (1) immediately implies that

_��1 _� =

�
1

1 + (n� 1) _�
_�

_�2

�
�n;

which means that the usual MV rule would lead to equal prior weights across assets regardless

of the values of _�, _� and _�. Nevertheless, those parameters are important because the posterior

values of the expected returns and covariance matrix will indeed depend on the values of _�, _�2

and _�. In particular, a posteriori the �rst two moments will be given by the expressions

�� = !� _�+ (1� !� )��

and

�� =
(� + T )

(� + T � 2)

�
1 +

1

� + T

�
�
�
!� _�+ (1� !�)��+ !�

�
T

T + �

�
(��� _�)(��� _�)0

�
;

where �� and �� are the vector of sample averages and covariance matrix of the excess returns,

respectively, and

!� =
�

� + T

!� =
�

� + T

capture the strength of the priors on means and variances, respectively, as determined by the

parameters � and �. In this sense, it is convenient to understand � and � as the sample lengths

of hypothetical prior samples that have been used to come up with _� and _�, respectively. Thus,

� = � = 0 would simply equate the posterior values to the sample ones, while � ; � ! 1 would

correspond to dogmatic priors, which give no weight to the sample information.

In practice, Frost and Savarino (1986) suggested an empirical Bayes procedure4 with the

following �estimators�of the prior hyperparameters:

_� =
�0n��

n
; (10)

4Jorion (1986) also uses an empirical Bayesian approach that assumes (8) as prior means, but treats � as if it
were known. In contrast, Ledoit and Wolf (2003) suggest an empirical Bayes estimator for � that combines the
sample covariance matrix with Sharpe�s (1963) market model ignoring the estimation of expected returns.
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_�2 =
tr
�
��+ (��� _��n)(��� _��n)0

�
n

(11)

and

_� =
�0n
�
��+ (��� _��n)(��� _��n)0

�
�n � tr

�
��+ (��� _��n)(��� _��n)0

�
n(n� 1) _�2

: (12)

Consequently, Frost and Savarino (1986) shrink the MV weights towards the equally weighted

portfolio, which is known to provide much better out-of-sample performance than the �plug-in�

version that replaces the �rst and second moments in Markowitz�s (1952) expressions by their

sample counterparts, as shown by De Miguel, Garlappi and Uppal (2009) and Yuan and Zhou

(2023), especially as the number of assets becomes large.

Alternative suggestions that ignore expected returns are the minimum variance portfolio

��1�n, which Kan and Zhou (2007) combine with the usual plug-in MV portfolio to correct for

the sampling uncertainty of the latter, and the risk parity portfolio, which e¤ectively equalizes

the marginal contribution of each asset to the standard deviation of the portfolio.5 Interestingly,

it is easy to show that the minimum variance portfolio and the risk parity one would coincide

if the covariance matrix had an equicorrelated structure (see Maillard, Roncalli and Teïletche

(2010)), and will further reduce to the equally weighted portfolio when (9) holds.

Other popular Bayesian-type procedures that impose structure on expected returns were

suggested by Black and Littermann (1992), who use the market portfolio as an equilibrium

anchor but allow for other prior views (see section 4 of Peñaranda (2008) for details), and

Pástor (2000) and Pástor and Stambaugh (2000), whose prior means e¤ectively impose the

linear factor pricing model with traded factors in (5).

2.2.3 Shrinkage

Sometimes, it might be preferable to consider a procedure that e¤ectively shrinks all the

way to 0 the weights of many but not all assets. To see how this can be achieved, it is convenient

to go back to the �rst exactly moment conditions in (2), in which �� are the weights of the mean

representing portfolio in the space of zero-cost portfolios. Trivially, the ideal mean representing

portfolio would be 1 because E(r�1) = E(r). However, lack of arbitrage opportunities arguments

imply that 1 cannot coincide with the payo¤s of a zero-cost portfolio. Therefore, ��0r must

coincide with the payo¤s of the zero-cost portfolio that is closest to 1. As a consequence, �� are

the coe¢ cients of the least squares projection of 1 onto the linear span of r. This means that

in practice, one can estimate the optimal weights by simply running the ordinary least squares

(OLS) regression of �T , which is a vector of T ones, onto rt (t = 1; 2; : : : ; T ).

5The marginal risk contribution of an asset is proportional to the so-called incremental value at risk (iVaR)
under the assumption that the joint distribution of returns is Gaussian with a zero mean.
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The problem is that the elements of r will be very highly collinear when n is large, which

implies that the estimated regression coe¢ cients may be numerically unreliable. Although

collinearity should not a¤ect much the properties of the optimal portfolio, it certainly dis-

torts the interpretation of the portfolio weights. Moreover, OLS breaks downs altogether when

n � T + 1. For that reason, some authors suggest to substantially reduce the number of assets

that are e¤ectively selected. This can be achieved in di¤erent ways, but a popular choice is to

impose restrictions on the weights, such as 0 � wi � 1 (see Jagannathan and Ma (2003) for

a reinterpretation of certain constraints on portfolio weights as a speci�c shrinkage estimation

of the covariance matrix �). While the non-negative bounds may make sense if one does not

want to short a speci�c asset, and can be easily imposed in the regression of �T on rt, the upper

bound is somewhat arbitrary given that the scaling of each individual payo¤ ri is to some extent

arbitrary too.6

Let us consider an alternative approach that replaces the individual inequality constraints

0 � wi � 1 by an aggregate constraint of the form

jjwjj1 =
Xn

i=1
jwij � �:

Given that
Pn
i=1 jwij =

P
i2`wi +

P
i2s jwij, where ` is the set of assets with positive weights

and s is the complementary set of assets with negative weights, we can interpret the above

restriction as imposing an upper bound on the sum of short selling positions plus the sum of

long positions. A simple procedure for achieving this goal would minimize the residual sum of

squares in the regression of 1 on r subject to the above inequality constraint. More formally, we

wish to �nd the solution to the program

min
w2Rn

jj1� r0wjj22 + %jjwjj1;

where jj:jj2 denotes the usual Euclidean norm, and % is the Kuhn-Tucker multiplier associated

to the inequality constraint above. The solution to this problem is known as the least absolute

shrinkage and selection operator (LASSO) regression. This procedure was �rst introduced by

Tibshirani (1996), and it is increasingly becoming the default procedure to conduct stepwise

regression and related data mining procedures.

Ao, Li and Zheng (2019) apply a slight variation of the LASSO approach described above to

construct optimal MV portfolios from the individual constituents of the Dow Jones Industrial

6 Importantly, note that the properties of OLS regressions trivially imply that the payo¤s to the optimally
chosen portfolio will be invariant to the degree of leverage of the di¤erent elements of r. Speci�cally, if we double
the leverage of ri say, then the corresponding weight will get halved, but the �tted value will remain the same.
Also note that the mean return associated to the �tted values from this regression will be �0��1�, so if one would
like to obtain a di¤erent expected return, say �, one should either proportionally scale up or down all the weights
by �=�0��1�, or the constant regressand by the same amount.
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Average 30 and the S&P 500. The main di¤erence of their approach is that they multiply the

vector of ones that acts as regressand by either the constant (1 +
...
� )
...
�
�1
� if the objective is

to achieve a target expected excess return level �, or by (1 +
...
� )
...
�
�1=2

� when the objective is

to achieve a standard deviation �, where
...
� is the unbiased estimator of the maximum square

Sharpe ratio in (3). By the numerical properties of OLS estimators, though, this re-scaling does

not a¤ect either the assets that end up with a non-negative weight or the relative values of those

weights (see footnote 6).

The main advantage of expressing the inequality constraint in terms of the so-called L1 (or

absolute value) norm is that it leads to parsimonious solutions in which many of the optimal

weights will be 0, e¤ectively reducing the number of elements of r that will appear in the

optimal portfolio. The parameter � plays a crucial role in the solution too, and therefore has to

be chosen judiciously, since a large value of � will make the problem e¤ectively unconstrained. In

this regard, it is useful to interpret the LASSO output as the posterior mode estimates obtained

by a Bayesian regression procedure in which the prior views on the coe¢ cient wi conform to a

Laplace distribution with 0 mean and are independent across assets. The Laplace, or double

exponential distribution, is a symmetric distribution characterized by both a high peak at the

mode and fat tails. Apart from the corresponding di¤erences in the kurtosis coe¢ cient, which

is 6 for the Laplace versus 3 for the normal, the main di¤erence between Laplace and Gaussian

distributions is that the density function of the former is continuous but not di¤erentiable at 0.

