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B Proof of Lemmas and Propositions

B.1 Lemmata

In lemmas 1�5 we de�ne LMn(�) as in (A2) with Sn and � (�;�) de�ned in Assumption 5.

Lemma 1 If Assumptions 1 and 5.1, 5.2, 5.3 hold, then

(i) �LM
p�! 0, and (ii) n

1
2�(�LM ) = Op(1):

Proof. Let us start with Lemma 1.(ii). If we �x � > 0, then by Assumption 5.2, we have that

n�
1
2Sn(��) = Op(1), which in turn means that there exists an M1 such that for all n � N ,

Pr(jjn�
1
2Sn(��)jj > M1) � �: (B1)

Next, let M = (2M1 + 1)=emin[I(��)], which is a positive real number because of Assumption
5.3. We can then prove that

Pr(fjjn
1
2�
�
�LM

�
jj > Mg \ fjjn�

1
2Sn(��)jj �M1g) = 0: (B2)

To see (B2), note that if jjn 1
2�
�
�LM

�
jj > M and jjn� 1

2Sn(��)jj �M1, then we have that

2(n�
1
2Sn(��))0[n

1
2�
�
�LM

�
]� [n

1
2�
�
�LM

�
]0I(��)[n

1
2�
�
�LM

�
]

� 2jjn�
1
2Sn(��)jj � jjn

1
2�
�
�LM

�
jj � emin[I(��)]jjn

1
2�(�LM )jj2

� jjn
1
2�
�
�LM

�
jj � [2M1 � emin[I(��)]jjn

1
2�
�
�LM

�
jj]

< �M = LMn(�
�;0)�M;

where the �rst two inequalities are straightforward, the third one follows from jjn� 1
2Sn(��)jj �

M1 and jjn
1
2�
�
�LM

�
jj > M = (2M1+1)=emin[I(��)]; while the last one follows from LMn(�

�;0) =

0, which contradicts �LM being the minimizer. Thus (B2) holds. As a consequence,

Pr(jjn
1
2�
�
�LM

�
jj > M) =Pr(fjjn

1
2�
�
�LM

�
jj > Mg \ fjjn�

1
2Sn(��)jj �M1g)

+ Pr(fjjn
1
2�
�
�LM

�
jj > Mg \ fjjn�

1
2Sn(��)jj > M1g) (B3)

�Pr(jjn�
1
2Sn(��)jj > M1) � �; (B4)

where from (B3) to (B4) we have used (B1) and (B2). Therefore, (B4) trivially implies that for

all " > 0 there exists M > 0 such that Pr(fjjn 1
2�
�
�LM

�
jj > Mg � " and, hence, Lemma 1.(i)

holds.

As for Lemma 1.(i), for all � > 0 there exists �� > 0 such that

Pr
��LM � (��;0)

 � �� � Pr(jjn 1
2�
�
�LM

�
jj � n

1
2 ��)! 0;

where the inequality follows from Assumption 5.1 and the convergence from Lemma 1.(ii). �

Lemma 2 If Assumptions 1 and 5.1�4 hold, then n
1
2�(�̂) = Op(1).
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Proof. Assumption 1 implies the consistency of �̂, while Assumption 5.4 implies that

Rn(�̂)

1 + n k� (�̂)k2
= op(1):

Therefore, for any �xed � > 0 there exists an N such that for all n > N ,

Pr (An) � 1�
�

2
; (B5)

with

An =

����� Rn(�̂)

1 + n k� (�̂)k2

���� � 1

6
emin[I(��)]

�
:

In turn, given that n�
1
2Sn(��) is Op(1), there exists an M1 such that for all n,

Pr(jjn�
1
2Sn(��)jj �M1) <

�

2
; (B6)

so that, letting M = maxf(6M1 + 3)=emin[I(��)]; 1g, we can then show that

Pr(fjjn
1
2� (�̂) jj �Mg \ fjjn�

1
2Sn(��)jj �M1g \An) = 0: (B7)

To prove this by contradiction, suppose we have

jjn
1
2� (�̂) jj �M , jjn�

1
2Sn(��)jj �M1 and

���� Rn(�̂)

1 + n k� (�̂)k2

���� � 1

6
emin[I(��)]: (B8)

Then

LR(�̂) = 2[n�
1
2Sn(��)]0[n

1
2� (�̂)]� [n

1
2� (�̂)]0I(��)[n

1
2� (�̂)] + 2Rn (�̂)

� 2M1jjn
1
2� (�̂) jj � emin[I(��)]njj� (�̂) jj2 +

emin[I(��)]
3

(1 + njj� (�̂) jj2)

= jjn
1
2� (�̂) jj

(
2M1 � emin[I(��)]jjn

1
2� (�̂) jj+ emin[I(�

�)]

3

 
1

jjn 1
2� (�̂) jj

+ jjn
1
2� (�̂) jj

!)

� jjn
1
2� (�̂) jj

�
2M1 � emin[I(��)]jjn

1
2� (�̂) jj+ 2emin[I(�

�)]

3
jjn

1
2� (�̂) jj

�
= jjn

1
2� (�̂) jj

�
2M1 �

emin[I(��)]
3

jjn
1
2� (�̂) jj

�
� �M = LR(��;0)�M;

which is inconsistent with the de�nition of LR(�̂). The �rst equality follows from Assumption 5,

the �rst inequality from (B8), the next three lines are straightforward, the subsequent inequality

follows from jjn 1
2� (�̂) jj �M � (6M1+3)=emin[I(��)], and the last equality from LR(��;0) = 0.

Therefore,

Pr(jjn
1
2� (�̂) jj �M) �Pr(fjjn

1
2� (�̂) jj �Mg \ fjjn�

1
2Sn(��)jj �M1g \An)

+ Pr (Acn) + Pr(jjn�
1
2Sn(��)jj > M1) � �

for all n > N , where the inequalities follow from (B5), (B6) and (B7). �

Lemma 3 If Assumptions 1 and 5.1�4 hold, then LRn(�̂) = LMn(�
LM ) + op(1):
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Proof. Given that maxfn 1
2� (�̂) ; n

1
2�
�
�LM

�
g = Op(1), for all � > 0, there exists an M such

that for all n,

Pr(maxfn
1
2� (�̂) ; n

1
2�
�
�LM

�
g �M) > 1� �

2
: (B9)

Letting Pn = f� 2 P : n
1
2 k� (�;�)k �Mg, we can use Assumption 5.1 to choose a sequence of

n ! 0 satisfying

inf
k(�;�)�(��;0)k�n

k� (�;�)k > Mp
n
;

which in turn implies that Pn � f� 2 P : k�� (��;0)k � ng. But then,

sup
�2Pn

jLRn(�)� LMn(�)j = 2 sup
�2Pn

jRn(�)j

�2 (1 +M)2 sup
�2P:k�(�)k� Mp

n

jRn (�;�)j
1 + n k� (�;�)k2

�2 (1 +M)2 sup
�2P:k��(��;0)k�n

jRn (�;�)j
1 + n k� (�;�)k2

= op(1);

where the �rst line follows from Assumption 5, the second one from the de�nition of Pn, the

third one from An = f� 2P: n
1
2 k� (�;�)k � Mg � f� 2 P : k�� (��;0)k � ng, and the last

equality from n ! 0 and Assumption 5.4. Therefore, there exists an N such that for all n > N ,

Pr

 
sup
�2Pn

jLRn(�)� LMn(�)j < �
!
> 1� �

2
: (B10)

As a consequence, we will have that for n > N ,

Pr
���LRn(�̂)� LMn(�

LM )
�� < ��

�Pr
����LRn(�̂)� LMn(�

LM )
�� < �	 \ f�̂ 2 Png \ ��LM 2 Pn

	�
(B11)

�Pr
 (

sup
�2Pn

jLRn(�)� LMn(�)j < �
)
\ f�̂ 2 Png \

�
�LM 2 Pn

	!
(B12)