As a result, the mode of posterior distribution of wi will often be 0 too, which partly explains

the large number of zero w0is obtained in the LASSO solution.

In this context, the value of �, or equivalently, the value of %, can be understood as the

parameter governing the strength of the priors. The bigger � is (or the smaller % is), the weaker

the priors are, so that the solution will resemble more and more the unrestricted MV solution. In

contrast, the smaller � is (or the larger % is), the stronger the prior, in which case the solution will

di¤er substantially from the standard one. The relationship between the Laplace distribution

and the k : k1 norm is not surprising because the maximum likelihood estimator (MLE) of the

location parameter of a Laplace distribution is the sample median, as opposed to the sample

mean, which is the MLE under normality.

In the regression context that we are considering, an independent zero-mean Gaussian prior

on the �regression coe¢ cient�wi will be equivalent to replacing the penalty jjwjj1 by jjwjj2.

This will shrink the unrestricted MV weights toward 0, but will not exactly set to 0 any of

those weights, so that all individual subsystems in r will be assigned some weight. This is the

so-called ridge procedure, which is commonly used to deal with multicollinearity. Interestingly,
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both LASSO and ridge procedures work when n is bigger than T . For that reason, they are

often referred to as regularization procedures.

Unlike ridge procedures, which have as closed-form solution for the weights the sample version

of (�+%In)�1�, LASSO has to be computed numerically. A brute force approach to the solution

would involve the computation of the optimal MV solution for every possible subset of the n

assets. Having obtained the optimal unrestricted weights for a particular set, one would then

evaluate the objective function at those weights, and select the set for which this objective

reaches the minimum minimorum. The problem with this approach is that there are 2n possible

subsets, which makes it infeasible for moderately large n. Fortunately, the LASSO problem can

also be solved using quadratic programming or more general convex optimization methods, as

well as by means of speci�c algorithms. In particular, Efron et al. (2004) proposed a slight

modi�cation of the so-called Least Angle Regression (LARS) algorithm as a very fast way of

computing all possible LASSO regressions as a function of �. An important advantage of this

algorithm is that it will progressively incorporate variables to the regression as � increases by

exploiting the fact that marginal increases in this parameter will typically lead to no change in

the components of the optimal portfolio. An additional advantage already mentioned is that it

will work even in contexts in which n is larger than the number of observations.

In fact, it is possible to take a weighted combination of the jjwjj1 and jjwjj2 penalties, as in

the so-called elastic net procedure, which tends to select strongly correlated returns together.

Alternatives that impose a hierarchical structure by either including always some assets or

grouping them so that they can only appear in combination with others, as in group LASSO,

o¤er attractive possibilities in some circumstances.

3 Conditioning information

So far, we have considered a portfolio problem in which the information agents may have

at the time they make investment decisions plays no role. However, except for passive investors

who merely track a broad stock market index such as the S&P 500, the Russell 3000 or one of its

international counterparts, most asset managers systematically rely on information in making

their choices. In this respect, there are two broad categories of active investors: stock pickers,

who rely on the individual characteristics of the assets, and market timers, who try to predict

trends in the prices of either some speci�c assets or the market as a whole. In practice, of course,

most asset managers employ a combination of stock picking and market timing strategies.

Interestingly, before the stock market crash of October 1987, market timing was regarded

with suspicion, but nowadays everybody agrees that the distribution of asset returns changes
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frequently in predictable ways, if not necessarily in terms of their means (see Spiegel (2008)), at

least in terms of their variances and correlations, and that investors can exploit this fact to their

advantage by using conditional distributions in designing their portfolio strategies. In contrast,

stock picking has recently lost its allure, especially in view of the fact that many active fund

managers do not generate enough value added to compensate for their higher fees, with some

even accused of being hardly distinguishable from index trackers.

We review the two strands of the literature in section 3.2 below, but, before doing so, it is

convenient to discuss in some detail the subtle but important di¤erences that the presence of

conditioning information introduces in the theory of asset management in section 2.1, and its

relationship to asset pricing.

3.1 Theoretical background

For simplicity, suppose that there are d variables, x = (x1; : : : ; xd)
0, sometimes called in-

struments or signals, which help predict asset returns. These predictors could be individual

asset characteristics, such as the size of a �rm in terms of its market capitalization or its book

to market ratio, or macroeconomic time series, such as the in�ation level or the spread between

corporate and government bonds. We also assume that there are only three important dates

in this economy: the decision, trading, and payo¤ dates. Investors design ex ante portfolio

strategies at the decision date which may depend on the information that they will observe

at the trading date. Finally, they receive payo¤s at the �nal date. In a world with multiple

periods, this approach leads to a myopic portfolio decision, but we postpone the discussion of

intertemporal portfolio choice until section 4.1.

We denote the set of all random variables that are measurable with respect to x by I. In

this context, we denote the �rst two conditional moments of the available zero-cost payo¤s by

E(rjI) and E(rr0jI), respectively. We treat these moments as random variables that belong

to I, whose realizations correspond to the values they take for a speci�c value of x. To avoid

a trivial uninformative set up, we assume that not all these random variables are degenerate.

We also assume that the diagonal elements of E(rr0jI) are uniformly bounded with probability

one, so that a fortiori all the elements of r belong the collection of random variables de�ned

on the underlying probability space with bounded unconditional second moments. Regarding

the conditional covariance matrix of r, V ar(rjI), we assume its smallest eigenvalue is uniformly

bounded away from 0 with probability one, which implies that none of the zero-cost portfolios in

r is either conditionally riskless or redundant, and moreover, that it is not possible to generate

a conditionally riskless portfolio from r other than the trivial one. In what follows, we will refer

to the conditional span of r as the payo¤ space P . In this context, w 2 I indicates an active
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portfolio strategy, while a vector of constant weights w 2 Rn indicates a passive portfolio.

We can then de�ne the uncentred conditional mean representing portfolio in the space of

zero-cost portfolios as r�, so that E(rjI) = E(rr�jI). By analogy to the case without conditioning

information in section 2.1, we will have that

r� = r0E�1(rr0jI)E(rjI): (13)

Consequently, r� is the excess return that �mimics� a safe asset with constant payo¤s 1 with

the minimum �conditional tracking error�. Then, if we rule out risk neutral pricing, so that

not all conditional expected returns are equal, it is possible to prove that all the portfolios on

the zero-cost conditional MV frontier generated from all primitive assets will be spanned by r�.

Therefore, this portfolio achieves the maximum conditional Sharpe ratio among all arbitrage

portfolios.

From the practical point of view, a problem with this conditional MV frontier is that it

depends on the information set an investor has at her disposal. In contrast, outsiders usually only

observe the excess returns to her portfolio. Speci�cally, the composition of the portfolios held by

professional managers is either a snap-shot taken only once per quarter, as in the mutual fund

industry, or not at all, as in the case of hedge funds and other alternative investment managers

such as commodity trading advisors. Therefore, given that performance evaluation must often

be based exclusively on observed track records, it still makes sense to study MV frontiers based

on unconditional moments even though investors are using conditional ones. In this respect,

Hansen and Richard (1987) de�ne the unconditional MV frontier for zero cost portfolios as the

highest lower bound on the unconditional variance for each level of expected return that can be

achieved by portfolios with weights that may depend on conditioning information, but whose

cost is 0. Thus, the unconditional arbitrage MV frontier will be given by the set of active

portfolio strategies that solve the problem

min
p2P

E(p2) s:t: E(p) = � 2 R; C(pjI) = 0: (14)

Hansen and Richard (1987) show that the excess returns that solve (14) correspond to the

following passive portfolio of r�:

pU (�) = !U (�)r
�; (15)

where the constant !U (�) guarantees that the constraint E[pU (�)] = � is satis�ed. This frontier

is related to the unconditional SDF frontier introduced by Gallant, Hansen and Tauchen (1990),

which yields the highest lower bound on the variance of SDFs that correctly price any portfolio

whose weights may also depend on conditioning information. Unlike what happens in the case
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of assets of arbitrary cost, these two frontiers are dual to each other for zero-cost portfolios (see

Peñaranda and Sentana (2016) for further details).

Importantly, the set of unconditionally MV e¢ cient portfolios is a subset of the set of condi-

tionally e¢ cient ones characterized by a constant weight on the conditional mean representing

portfolio r�. This seemingly cryptic remark has important consequences for portfolio managers.

For example, the trading rule implicit in (13) is di¤erent from the natural counterpart to the

static MV rule that we have discussed in section 2.1, whose weights would be E0(rjI)V �1(rjI).