�Pr
 
sup
�2Pn

jLRn(�)� LMn(�)j < �
!
+ Pr

�
f�̂ 2 Png \

�
�LM 2 Pn

	�
� 1 (B13)

�1� �

2
+ 1� �

2
� 1 = 1� �; (B14)

where to go from (B11) to (B12) we have used

sup
�2Pn

jLRn(�)� LMn(�)j �
����� sup�2Pn

LRn(�)� sup
�2Pn

LMn(�)

����� ;
from (B12) to (B13) the fact that Pr(E1\E2) � Pr(E1)+Pr(E2)�1, while from (B13) to (B14)
we relied on (B9) and (B10). Therefore, for all � > 0, there exists an N such that for all n > N;

Pr
���LRn(�̂)� LMn(�

LM )
�� < �� > 1� �:

as desired. �
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Lemma 4 If Assumptions 1, 5.1�4 and 5.7 hold, then LRn(�̂) = LMn(�
LM ) +Op(n

�r).

Proof. We want to show that for all � > 0 there exists a constant K� such that for all n,

Pr
���LRn(�̂)� LMn(�

LM )
�� � K�n�r� � 1� �:

The proof is almost analogous to the one of Lemma 3. Letting M and Pn be as the ones in that

lemma, by Assumption 5.6,

sup
�2Pn

jLRn(�)� LMn(�)j = 2 sup
�2Pn

jRn(�)j = Op(n�r);

which is equivalent to saying that there exists an K� such that for all n,

Pr

 
sup
�2Pn

jLRn(�)� LMn(�)j < K�n�r
!
> 1� �

2
: (B15)

Thus,

Pr
���LRn(�̂)� LMn(�

LM )
�� < K�n�r�

� Pr
����LRn(�̂)� LMn(�

LM )
�� < K�n�r	 \ f�̂ 2 Png \ ��LM 2 Pn

	�
� Pr

 (
sup
�2Pn

jLRn(�)� LMn(�)j < K�n�r
)
\ f�̂ 2 Png \

�
�LM 2 Pn

	!
(B16)

� Pr
 
sup
�2Pn

jLRn(�)� LMn(�)j < K�n�r
!
+ Pr

�
f�̂ 2 Png \

�
�LM 2 Pn

	�
� 1 (B17)

� 1� �

2
+ 1� �

2
� 1 = 1� �; (B18)

where the last inequality follows from (B9) and (B15). �

Lemma 5 If Assumptions 1 and 5.1�4 hold, then LRn(~�;0) = sup
(�;0)2P

LMn(�;0)+op(1). More-

over, if Assumption 5.7 also holds, then LRn(~�;0) = sup
(�;0)2P

LMn(�;0) +Op(n
�r).

Proof. The proof is omitted because it is entirely analogous to the proofs of Lemmas 3 and 4

after �xing � = 0 and changing P to f� : (�;0) 2Pg. �
Although the following result holds for any proper ordering over Nq, we follow Constantine

and Savits (1996) in saying that ka � kb if at least one the following three conditions hold:

(1) jkaj < jkbj; (2) jkaj = jkbj but ka1 < kb1; (3) jkaj = jkbj, ka1 = kb1; : : : kaj = kbj but

kaj+1 < kbj+1 for some 1 < j < q.

Lemma 6 (Multivariate Faà di Bruno�s formula) The arbitrary partial derivative of the com-

position of functions

l(x1; :::; xd) = log[f(x1; :::; xd)]
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is given by

l[v] =
X

1�h��0dv
(�1)h+1

X
s=1:h
ps(v;h)

sY
a=1

1

ma!

 
f [ka]

f

!ma

; where

ps(v; h)=

(
(m1; :::;ms;k1; :::;ks) :ma>0;0�k1� :::� ks,

sX
a=1

ma=h and
sX
a=1

maka=v

)
: (B19)

Proof. : See p. 505 of Constantine and Savits (1996).