In particular, the Sherman-Morrison-Woodbury formula (1) applied to the conditional second

moments implies that

E�1(rr0jI)E(rjI) =
�

1

1 + E0(rjI)V �1(rjI)E(rjI)

�
V �1(rjI)E(rjI); (16)

which means that although the relative weights are the same, the factor of proportionality varies

with the information. The di¤erence can perhaps be seen more clearly in the single asset case,

in which

r� =
E(rjI)

V (rjI) + E2(rjI)r =
�

1

1 + E2(rjI)=V (rjI)

�
E(rjI)
V (rjI)r:

As a result, while the conditional Sharpe ratio is the same for both strategies, the unconditional

Sharpe ratio of the trading rule based on second moments (13) is always at least as large as the

unconditional Sharpe ratio of the actively trading rule based on conditional variances and covari-

ances, with equality if and only if the maximum conditional Sharpe ratio E0(rjI)V �1(rjI)E(rjI)

is constant (see Peñaranda (2016) for further details).7 In fact, Sentana (2005) provides coun-

terexamples in which the unconditional Sharpe ratio of this last strategy could be lower than the

Sharpe ratio of an investment fund that follows a simple buy and hold strategy for the underlying

asset. Sentana (2005) also shows that unconditional MV applied to the payo¤ vector (1;x0)
 r0

results in a portfolio that maximizes the unconditional Sharpe ratio among all portfolios of r

whose weights are a¢ ne functions of x, like the ones we analyze in section 3.2.2 below.

Managed portfolios whose leverage depends linearly on x are often regarded as an ad-hoc

way of approximating the e¤ect of conditioning information. This criticism is less worrying than

it may seem at �rst sight because x can contain non-linear transformations of a relatively small

set of observed variables. In fact, Peñaranda and Sentana (2016) and Chen et al. (2023) show

that suitably selected managed portfolios can approximately replicate the payo¤ space P with

solid statistical foundations. Speci�cally, these papers explicitly relate managed portfolios to

7 It is worth mentioning that there are other relevant subsets of conditionally e¢ cient returns apart from
unconditionally e¢ cient returns. Speci�cally, Peñaranda and Wu (2022) study the subset of conditionally e¢ cient
portfolios that achieve a constant conditional expected return (a return target), and the subset that achieve a
constant conditional variance (a risk target). They show that risk targeting generates better unconditional
performance than return targeting across a wide range of metrics.
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sieve methods in a new econometric methodology called �sieve managed portfolios�. As is well

known, sieves e¤ectively approximate the functions to be estimated, the optimal active portfolio

weights in this case, by means of parameter spaces whose dimension increases with sample size

(see Chen (2007) for a survey of sieve methods in econometrics). Let bdT (x) denote a dT � 1

vector of known sieve basis functions (power series, splines, Fourier series, etc.) with the property

that its linear combinations can approximate arbitrarily well any square integrable real-value

function of x by allowing the so-called mesh size parameter dT (number of terms in a series or

number of knots in a spline) to increase without bound. Since the approximating spaces are

characterized by a �nite number of parameters, sieve methods e¤ectively reduce the estimation

problem to a parametric one. Nevertheless, at some point the number of underlying strategies

will become very large, and some regularization would become necessary. This regularization

can be easily achieved in the context of the regression of 1 on the excess returns of the sieves

managed portfolios, bdT (x) 
 r, by means of the LASSO or ridge procedures described at the

end of section 2.2.3.

3.2 Big data on asset characteristics and macroeconomic indicators

According to the CAPM, the market portfolio is MV e¢ cient, and consequently, investors

should be able to attain the maximum Sharpe ratio by simply buying an exchange traded fund

(ETF) that replicates a broad stock market index such as the S&P 500, the Russell 3000, or

their international counterparts, such as the MSCI ACWI. The applied �nance literature of

the early seventies broadly supported the view that the stock market as a whole was e¢ cient,

and that the static CAPM provided a valid representation of the relative valuation of many

assets. In contrast, the late seventies and early eighties upended the status quo. Speci�cally,

many studies found that several asset-speci�c characteristics that in principle should play no

role were useful in explaining the di¤erence between actual risk premia and the theoretical risk

premia implied by the CAPM. The �rst examples were size (see Banz (1981)) and book-to-

market ratios, which allow the classi�cation of �rms into mutually exclusive value and growth

groups (see Statman (1980) and Rosenberg, Reid and Lanstein (1985)). These two examples

were soon followed by others combining accounting and market price data, or only the latter (see

De Bondt and Thaler (1984) for reversals and Jegadeesh and Titman (1993) for momentum).

In fact, Asness, Moskowitz and Pedersen (2013) mention that professional portfolio managers

have long considered strategies that exploit individual stock characteristics such as value and

momentum.

As usual, these anomalies could be interpreted as either a failure of market rationality or

the asset pricing model used. Therefore, it is not surprising that new empirically oriented
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asset pricing models came to the fore. One of the most in�uential models was Fama and French

(1993) 3-factor model in which the a¢ ne SDF included not only the excess returns on the market

portfolio, but also the excess returns of two other trading strategies that aim to capture the size

and value e¤ects: SMB, which means long/short in small/large capitalization stocks, based on

said size e¤ect, and HML, or long/short in high/low book-to market ones, which exploits the

fact that the returns to value stocks tend to outperform those to growth stocks in the long run.

Typically, factor or style portfolios are calculated as follows. At a given point in time,

all individual stocks in the CRSP database are ranked according to a characteristic obtained

either from past returns, as in the case of momentum and short- and long-term reversals, or

by combining price data with variables in the income statements and balance sheets of publicly

traded companies reported in the Compustat database. Then, a zero-cost portfolio is created

by taking long positions in those stocks for which the value of their characteristic exceeds the

100-x% percentile and short positions in those with values below the x% percentile, with x equal

to 10 for example. In the case of momentum and reversal factors, the rebalancing takes place

monthly, while for characteristics based on accounting variables, it takes place once a year in

early July after most companies have o¢ cially �led their annual accounts. Sometimes, though,

these univariate sorts are replaced by bivariate and even trivariate ones. In particular, the

original size and value factors are based on six portfolios computed from the intersections of two

portfolios formed on size with a breakpoint equal to the median NYSE market equity at the end

of June, and three portfolios formed on the ratio of book equity to market equity at the end of

the previous year with breakpoints the 30th and 70th NYSE percentiles.

After the success of the Fama and French (1993) model, additional pricing factors were

proposed. For example, Carhart (1997) considered a fourth factor to capture �momentum�,

which goes long in the winners over the previous 12 months (excluding the most recent one) and

short in the corresponding losers. Given the interest of �nancial market participants and �nance

journals in these empirical results, researchers progressively entertained a broader and broader

set of factors, which has resulted in several success claims. Harvey, Liu and Zhu (2016) contained

a comprehensive list of references theretofore, which included 315(!) di¤erent factors, and the

so-called �factor zoo�has only increased since, raising concerns that many empirical asset pricing

models are overspeci�ed (see Manresa, Peñaranda and Sentana (2023)). To ease replicability,

Chen and Zimmermann (2022) have created a repository of many of these characteristic-sorted

portfolios.
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3.2.1 Forecasting returns

The most common way of incorporating conditioning information in portfolio decisions is

to use it for the purposes of predicting returns. As is well known, forecasting is one of the

most frequent examples of supervised learning in the machine learning literature, which can

accommodate a large number of characteristics, macroeconomic variables and their interactions.

The estimated forecasting function is then used to build portfolios, typically by means of long-

short strategies obtained from decile spreads.

A very popular forecasting method is regression trees, which extends classi�cation trees to

situations in which the dependent variable is continuous rather than binary. Tree-based methods

have two main features. First, they approximate the conditional mean functions by means of

step functions de�ned over a partition of the space of regressors into hyperrectangles or splits.

Second, given that it is generally not possible to obtain the globally best partition in a reasonable

amount of time, these methods are implemented by means of a greedy algorithm that �nds a

sequence of optimal splits for a single variable at a time. A single tree is easy to interpret but it

su¤ers from high sampling variability. Therefore, in practice these procedures are implemented

through ensemble methods that average many trees, even though this approach loses the simple

interpretation of a single tree. One common variant is bagging, where trees are trained with

di¤erent bootstrapped samples run in parallel. Another common variant is boosting, where a

sequence of trees are trained on modi�ed versions of the data that depend on the previous model

errors.