Proof of Proposition 1

Let

"k = uk � r(k)(�L)u(k);

where uk('Mk ;'
D
k ) = (yk � 'M 0

k x)='Dk and r(k)(�
L) denotes the coe¢ cients in the theoretical

least squares projection of uk on to (the linear span of) u(k) = (u1; : : : ; uk�1; uk+1; : : : ; uK)
0.

Straightforward calculations allow us to show that

@l

@�S
= w�N (�

S0w)

�
d

�N (�
S0w)

� 1� d
�N (��S0w)

�
@l

@�Mk
=
det
�
R(k)(�

L)
�

�Dk det
�
R(�L)

�dx"k
@l

@�Dk
= d

24akk �u2k � 1�+X
h 6=k

akh
�
ukuh � 'Lkh

�35
@l

@�Lkj
= d

24X
h

bkj;h
�
u2h � 1

�
+
X
h 6=i

bkj;ih
�
uiuh � 'Lih

�35
@l

@�k
=

@2l

@�k@�j
= 0

@3l

@�3k
= Cd det

�
R(k)(�

L)
�3
"3k +Ak

@l

@�

@3l

@�2k@�j
= Cd det

�
R(k)(�

L)
�2
det
�
R(j)(�

L)
�
"2k"j +Akj

@l

@�
and

@3l

@�k@�j@�h
= Cd det

�
R(k)(�

L)
�
det
�
R(j)(�

L)
�
det
�
R(h)(�

L)
�
"k"j"h +Akjh

@l

@�
;

where R(k)(�
L) the (K�1)� (K�1) matrix obtained from R(�L) after eliminating its kth row

and column,

C =
1

det[R(�L)]3
d2
�
�N (x)

�N (x)

�����
x=�S"

;

and akh, bkj;ih, Ak, Akj , Akjh for k; j; h = 1; :::;K are some terms whose detailed expressions

(available on request) are irrelevant for the proof.
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Thus, we have that the test depends on the in�uence functionX
k

1

6
�y3k

@3l

@�3k
+
X
j 6=k

1

2
�y2k �

y
j

@3l

@�2k@�j
+
X
h 6=j 6=k

�yk�
y
h�
y
j

@3l

@�k@�j@�h

/
(X

k

d det
�
R(k)(�

L)
�
wk�

y
k

)3
+Ay

@l

@�
/ dH3

�
�0"p
��

�
+A

@l

@�
;

so that, by suitably choosing � in the last expression,X
k

d det
�
R(k)(�

L)
�
"k�

y
k / d�

0";

which allows to show that the test has form in (13). �

Proof of Proposition 2

For those observations with d = 1, we can write�
R
�
�L
�
� ##0

��1=2 �
'D
��1 �

y �'Mx
�
=
�
R
�
�L
�
� ##0

��1=2
#uS + z

y

where zy � N (0; IK) by construction. Given that the test is based on the standardized residuals,
the statistics which use either y or�

R
�
�L
�
� ##0

��1=2 �
'D
��1 �

y �'Mx
�

as inputs are numerically the same. Therefore, for any � we will have that

�y0
�
R
�
�L
�
� ##0

��1=2 �
'D
��1 �

y �'Mx
�
= �y0

�
R
�
�L
�
� ##0

��1=2
#uS + �

y0zy

/ uS +
1

�y0
�
R
�
�L
�
� ##0

��1=2
#
�y0zy;

which implies that the distribution of the test statistic conditional on x and w is determined by

the unconditional distribution of8<:
"

�y0

�y0
�
R
�
�L
�
� ##0

��1=2
#
zy

#
�y 6=0

; uS

9=; : (B20)

Next, let

` =

�
R
�
�L
�
� ##0

��1=2
#q

#0
�
R
�
�L
�
� ##0

��1
#

and � =

q
#0
�
R
�
�L
�
� ##0

��1
#;

with `0` = 1, which means that I� ``0 has rank K� 1, so that the singular value decomposition
implies the existence of a (K � 1) �K matrix A with full row rank such that A0A = I � `0`.
De�ning �0 = �y0[( ` A )�1, we then have that