For example, Moritz and Zimmermann (2016) use random forests to obtain the conditional

mean of stock returns given an information set of past returns and �rm characteristics. Random

forests are an example of bagging, but allowing for a random set of predictors at each split. These

authors �nd that a trading strategy that goes long in stocks with high return predictions and

short in stocks with low return predictions achieves an information ratio twice as high as Fama-

MacBeth regressions that allow for interactions between the characteristics. As is well known,

the information ratio is analogous to the Sharpe ratio but for the returns of an asset relative

to its benchmark. In turn, Fama and MacBeth (1973) regressions are a popular procedure of

rolling cross-sectional regressions that generates a time-series of intercept and slope coe¢ cients

whose values can be related in some applications to the prices of risk that appear in the SDF. In

each cross-sectional regression, the dependent variable is the next-period return for each stock,

and the explanatory variables the current stock characteristics.

More recently, Gu, Kelly and Xiu (2020) apply a suite of machine learning methods to 920

covariates obtained by combining 74 industry dummies with the interactions of 94 characteris-
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tics and 8 macroeconomic variables. In particular, they consider OLS, dimensionality reduction

with principal components regression and partial least squares, regularization with elastic net

and group LASSO, random forests and gradient boosted trees, as well as several neural networks

(NNs), �nding that decile spread portfolios constructed using NNs dominate the other proce-

dures in terms of Sharpe ratios and peak to trough price falls or �drawdowns�. A simple NN

with a single hidden layer computes several linear combinations of the predictors and applies

a nonlinear transformation to each one of them. The output of the NN, a return forecast in

our setting, is a linear combination of those nonlinear transformations. One can also compute a

more complex NN with several hidden layers by compounding the linear combinations and their

nonlinear transformations, the archetypal example of deep learning. NNs are usually estimated

or �trained�by an algorithm called stochastic gradient descent, which in this case applies the

chain rule across the layers in a procedure known as �backpropagation�. In this section, we con-

sider fully connected feedforward networks, describing more recent architectures in subsequent

ones.

On their part, Freyberger, Neuhierl and Weber (2020) use an additive nonparametric ap-

proach with no interaction across characteristics, in which each component is approximated by

quadratic splines. They also use group LASSO to select characteristics, penalizing jointly all the

spline coe¢ cients associated to each one of them. Although they work with 62 characteristics,

they �nd that less than twenty provide incremental information, with their nonparametric model

more than doubling the Sharpe ratio of a standard linear one.

Using the characteristics data of Freyberger, Neuhierl and Weber (2020), Kelly, Pruitt and

Su (2019) and Kim, Korajczyk and Neuhierl (2021) develop latent factor models with time-

varying intercepts and loadings that depend on those characteristics. Those models can be used

to construct arbitrage portfolios that eliminate factor risk.

In turn, Chen and Zimmermann (2022) work with 319 characteristics, �nding that their

predictive ability is robust and credible. In contrast, Chen and Velikov (2023), who focus on

the pro�tability of long-short portfolios instead, do not �nd any pro�table rule after taking into

account trading costs and the staleness of some time series.

On the other hand, Han et al. (2021) develop a cross-sectional approach based on Fama-

MacBeth regressions that uses LASSO, forecast combination and forecast encompassing. They

work with 193 characteristics from Chen and Zimmermann (2022), and construct a portfolio

strategy with long and short positions that yields a high Sharpe ratio and an abnormal expected

return or �alpha�. They also con�rm that many characteristics are able to forecast cross-

sectional di¤erences in expected returns.
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The previous papers focus on US stocks but others provide international evidence. Speci�-

cally, Rasekhscha¤e and Jones (2019) use several machine learning methods for stock selection

with 194 characteristics. They study both the US and a portfolio of several other developed

markets. The methods that they consider are a gradient boosted regression tree, a NN, and some

bagging estimators, illustrating the bene�ts of their methods by means of a long-short strategy

of decile spreads. In addition, Tobek and Hronec (2021) consider stocks from 23 developed

countries and 153 characteristics. They implement several machine learning methods along the

lines of Gu, Kelly and Xiu (2020). They conduct their analysis using liquid stocks for the US,

Japan, the Asia-Paci�c region, and Europe, �nding a signi�cant pro�tability associated to their

methods, with the main source of information for all the geographic areas being the US. More

recently, Choi, Jiang and Zhang (2024) use stocks from 32 international markets, �nding that

the use of 36 characteristics for US �rms using NNs improves the return predictions in other

countries.

Finally, Leipold, Wang and Zhou (2022) also apply the methods of Gu, Kelly and Xiu

(2020) to thousands of Chinese stocks using 94 characteristics, 80 industry dummies, and 11

macroeconomic variables as predictors. They �nd some distinctive features relative to the US

market, such as a more relevant role for liquidity and a lesser one for momentum. However, they

are forced to restrict their analysis to the performance of long-only portfolios, which remains

economically signi�cant, because shorting is not really practical in the Chinese stock market.

All previous papers forecast returns, but another possibility is to forecast corporate earnings.

In this respect, Cao and You (2024) �nd that machine learning methods, especially nonlinear

ones, generate signi�cantly better forecasts than analysts�consensus forecasts. They consider,

in particular, LASSO and ridge regressions, random forests, boosted trees and NNs with 60

accounting predictors at the annual frequency, �nding that the corresponding portfolios based

on quintile spreads yield statistically signi�cant average returns.

A di¤erent strand of the literature studies monthly market timing procedures using the 17

Goyal and Welch (2008) macroeconomic predictors.8 In particular, Rossi (2018) uses boosted

trees to predict stock market returns and their volatilities. His volatility forecast also makes use

of 250 past squared daily returns using a mixed data sampling (MIDAS) model. He studies the

performance of an MV strategy that uses those forecasts and another one that also uses boosted

trees but this time to forecast the optimal MV weight directly, �nding that both approaches

translate into pro�table strategies. In turn, Jacobsen, Jiang and Zhang (2019) develop a mixture

8More recently, Goyal, Welch and Za�rov (2023) add 29 predictors to the original Goyal and Welch (2008)
variables, �nding that only a few of them forecast reasonably well the equity premium for the market both
in-sample and out-of-sample.
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of bagging and boosting to generate average return forecasts using methods such as LASSO,

Bayesian model averaging, and weighted-average least squares. Then, they combine these return

forecasts with a variance forecast obtained from a �ve-year rolling window to compute the MV

weight, which they use next in their market timing strategies, �nding that the gains from their

method are mainly concentrated in periods of extreme market falls.

In an example of assets di¤erent from stocks, Bianchi, Büchner and Tamoni (2021) apply

machine learning to US Treasury bonds. They carry out two empirical applications, one that

forecasts bond returns using the cross-section of yields, and another one that uses both forward

rates and 128 macroeconomic variables described in McCracken and Ng (2016). Bianchi, Büchner

and Tamoni (2021) �nd that both extreme trees, which use random partitions, and NNs are able

to achieve a signi�cant bond return predictability. The portfolio choice criteria that they study

include an MV investor and another one with constant relative risk aversion (CRRA) preferences.

In the MV weight formula, in particular, they combine machine learning methods for the mean

with a rolling estimator for the variance, observing that their forecasts yield large economic

gains. Similarly, Kelly, Palhares and Pruitt (2023) apply the methodology of Kelly, Pruitt and

Su (2019) to corporate bonds. They work with 14,600 bonds and 29 bond/�rm characteristics,

�nding that their factor model improves earlier corporate bond models proposed in the literature

by a large margin. In addition, they �nd that the credit risk premium is notably larger than

previously estimated, and that there is a closer integration between debt and equity markets

than usually thought.

3.2.2 Optimal weights

In this section, we review several research papers that compute portfolio weights directly

by optimizing some economic criterion without the need to forecast returns. Nevertheless,

most of them still consider monthly portfolio weight rebalancing for thousands of US stocks.

Brandt, Santa-Clara and Valkanov (2009) handle a large cross-section ofNt assets at the monthly

frequency with a few characteristics by using the following parametrization of the portfolio

weights:

wit = �wit +
1

Nt
�0x̂it; (17)

where �wit represents the weight on asset i of a benchmark portfolio, typically a value-weighted

index, and x̂it vector the cross-sectionally standardized characteristics for this asset. They then

estimate the vector of coe¢ cients � so as to maximize the in-sample value of an evaluation

criterion such as the Sharpe ratio. Previously, Brandt and Santa-Clara (2006) used parametric

weights in the context of asset allocation across time on the basis of macroeconomic predictors.
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Speci�cally, they studied the performance of market-timing strategies for stocks, bonds and

cash in which they allowed the weights of each asset class to be a di¤erent a¢ ne function of the

common vector of predictors.

Several recent papers build on (17) to combine many characteristics. For example, Kozak,

Nagel and Santosh (2020) translate such a strategy to an asset pricing context. Parametrizing the

SDF weights as a¢ ne functions of the characteristics allows them to work with 80 characteristic-

based portfolios instead of the original large cross-section of individual stocks. When they also

consider pairwise interactions of individual characteristics, the number of managed portfolios

raises to 3,400. In addition, they include a ridge or LASSO regression penalization in estimating

the SDF. Given that the SDF weights have an optimal MV portfolio interpretation, as we

have seen in previous sections, these authors can generate alpha relative to the Fama and

French (2015) model augmented with a momentum factor. Although their results might seem as

evidence against six factors being su¢ cient to summarize the cross-section of stocks, they also

show that �ve principal components of the managed portfolios render the alpha of the optimal

MV portfolio insigni�cant.

Another paper that also builds on Brandt, Santa-Clara and Valkanov (2009) is De Miguel

et al. (2020), who show that transaction costs increase the number of characteristics that are

jointly signi�cant for optimal portfolios. They work with MV parametric portfolios that are

a¢ ne functions of 51 characteristics. Apart from explicitly considering transaction costs, they

use LASSO regularization, �nding that transaction costs increase the number of signi�cant char-

acteristics from 6 to 15. Kelly, Malamud and Pedersen (2023) also maintain that the portfolio

weights are a¢ ne in the characteristics, as in (17), but allow the characteristics of other assets

to a¤ect the weights of asset i, thereby allowing their portfolios to exploit cross-predictability

across assets.

More recently, Simon, Weibels and Zimmermann (2023) substantially depart from the orig-

inal spirit of parametric strategies by maximizing expected utility when the portfolio weights,

as functions of the characteristics, are modelled using deep NNs that allow for interactions be-

tween characteristics. Using 157 characteristics from Chen and Zimmermann (2022), they �nd

signi�cant utility gains from their deep learning procedures. Interestingly, they also �nd that

risk aversion can be interpreted as a regularization parameter.

Bryzgalova, Pelger and Zhu (2023) also abandon the parametric framework of Kozak, Nagel

and Santosh (2020) and use decision trees to build cross-sections of stocks based on character-

istics. Their use of trees, though, is very di¤erent from the usual greedy algorithm in machine

learning. For a given set of characteristics, at each step they group stocks with a tree obtained by
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splits based on median characteristics, limiting the depth to four splits to obtain well-diversi�ed

managed portfolios. They consider all possible trees derived by di¤erent orderings of the char-

acteristics. Then they prune those trees using the following three tuning parameters: shrinking

means and variances, and a LASSO penalty for the SDF coe¢ cients, which they select by maxi-

mizing in the validation sample the Sharpe ratio of the optimal MV portfolio linked to the SDF.

Somewhat surprisingly, they show that their SDF framework is equivalent to an MV framework

with an elastic net penalty. In their empirical application, they initially consider triple-sorted

portfolios but �nally settle for analyzing 10 characteristics jointly. An important result is that

a mere 20 to 40 tree-based portfolios can double the maximum Sharpe ratio associated to the

underlying 100 decile-sorted, long/short portfolios.

Cong et al. (2023) also use decision trees to construct the MV frontier from an unbalanced

panel of stocks. They rely on global split criteria based on maximum Sharpe ratios, growing

a tree until 10 basis portfolios are generated, and considering a sequence of boosted trees. A

managed portfolio is then constructed for each one of those trees, and the �nal output is the

MV frontier for the corresponding cross-section of managed portfolios. They work with 61

characteristics jointly with 10 macro variables, and �nd a signi�cant improvement of the MV

frontier thus obtained with respect to more standard portfolio construction techniques.

On their part, Goulet Coulombe and Göbel (2023) use the Goyal and Welch (2008) macro-

economic predictors ignoring characteristics data. They develop an algorithm that optimizes

portfolio weights so that the portfolio is maximally predictable in the sense of Lo and MacKinlay

(1997). The algorithm iterates between a random forest step for the portfolio return prediction

and a ridge regression step for the portfolio weights, �nding a signi�cant increase in pro�tability

despite using relatively little conditioning information.

In a very recent paper, Chen, Pelger and Zhu (2024) develop an alternative approach that

di¤ers from the existing literature in several important aspects. They combine 46 characteristics

and 178 macroeconomic predictors, most of which they obtain from McCracken and Ng (2016).

Next, they estimate the SDF implied by the cross-section of stocks using a minimax criterion.

Speci�cally, they separate the managed portfolios that appear in the SDF from the managed

portfolios that must be priced, minimizing the pricing errors of the former, but maximizing them

for the latter. They parametrize both sets of managed portfolios by a feedforward network that

combines stock characteristics with macroeconomic regimes obtained by means of a long short-

term memory network (LSTM), which we describe in some detail in section 4.2 in the context of

textual data. They train their model as a generative adversarial network (GAN),9 with several

9The GAN architecture is based on two networks with opposite goals. It was developed in the area of computer
vision to generate images close to real ones, with the two competing networks being a generator that creates images
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hyperparameters that they obtain by maximizing over the validation data the Sharpe ratio

associated to the SDF. They show that their method outperforms several benchmarks in terms

of this portfolio performance criterion.

Finally, Avramov, Cheng and Metzker (2023) study the economic signi�cance of several

machine learning methods. They consider the two portfolio construction approaches we have

already discussed, namely decile spread portfolios obtained from forecasts, as Gu, Kelly and Xiu

(2020), whose covariates they share, and optimal weights, like Chen, Pelger and Zhu (2024).

Imposing economic restrictions, they �nd that the pro�tability of deep learning methods be-

comes considerably lower when they exclude microcaps, distressed stocks, or episodes of high

market volatility. They also report that the portfolio turnover of machine learning methods is

considerably higher than the turnover associated to traditional portfolios based on individual

characteristics, which means that transaction costs cannot be ignored in practice. Another of

their �ndings is that deep learning strategies are considerably more pro�table during periods in

which investor sentiment and volatility are high and market liquidity low. Finally, they report

that machine learning methods are economically interpretable, in the sense that they identify

stocks that are mispriced according to well-established empirical regularities, and they display

less downside risk too.

3.3 Interpretability and complexity

Some machine learning methods are often considered black boxes that hide the connection

between inputs and outputs. Nevertheless, some of the papers mentioned in previous sections go

to great lengths to explicitly address this concern. For example, Moritz and Zimmermann (2016)

compute a measure of predictor importance based on the change in mean square error (MSE)

when a predictor is randomly permuted. They also look at the partial derivatives of the MSE

with respect to each predictor, speci�cally checking if the model predictions can be explained by

a simple linear regression. Similarly, Simon, Weibels and Zimmermann (2023) consider variable

importance, partial dependence, and two surrogate models: a linear one and another one with

interactions. In turn, Gu, Kelly and Xiu (2020) compute the reduction in the predictive R2 of

their panel of stocks when all values of a predictor are set to zero, as well as the sum of squared

partial derivatives of the MSE with respect to each input variable. They �nd that the most

powerful predictors are variations of momentum, liquidity, and volatility. Lastly, Chen, Pelger

and Zhu (2024) rank variables by their sensitivity, which they measure by the average absolute

derivative of the SDF weights with respect to each variable.

Li, Turkington and Yazdani (2020) also emphasize that machine learning methods for in-

from noise, and a discriminator that tries to distinguish those fake pictures from real ones.
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vestment must be interpretable. For that reason, they develop a method built on the concept

of partial dependence in Friedman (2001), which isolates the linear and nonlinear e¤ects of each

variable, as well as the interaction e¤ects for each pair of variables. They apply it to the pre-

diction of both the 90 cross-rates quoted in both directions for the G10 currencies and a narrow

set of �ve paired characteristics such as short-term interest rate di¤erentials. They �nd that the

predicted linear e¤ects of random forests, boosted trees, and NNs are very similar to a multiple

linear regression. Subsequently, Li, Simon and Turkington (2022) apply the same methodology

to the stocks of the S&P 500 using 16 predictors, which include both characteristics and a few

macroeconomic variables. They implement several models to forecast returns: OLS, LASSO,

random forests, boosted trees and NNs, which they then combine with a trading rule that is

long on the highest return forecasts, and short in the lowest ones. They �nd that nonlinear-

ities are most important for boosted trees, while interactions play an important role in NNs.

Daul, Jaisson and Nagy (2022) follow a similar methodology with 205 characteristics for inter-

national stocks, �nding that the superiority of trees and NNs comes form their regularization

and interactions rather than from the nonlinear component of individual predictions.