1

�y0
�
R
�
�L
�
� ##0

��1=2
#
�y0zy =

�y0
�
`0

A

��1
�y0
�
`0

A

��1 �
`0

A

�
`�

�
`0

A

�
zy =

�0

�0e1�
z;
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which in turn implies that8<:
"

�y0

�y0
�
R
�
�L
�
� ##0

��1=2
#
zy

#
�y 6=0

; uS

9=; �
(�

�0

�0e1�
z

�
� 6=0

; uS

)
;

where

z =

�
`0

A

�
zy; zjx;w � N(0; IK);

which con�rms that the power will depend on � exclusively. Finally, the Woodbury formula

implies that we can rewrite � as

#0
�
R
�
�L
�
� ##0

��1
# = #0R�1

�
�L
�
#+ #0R�1

�
�L
�
#
�
1� #0R�1

�
�L
�
#
�
#0R�1

�
�L
�
#

=
#0R�1

�
�L
�
#

1� #0R�1
�
�L
�
#
;

which con�rms the exclusive role played by #0R�1
�
�L
�
#. �

Proof of Proposition 3

Let ~ui = (yi � ~�
L
)=

q
~�
V
and �Hk =

Pn
i=1Hk(~ui): Then it is easy to see that ~H1 = ~H2 = 0,

which in turn implies that

LRn = sup
�2�

�
2S 0�;n�� (�)� n�0� (�) I���� (�)

	
+Op(n

�1=8) (B21)

by virtue of Theorem 3, with S� = (~H3; ~H4)0,

��(�) =

 
�2
p
3�1�2;�

p
6�22 +

p
6

9
�41

!0
;

and I�� = I2. The rate Op(n�1=8) follows from the 8th-order Taylor expansion. Finally, after

some tedious calculations available on request, we can verify that the conditions for Theorem

3 are satis�ed in this example. In fact, we can further simplify the right-hand side of (B21) as

follows. First, it is easy to see that an upper bound will be given by

sup
�2�

�
2S 0�;n�� (�)� n�0� (�) I���� (�)

	
� 1

n
S 0�;nI�1�� S�;n =

1

n
~H
2
3 +

1

n
~H
2
4:

Second, we can construct �1 and �2 such that(
�2
p
3
p
n�1�2 = n

�1=2 ~H3
�
p
6
p
n�22 +

p
6
9

p
n�41 = n

�1=2 ~H4 +Op(n�1=4)
(B22)

which implies that a lower bound is

1

n
~H
2
3 +

1

n
~H
2
4 +Op(n

�1=4):

Speci�cally, if n�1=2 ~H4 � 0, then we solve for(
�2
p
3
p
n�1�2 = n

�1=2 ~H3p
6
9

p
n�41 = n

�1=2 ~H4

7



which gives �1 = Op(n�1=8), �2 = Op(n�3=8), so that (B22) holds with
p
n�22 = Op(n

�1=4). On

the other hand, if n�1=2 ~H4 < 0, then we solve for(
�2
p
3
p
n�1�2 = n

�1=2 ~H3
�
p
6
p
n�22 = n

�1=2 ~H4

which gives �1 = Op(n�1=4), �2 = Op(n�1=4), so that (B22) holds with
p
n�41 = Op(n

�1=2).

Therefore, we end up with

LRn =
1

n
~H
2
3 +

1

n
~H
2
4 +Op(n

�1=8);

as desired. �

Proof of Proposition 4

In this example,

��(�) =

�
�2
p
3�1�2p

6(19�
4
1 � �22)

�
, � = R2, and I��(~�)� I��(~�)I�1��(~�)I

0
��(

~�) = I2:

Therefore, under the sequence

lim
n!1

p
n��(�1) = ��;1 ;

we will have
GETn

d�! sup
��2�

�
2 (S + �1;�)

0 �� � �0���
	

= (S + �1;�)
0 (S + �1;�)

as claimed. �

Proof of Proposition 5

The proof is entirely analogous to the proof of Proposition 8 in Amengual et al (2025), so

we omit it for the sake of brevity. �

C Reparametrizations

C.1 Sequential reparametrization method

In what follows we explain how to obtain the reparametrization alluded to in section 2.1

using a sequential approach. To do so, we make the following:

Assumption 10 1) The asymptotic covariance matrix of the sample averages of (s'; s#1) eval-

uated at (';0) scaled by
p
n has full rank.

2) @
�0qr jqr l

@#
jqr
r

����
(';0)

= 0, for all index vectors such that �0qr jqr < r � 1.

3) There exists a set of coe¢ cients fmjqr ;kg�0qr jqr=r�1;k=1;:::;p�qr which may be functions of '
such that

mjqr ;1s'1 + :::+mjqr ;ps'p +mjqr ;p+1s#11 + :::+mjqr:p+q1
s#1q1 +

@�
0
qr jqr l

@#jqr
= 0

for all �0qr jqr = r � 1, where the default argument is (';0).
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In this context, a convenient way of reparametrizing the model from (';#) to (�;�) is as

follows:

'1 = �1 +
X

�0qr jqr=r�1

mjqr ;1

jqr !
�
jqr
r ; : : : ; 'p = �p +

X
�0qr jqr=r�1

mjqr ;p

jqr !
�
jqr
r ; (C23)

#11 = �11 +
X

�0qr jqr=r�1

mjqr ;p+1

jqr !
�
jqr
r ; : : : ; #1q1 = �1q1 +

X
�0qr jqr=r�1

mjqrp+q1

jqr !
�
jqr
r ; (C24)

#r1 = �r1; :::; #rqr = �rqr : (C25)

Then, if we use Faà di Bruno (1859) formulas, which generalize the usual chain rule to

higher-order derivatives, we can show that

@r�1l

@�
jqr
r

= mjqr1s'1 + :::+mjqr ;ps'p +mjqrp+1s#11 + :::+mjqrp+q1s#1q1 +
@�

0
qr jqr l

@#jqr
= 0

for all �0qr jqr = r � 1 as desired, where the default argument is again (';0).
Finally, we need to check whether

P
�0qr jqr=r

�jqr
jqr !

@rl
@�jqr

evaluated at (�;0) is linearly indepen-

dent of (s�; s�1) for all �
2
1 + � � �+ �2qr = 1, so that Theorem 1 applies. Otherwise, we can check

whether:

1) there exists a new set of coe¢ cients fmy
jqrk
g�0qr jqr=r;k=1;:::;p+q1 which may be functions of �

such that

m
yjqr
1 s�1 + : : :+m

y
jqr ;p

s�p +m
y
jqr ;p+1

s�11 + : : :+m
y
jqr ;p+q1

s�1q1 +
@�

0
qr jqr l

@�jqr
= 0 (C26)

when evaluated under the null, in which case we can do a further reparametrization from (�;�)

to (�y;�y) in such a way that we set all the rth partial derivatives with respect to �y to zero, or

2) we can use Theorem 3, which covers far more general cases.

C.2 Numerical invariance to reparametrization

For simplicity of notation, consider the simple case in which r = 2 and � = �2, so that

we can omit the subscript 2 from � henceforth, and we also drop the subscript i from the

contributions of each observation to the log-likelihood function.

De�ne % = (';#) as the original parameter vector, where ' and # are vectors of dimension

p and q, respectively. In what follows, (';0) are the omitted arguments for all the relevant

quantities that depend on (';#).