In turn, Jaeger et al. (2021) use Shapley values to assess the importance of the di¤erent

predictor variables. Although they are nowadays prevalent in the machine learning literature,

Shapley values were originally introduced in cooperative game theory to de�ne a fair split of

payouts across players considering their contributions to the common goal. In a prediction

setting, one can interpret the predictors as the players and the prediction as the goal (see chapter

8 of Molnar (2022) and the references therein for additional details). Jaeger et al. (2021) study

several strategies such as risk parity that focus on diversifying risk with 17 rolled-over futures on

commodities, equity indexes, and �xed income. Speci�cally, they apply Shapley values to study

the contribution of 96 statistics such as means, standard deviations or drawdowns in a boosted

tree algorithm with the increment in Calmar ratios as their metric. The Calmar or drawdown

ratio is a portfolio performance measure regularly applied to commodity trading advisors and

hedge funds that compares the average annual rate of return for the last three years to the

maximum peak to trough price fall over the same period. They conclude that the reduction in

length and depth of drawdowns are the main drivers of the improvements that they observe.

Goulet Coulombe et al. (2023) develop an alternative methodology based on Shapley values

for portfolio performance attribution across predictors. They apply their methodology to study

which of the �rm characteristics in Chen and Zimmermann (2022) are truly relevant for ex-

plaining the cross-section of stock returns. They consolidate 207 characteristics into 20 groups,

combining a boosted tree for forecasts with long-short strategies based on quintile spreads.
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They conclude that pricing factors related to earnings, investment, and the seasonal �momen-

tum�at annual frequencies studied by Heston and Sadka (2008) make relevant contributions to

the Sharpe and Calman ratios of the portfolios.

The conventional wisdom in both econometrics and machine learning is that the optimal

complexity of a model should appropriately balance the biases generated by simple models with

the variance associated to overparametrized ones. However, this widespread belief has been

challenged recently. Speci�cally, in their study of double descent in deep learning, Schae¤er et

al. (2023) argue that the usual bias-variance trade-o¤ is limited to an initial region, with the

prediction error going down again for higher levels of model complexity.

Similarly, Kelly, Malamud and Zhou (2023) use random matrix theory to highlight what they

call the �virtue of complexity�in return prediction with ridge regularization. From the empirical

point of view, they provide evidence of signi�cant information ratios obtained by market timing

strategies that use nonlinear transformations of the Goyal and Welch (2008) macroeconomic

predictors. Interestingly, the successful market timing procedures that they derive learn to

behave as long-only strategies that divest when they get close to macroeconomic recessions.

Didisheim et al. (2023) extend the same analysis to SDF estimation for a large cross-section

of individual stocks. In particular, they empirically study managed portfolios from nonlinear

transformations of 130 characteristics, �nding that the most successful factor pricing models are

very large, using as many as one million factors.

4 Other impacts of big data in portfolio management

In this section we study two areas that are also important for portfolio management, but

which have attracted less attention in the academic literature so far: the implications of big

data for intertemporal portfolio decisions, and the use of alternative data, especially text and

images.

4.1 Intertemporal portfolio decisions

To study optimal investment decisions in an intertemporal setting, we �rst review dynamic

programming, the usual tool for making optimal sequential decisions in economics and �nance.

Afterwards, we discuss reinforcement learning, which is the branch of machine learning developed

for those purposes, as it can accommodate big data more naturally.

4.1.1 Dynamic programming

As mentioned before, although conditional MV analysis is a natural extension of Markowitz�

(1952) approach to a situation in which the mean or variance of asset returns are predictable, it
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is a myopic procedure in intertemporal contexts because it fails to take into account that next

period investors will face the same problem all over again. In this respect, a basic lesson from

dynamic programming is that a sequence of one-period solutions is not necessarily optimal when

the investment horizon covers multiple periods.

One possibility would be to repeat the conditional MV analysis that we discus in section 3.1

for multiple horizons, as in Campbell and Viceira (2005), but again, this does not generally lead

to internally consistent dynamic investment rules when portfolio rebalancing is allowed during

the investment period. Some authors have proposed the growth-optimal portfolio, which is the

one that maximizes the expected geometric return. However, this choice does not necessarily

maximize the expected utility of �nal wealth for preferences di¤erent from the log function

already considered by Bernoulli as a solution to the St. Petersburg paradox in the XVIII

century.

Some practitioners use unconditional MV analysis to de�ne what they call a strategic asset

allocation (SAA), and conditional MV analysis to de�ne what they call a tactical asset allocation

(TAA). Tactical asset allocation, though, explicitly takes into account that the investor is holding

the SAA portfolio as a background risk (see section 6 of Peñaranda (2008) for details).

Merton (1971) developed the �rst comprehensive solution to the intertemporal portfolio

choice problem in a continuous time framework. He assumed not only that there is an in-

stantaneously safe bond, but also that the log prices of a vector of risky assets that pay no

dividends evolve according to a system of �rst-order stochastic di¤erential equations driven by

a multivariate Brownian motion process whose drifts and di¤usions components depend on a

set of d predictor variables x, which in turn evolve according to a �rst-order Markovian process.

Speci�cally, if dY denotes the vector whose entries are equal to dPi=Pi for each i, Merton (1971)

assumed that

dY = �Y(x; t)dt+�Y(x; t)dBY;

dx = �X(x; t)dt+�X(x; t)dBX:

Notice that by maintaining the assumption that the instantaneous conditional distribution

of continuously compounded returns and predictor innovations is Gaussian and allowing for

the existence of a conditionally riskless asset, Merton (1971) was e¤ectively working with the

continuous time analogue to Tobin�s (1958) version of Markowitz (1952) MV model.

In this context, the risk premia, de�ned as the instantaneous mean of the vector of returns

in excess of the instantaneous conditionally safe rate R0(x; t), will be given by

� = Et(dY�R�ndt) = (�Y �R0�n)dt;
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while the instantaneous covariance matrix will be

�dt = Vt(dY�R0�ndt) = �Y�0Ydt:

The �nal ingredient is the instantaneous covariance between returns and predictor variables,

which is given by

�dt=covt(dY�R0�ndt; dx) = �Y(x; t)cov(dBY; dBX)�0X(x; t):

Let W (t) denote the investor wealth at time t. The intertemporal portfolio problem con-

sists in choosing the dynamic portfolio strategy w(W;x; t) that solves the following dynamic

programme

max
w
E0fu[W (T )]g s:t: dW =W [(R0 +w

0�)dt+w0�Y(x; t)dBY]

for some initial wealth W (0) > 0. The problem can be generalized to include utility over

consumption between 0 and T rather than over �nal wealth, as well as an in�nite investment

horizon in which T !1.

Let us de�ne the value function as the optimal expected utility at an intermediate period t,

namely

V (W;x; t) = max
w
Etfu[W (T )]g:

The optimal value of the dynamic portfolio weights w is given by

�m�
�1�+��1��h; (18)

where

�m = �
@V (W;x; t)=@W

W@2V (W;x; t)=(@W )2

and

�h = �
@2V (W;x; t)=@x@W

W@2V (W;x; t)=(@W )2
:

In general, the optimal portfolio weights in (18) depend on W , x and t, albeit W becomes

irrelevant when the utility function of the investor belongs to the CRRA class.

In this context, the optimal portfolio rule is the sum of two components:

1. the myopic conditional MV portfolio whose weights are ��1�.

2. the so-called hedging demands, which protect the investor from the e¤ects of unexpected

changes in the predictor variables x by selecting the weights ��1� of d portfolios that

most closely approximate their innovations in the usual mean square error sense.
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The dynamic portfolio rule in (18) reduces to the myopic one in some important cases:

1. when returns are i:i:d: so that R0, � and � do not depend on x.

2. when utility is logarithmic because then @2V (W;x; t)=@x@W = 0, in which case the solu-

tion coincides with the growth-optimal portfolio.

3. when � = 0, so that the risky assets cannot be used to hedge the shocks to the predictor

variables.

Despite its elegance, Merton�s (1971) approach is di¢ cult to implement. Brennan, Schwartz

and Langado (1997) provide a tractable solution when the drifts of the di¤usions are a function

of a small number of state variables. In turn, Campbell and Viceira (1999, 2001) obtain the

optimal portfolio in a discrete time model in which the asset returns and the predictor variables

obey a conditionally homoskedastic Gaussian vector autoregressive process of order 1 or Var(1),

while Chacko and Viceira (2005) do the same in a model with stochastic volatility.

Inspired by Johannes, Korteweg and Polson (2014), Babiak and Baruník (2021) apply deep

learning forecasts of stock returns to long-horizon dynamic portfolio choice. Their objective is

the market timing of the S&P 500 using 12 macro predictors from Goyal and Welch (2008). For

a power utility investor, they �nd statistically and economically signi�cant increases in certainty

equivalent returns and Sharpe ratios when using deep learning methods. In addition, they �nd

that an LSTM network of the type we discuss in section 4.2 outperforms feedforward networks.

The bene�ts that they �nd also extend to other important performance characteristics such as

drawdowns even after considering transaction costs.

Garleanu and Pedersen (2013) suggested an alternative intertemporal decision framework

in which agents care about the present discounted value of intraperiod MV preferences in the

presence of quadratic transaction costs when expected returns are linear combinations of some

state variables that follow another conditionally homoskedastic Gaussian Var(1). Under certain

restrictions, the dynamic programming solution is a convex combination of the current optimal

MV portfolio and what they call the target MV portfolio, whose weights depend on the sensitivity

of each asset to the state variables and the persistence of these variables.

More recently, Jensen et al. (2022) have proposed a variation of this framework in a station-

ary environment that allows for general forms of dependence of the current and future expected

returns on the state variables. Although they �nd that a tractable approximation to the opti-

mal strategy involves both the previous optimal weights and a combination of the current and

expected future MV portfolios, they recommend to learn directly the optimal strategy using ran-

dom Fourier features, which is a machine learning technique related to sieves in which the basis
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functions are randomly chosen. They work with 115 characteristics for individual US stocks,

and consider a monthly portfolio rebalancing. Their methods produce a better out-of-sample

MV frontier net of trading costs. Jensen et al. (2022) also contribute to the interpretability

of machine learning methods by providing an economic measure that captures the contribution

of each predictor to realized utility. Speci�cally, they �nd that transaction costs increase the

economic relevance of persistent features related to value, quality, and momentum.

4.1.2 Reinforcement learning

In previous sections, we have studied various portfolio management applications of what

data scientists call supervised and unsupervised learning. In this section, in contrast, we study

applications of a third branch of machine learning called reinforcement learning, a data-driven

approach to sequential decision making. This family of methods provides a solution in a con-

text similar to the one in section 4.1.1, but the main di¤erence is that the decision maker does

not necessarily know either the transition probability between current and future states or even

her own utility function. Under certain conditions, a stochastic learning policy that considers

both �exploration�by means of random action and �exploitation�of the action that currently

maximizes rewards converges to the optimal policy that she would apply in a standard dy-

namic programming framework with perfect knowledge of her utility function and the transition

probabilities of the Markov processes involved.10

In this respect, Chaouki et al. (2020) study several dynamic portfolio choice set-ups and

�nd that overall reinforcement learning can recover the essential features of the corresponding

optimal strategies, thereby achieving a close-to-optimal performance. More generally, Garcia

and Marinenko (2024) review reinforcement learning for portfolio allocation. In turn, chapter

10, section 5 of Dixon, Halperin and Bilokon (2020) considers the application of reinforcement

learning to stock portfolios, while section 6 studies wealth management, providing an explicit

connection to Merton (1971).

Moody et al. (1998) is an early reference of market timing with the S&P 500. They use

several portfolio evaluation measures such as terminal wealth, utility or Sharpe ratio, �nding that

a long-short trader can obtain better results with reinforcement learning than with a supervised

learning procedure focused on forecasting returns.

Wang and Zhou (2020) work in a continuous-time framework where returns are i:i:d: and

10Two of the best known examples of reinforcement learning are as follows. In 2013, DeepMind showed that
it was able to learn to play most Atari video games using pixel data only without any previous knowledge of
the rules. A few years later, these methods managed to beat human masters in the game Go. More recently,
reinforcement learning methods that use deep NNs in their implementation when the number of states and actions
is large have become crucial ingredients in other applications more relevant in real life, such as self-driving cars,
and recommendation systems for books, �lms and songs.
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the investor has MV preferences over terminal wealth, but does not know the model parameters.

In their empirical study with a ten-year investment horizon and monthly rebalancing for sets of

twenty stocks, they �nd that their reinforcement learning algorithms, which do not use NNs, yield

better results than an MV portfolio, an equally weighted one, and an alternative reinforcement

learning algorithm that requires deep NNs.

Recently, Cong et al. (2022) use deep reinforcement learning for monthly rebalancing of

US stock portfolios when the conditioning information consists of 51 characteristics along the

lines of Freyberger, Neuhierl and Weber (2020). They use a network architecture similar to

the ones we describe in section 4.2, which has three components: a transformer encoder for

each asset�s time-series data, a cross-section network to describe relationships across assets,

and the construction of a portfolio with long and short positions for assets with high and low

winner scores, respectively, obtained from the �rst and second components.11 They train their

model using a reinforcement learning procedure in which the reward is a performance measure

such as the Sharpe ratio. They report high Sharpe ratios and alphas, and also provide some

interpretability with gradient-based methods and LASSO, �nding that rotation and nonlinearity

are the key drivers of portfolio performance.

4.2 Alternative data

In this last section, we review several portfolio management applications that successfully

exploit alternative data sources, an area in which professional investors such as Renaissance

Technologies have been substantially ahead of academic researchers for a long time. We focus

on textual and still image data because they have been more frequently used so far, but we

expect audio and video to play an increasingly important part of the investment process in the

future, as improvements in machine learning techniques simplify their use.

The analysis of textual data obtained from news sources, central bank monetary policy

statements, o¢ cial company �lings and social media has been by far the most common way of

using alternative data in empirical work. Chapters 4, 5 and 6 in Cao (2023) review applications

of textual data to �nancial investing with a practitioner perspective. These include assessment of

consumer sentiment from social media posts, topic extraction in central bankers�statements with

special emphasis on in�ation and growth, identi�cation of entities in online documents and their

subsequent linkage to existing information, and insights extraction form earnings transcripts

and �nancial news for the purposes of guiding environmental, social, and governance (ESG)

investing. In turn, chapter 15 in Denev and Amen (2020) discusses several other examples,

11See Cong et al. (2021) for additional empirical evidence of transformers, LSTMs, and other NNs with the
commonly used decile spreads.

35



including using Twitter data to help enhance payrolls forecasts and Bloomberg News data to

trade FX.

From an academic perspective, Tetlock (2007) and Fang and Peress (2009) convincingly

highlighted the predictive power of media coverage for stock returns. Zhang and Skiena (2010)

is another early application of sentiment analysis in the development of trading strategies. They

apply a predecessor of the natural language processing techniques described below to several

blogs and news sources to identify references to 3,238 individual US companies traded on the

NYSE and their relationships. On this basis, they create time series of favorable or unfavorable

words for each of them, which they summarize by means of a �polarity�indicator de�ned as the

fraction of positive sentiment references among total sentiment references. Their market-neutral

trading strategy, which goes long in stocks with positive sentiment and short in those with

negative one, is able to systematically improve upon the performance of both its mirror-image

strategy and a third selection strategy that chooses long and short positions at random.

More recently, Agrawal et al. (2018) also study the relationship between news and social-

media sentiment indicators they obtain from StockTwits and Twitter messages and 500 individ-

ual stock returns, trading volume and liquidity. Based on their empirical results, they consider

the following intraday mean-reversion trading strategy: every 30 minutes, they buy equities that

had negative returns over the previous interval and short-sell those that had positive ones, giv-

ing higher absolute weights to those companies with a larger number of social-media messages.

They show that using these tilts to the portfolio weights based on social media outperforms an

analogous mean-reversion strategy that only uses price reversions.

At the level of the aggregate stock market, Azar and Lo (2016) construct a daily polarity

sentiment indicator based on tweets issued in anticipation of Federal Reserve meetings to predict

the reaction of the S&P 500 to announcements by the Federal Open Market Committee, showing

that an MV market timing similar to the one discussed in section 3.1 in which expected excess

returns depend on the polarity score outperforms a passive buy-and-hold strategy. Similarly,

Karagozoglu and Fabozzi (2017) make use of a related �wisdom of crowds� approach with a

broader social media coverage to predict shifts in stock market volatility, which they successfully

exploit by trading Exchange Traded Futures and Notes related to the VIX, the most popular

volatility index.

In turn, Cohen, Malloy and Nguyen (2020) obtain 10-Q and 10-K �lings of US �rms, two

reports about the �nancial performance of publicly traded companies submitted by these to the

US Securities and Exchange Commission on a quarterly and annual basis, respectively, focusing

on the content of these documents along the lines of Loughran and McDonald (2011). They work
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with sentiment identi�ers from the master dictionary in that paper, as well as with analyst data.