We maintain that Assumption 3 holds with r = 2 for the original parameters %, so that 1)

the asymptotic variance of the sample average of s' has full rank, 2) there is a q � p matrixM
of possible functions of ' such that

Ms'i(';0) + s#i(';0) = 0 (C27)

holds, and 3) the asymptotic variance of the sample average of"
s';�

0
�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
�

#

9



has full rank under the null for all � such that jj�jj 6= 0. If we reparametrize from % to � as

' = �+M0�; and # = �;

then, we can easily check that

@l

@�
=
@l

@'
; (C28)

@l

@�
=M

@l

@'
+
@l

@#
=Ms'i + s#i = 0; (C29)

@2l

@�@�0
= [M; Iq]

@2l

@%@%0

�
M0

Iq

�
:

In addition, (C28) and (C29) hold when evaluated under the null, with

�0
@2l

@�@�0
� = �0

�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
�

linearly independent of @l=@�, which implies that Assumption 3 is satis�ed with r = 2 for the

transformed parameters � = (�0;�0)0 too. Therefore, we can apply Theorem 1, which yields

GET�n = supjj�jj6=0ET
�
n (�), where

ET�n (�) =
[�0H(~')�]2 1 [�0H(~')� � 0]

V (�; ~')
;

H(') =

�
M0

Iq

�0
@2l(%)

@%@%0

����
(';0)

�
M0

Iq

�
; (C30)

and V�(�;') = V [�
0H(')�]� Cov[�0H(')�; s�(')]V ar�1[s�(')]Cov[s�(');�0H(')�]

is the adjusted variance of �0H(')�.
Consider now an alternative reparametrization from % to �y characterized by

%0 = ( '0 #0 ) = [ g�(�y;�y)0 g�(�y;�y)0 ] = g(�y);

where g(�) is a vector of second-order continuously di¤erentiable functions that represent a
suitable di¤eomorphism, at least locally around the null. Such an alternative reparametrization

must also ensure that: (i) s�y has full rank, (ii) s�y is identically 0 at H0 : �
y = 0, and (iii)

�0 @2l
@�y@�y0

� is linearly independent of s�y for all jj�jj 6= 0.
Given that the �rst order derivative of �y under the null is given by

@l

@�y
=
@g�0

@�y
s' +

@g�0

@�y
s# =

�
@g�0

@�y
� @g

�0

@�y
M

�
s';

where we have used the chain rule in the �rst equality and (C27) in the second one, we need to

assume that

det

�
@g�0

@�y
� @g

�0

@�y
M

�
6= 0 (C31)

for @l=@�y to have full rank. Similarly, given that (C27) and the chain rule imply that

@l

@�y
=
@g�0

@�y
s' +

@g�0

@�y
s# =

�
@g�0

@�y
� @g

�0

@�y
M

�
s';

10



we must also assume that
@g�0

@�y
=
@g�0

@�y
M (C32)

to ensure that @l=@�y = 0 under the null irrespective of �y because s' has full rank.

Let us now turn to condition (iii), for which we �rst need to compute the corresponding

second-order derivatives. Applying the chain rule once again, we obtain

@2l

@�yi@�
y
j

=
@l
@'0

@2g�

@�yi@�
y
j

+
@g�0

@�yj

@2l

@'@'0
@g�

@�yi
+
@g� 0

@�yj

@2l

@#@'0
@g�

@�yi

+
@l

@#0
@2g�

@�yi@�
y
j

+
@g� 0

@�yj

@2l

@#@#0
@g�

@�yi
+
@g�0

@�yj

@2l

@'@#0
@g�

@�yi
:

In this context, (C32) and (C27) imply that

@2l

@�yi@�
y
j

= s0'
@2g�

@�yi@�
y
j

+
@g�0

@�yj
M

@2l

@'@'0
M0@g

�

@�yi
+
@g� 0

@�yj

@2l

@#@'0
M0@g

�

@�yi

� s0'M0 @
2g�

@�yi@�
y
j

+
@g� 0

@�yj

@2l

@#@#0
@g�

@�yi
+
@g�0

@�yj
M

@2l

@'@#0
@g�

@�yi

= s0'

 
@2g�

@�yi@�
y
j

�M0 @
2g�

@�yi@�
y
j

!
+
@g�0

@�yj

�
M0

Iq

�0
@2l

@%@%0

�
M0

Iq

�
@g�

@�yi

when evaluated at the null, so

@2l

@�y@�y
=

(
s0'