They then compute several measures of similarity between 10-Q and 10-K �lings for successive

periods, such as cosine similarity across terms, a correlation-type measure based on the inner

product of their vector representations, and for each of them they construct monthly portfolios

based on quintile spreads. These authors report that a portfolio that takes long positions in

�rm that do not substantially modify their annual and quarterly reports and short positions in

those that do earns a positive alpha.

Recently, Bybee, Kelly and Su (2023) develop a method to estimate the state variables and

asset pricing factors underlying Merton�s (1973) Intertemporal CAPM (ICAPM) from business

news narratives. In particular, they work with several decades of the full text of the Wall Street

Journal (WSJ) and the corresponding daily narrative attention estimates based on topic mod-

eling to decrease the dimensionality of the article contents to 180 topics.12 They use a variant

of the latent factor analysis of Kelly, Pruitt and Su (2019) that generalizes Fama-MacBeth re-

gressions to deal with unobserved state variables related to those topics using a group LASSO

penalty for the selection of the relevant narratives. Their estimated �narrative�pricing factors

achieve a higher Sharpe ratio than the Fama-French and momentum factors together, and suc-

cessfully predict future investment opportunities along the lines of the ICAPM. In addition, they

manage to �nd plausible interpretations of the narrative factors, with the �recession�narrative

having the largest impact on the estimated SDF.

All the previous papers rely on the traditional �bag-of-words� approach, which only looks

at the frequency of words rather than their ordering in a sequence. More modern approaches in

natural language processing work with vector representations of the text called �embeddings�.

In addition, during the last few years there has been an important change in the default archi-

tecture, which has moved away from recurrent neural networks (RNN) such as LSTM towards

transformers such as BERT and GPT commonly known as large language models (LLM). In

this respect, ChatGTP, a famous chatbot and virtual assistant based on the GTP transformer,

has recently captured people�s imagination. RNNs process the sequences of textual data re-

cursively because at each time step both the input and the outcome from the previous time

step are considered, analogously to a nonlinear autoregressive model with an exogenous predic-

tor. In contrast, transformers can process data in parallel, which lets them handle much larger

datasets while keeping information on the position of each element of a sequence and providing

a contextualized representation of textual data.

12These estimates are taken from Bybee et al. (2023), who study the WSJ corpus in its �bag-of-words� form.
They also perform a market timing exercise with positions proportional to the return forecasts from a LASSO
regression.
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Chen, Kelly and Xiu (2023) work with embeddings from both word-based models and LLMs

such as BERT. These authors input their textual data into open-source, pre-trained models

to generate embeddings, which they then use as inputs to their sentiment analysis and return

forecasting. They obtain global news in thirteen di¤erent languages from Re�nitiv, a global

provider of �nancial data, and work with stocks from 16 international markets. Lastly, they

construct quintile spreads from sentiment scores with a daily rebalance, showing that their

portfolio strategies achieve high Sharpe ratios.

Lopez-Lira and Tang (2023) create a sentiment score with ChatGPT applied to news head-

lines from various sources, which they match with those of the commercial sentiment analysis

provider RavenPack. They build a daily strategy that goes long in stocks with positive score,

and short in stocks with negative one, which they complement with some interpretability analy-

sis. In turn, Chen et al. (2023) apply ChatGPT in a monthly market-timing exercise. They

extract the proportions of good and bad stock market news from the WSJ, and use them to fore-

cast returns, which they then use in a conditional MV portfolio. Both papers �nd considerable

improvements by using ChatGPT instead of previous LLMs such as BERT.

Before the current textual data revolution took o¤, though, the main driver behind the

adoption of deep learning methods was the analysis of image data in computer vision. In

particular, convolutional neural networks (CNN) proved very powerful in extracting information

from images. These are specialized networks for processing data with a known grid structure.

Examples include equidistant time-series data (a 1D grid) and image data (a 2D or 3D grid of

pixels depending on the use of a color scale).

In the speci�c context of portfolio management, chapter 13 in Denev and Amen (2020)

describes for practitioners several applications of image data obtained from security cameras,

drones and satellites. These include the measurement of nighttime light intensity to estimate

economic activity, changes in land cover classi�cation for understanding housing and infrastruc-

ture developments, as well as car count data from large retail establishments�parking lots for

better understanding their earnings sources. Chapter 2 of Cao (2023) includes additional ex-

amples of the use of geospatial data, such as the analysis of the location of retailers and their

competitors, electric vehicle charging stations, and foot tra¢ c data.

In a multimodal exercise that combines text and images, Obaida and Pukthuanthong (2022)

collect 148,823 articles and their associated photos from the WSJ, re-estimating (or ��ne-

tuning�) the last layer of the pre-trained Google Inception model with the latter in an example

of transfer learning. They employ the DeepSent data for that purpose, which has photos labeled

by sentiment. Using these methods, they build a daily sentiment index with the proportion of
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photos predicted to have negative sentiment each day. They also build a similar indicator for

the article headline and summary, �nding that the images convey alternative information to the

text. In addition, they compute the certainty equivalent return and the Sharpe ratio of a daily,

conditional MV, market timing strategy in which the return forecast is linear in the photo pes-

simism, and the variance forecast is obtained over an expanding window of past returns. They

�nd notably higher performance than by simply relying on return forecasts based on historical

averages.

Finally, drawing inspiration from technical analysis, Jiang, Kelly and Xiu (2023) extract

buy and sell signals from price-charts for individual stocks, but using a CNN prediction model.

Speci�cally, they rank individual stocks according to the probability that their return is positive

in the next period, on the basis of which they construct the usual long-short decile spread

portfolio. They �nd that the return forecast from a CNN is distinctly di¤erent from traditional

price trend signals, outperforming trading strategies based on them. They also �nd that the

CNN trained on US daily data o¤ers transfer learning opportunities for both lower frequency

data and foreign equities.

5 Conclusions

In this chapter, we have surveyed the changes in portfolio management resulting from the

availability of large datasets with numerous assets, various characteristics, macro predictors and

unstructured data, including text and images. As a way of background, we have also carried

out brief reviews of the �nancial theories underlying di¤erent aspects of asset management,

including conditional and unconditional mean-variance analysis, as well as dynamic portfolio

allocation. Importantly, we have distinguished between big data, machine learning and arti�cial

intelligence, focusing primarily on applications rather than the methods involved.

More speci�cally, we have explained how big data has in�uenced the computation of mean-

variance frontiers in general and optimal portfolios in particular, explicitly linking mean-variance

analysis to stochastic discount factors, which are used to evaluate asset pricing theories. In this

respect, we have described several approaches to mitigate the sampling variability in portfo-

lio weights calculated with high-dimensional data, including parametric restrictions, Bayesian

procedures and shrinkage methods. We have also discussed how conditioning information in

the form of macroeconomic predictors and asset-speci�c characteristics, in combination with

machine learning techniques, allows investors to better capture time-varying expected returns

and risk, leading to more e¤ective portfolio strategies. Our discussion considers both quantile

spreads obtained from return forecasts and the direct computation of optimal weights. In ad-
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dition, we consider not only a sequence of myopic decisions but also intertemporal portfolio

choices using dynamic programming and reinforcement learning. Finally, we have highlighted

the increasing importance in asset management of alternative unstructured data sources, such

as text and images, which complement traditional �nancial and macroeconomic indicators.

At the same time, we have acknowledged some important challenges speci�c to portfolio

management resulting from relatively small sample sizes compared to other disciplines, low

signal-to-noise ratios, structural changes and the need for interpretability. In this respect, we

share Israel, Kelly and Moskowitz�s (2020) view that the gains resulting from combining big data

with machine learning methods in �nance are evolutionary rather than revolutionary. Some im-

portant additional challenges are the need for systematic replicability, aided by public data

repositories and open-source code (see Mirete-Ferrer et al (2022)), as well as more attention to

regulatory aspects, such as trustworthiness, technical robustness, transparency and accountabil-

ity (see Guidolin (2024) for further details).

Nevertheless, we are optimistic about the potential of big data in asset management. In

particular, we believe that future research will explore multimodal procedures that integrate text,

audio and video and will expand the use of reinforcement learning procedures. As an example,

chapter 4 in Cao (2023) mentions the possibility of augmenting o¢ cial press releases with the

tonal variations, facial expressions and body language of the spokepersons who publicly present

them. Such procedures could be particularly useful in central bank press conferences, meetings

with shareholders and corporate roadshows for the purposes of obtaining a deeper understanding

of the information released. The development of improved tools, such as customized large

language models targeted to speci�c tasks or assets, as well as the inevitable catch-up of the

current ones in languages other than English also hold much promise.
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