 
@2g�

@�yi@�
y
j

�M0 @
2g�

@�yi@�
y
j

!)
ij

+
@g�0

@�y
H
@g�

@�y
:

Hence, (C30) implies that

�0
@2l

@�y@�y
� = s0'a+ �

y0H�y, for all � 6= 0

when evaluated at the null, where a = (a1; : : : ; aq)0 with

ai = �
0

 
@2g�i
@�y@�y

�M0 @
2g�i

@�y@�y

!
� and �y =

@g�

@�y0
�:

If we further assume that

det
�
@g�

@�y0

�
6= 0; (C33)

then �0 @2l
@�y@�y

� will be linearly independent of s�y for all �
y such that

�y 6= 0 because (a)

�y0H�y is linearly independent of s' and (b) s�y is a linear combination of s'.
Therefore, once we guarantee that (C31), (C32) and (C33) hold, the parametrization from

% to �y satis�es the rank de�ciency condition in Assumption 3 with r = 2.

Finally, let us de�ne the adjusted asymptotic variance of �0 @2l
@�y@�y

� as

V y
�y
(�; �y) = V ar

�
�0

@2l

@�y@�y
�

�
� Cov

�
�0

@2l

@�y@�y
�; s�y

�
V ar�1(s�y)Cov

�
s�y ;�

0 @2l

@�y@�y
�

�
= V ar(s0'a+ �

y0H�y)� Cov(s0'a+ �y
0H�y;a0s')V ar�1(a0s')Cov(a0s'; s0'a+ �y

0H�y)

= V ar(�y
0H�y)� Cov(�y0H�y; s')V ar�1(s')Cov(s';�y

0H�y) = V�(�y;�):

11



Then, we will have that

ET�
y

n (�) =

h
�0 @2l
@�y@�y

(~�y)�
i2
1
h
�0 @2l
@�y@�y

(~�y)� � 0
i

V y
�y
(�;�y)

=
[s0'(~')a+ �

y0H(~%)�y]21
h
s0'(~')a+ �

y0H(~%)�y � 0
i

V�(�y;�)

=
[�y

0H(~%)�y]21
h
�y
0H(~%)�y � 0

i
V�(�y;�)

= ET�n (�
y);

where the third equality follows from the fact that s'(~') = 0. Given that the mapping from �

to �y is bijective, taking the sup will �nally imply that

GET�
y
n = supjj�jj6=0ET

�y
n (�) = supjj�yjj6=0ET

�
n (�

y) = GET�n;

as desired.

D Example 3: Testing Gaussian vs Hermite copulas

D.1 The model and its log-likelihood function

The validity of the Gaussian copula in �nance has been the subject of considerable debate.

As a result, it is not surprising that several authors have considered more �exible copulas. For

example, Amengual and Sentana (2020) look at the Generalized Hyperbolic copula, a location-

scale Gaussian mixture which nests the popular Student t copula discussed by Fan and Patton

(2014), which in turn nests the Gaussian one. In this section, we consider Hermite copulas

instead, which can potentially provide much more �exible alternatives.

As is well known, Hermite polynomial expansions of the multivariate normal pdf can be

understood as Edgeworth-like expansions of its characteristic function. They are based on

multivariate Hermite polynomials of order �0Kj where j 2 NK , which are de�ned as di¤erentials

of the multivariate normal density:

Hj(x;') = fNK(x;R)
�1
�
�@
@x

�j
fNK(x;R); (D34)

' = vecl(R), and R is a positive de�nite correlation matrix.

To keep the expressions manageable, we only consider explicitly pure fourth-order expansions

in the bivariate case. We could also include third-order Hermite polynomials, but at a consider-

able cost in terms of notation. Similarly, extensions to higher dimensions would be tedious but

otherwise straightforward.

We say that (x1; x2) follow a pure fourth-order Hermite expansion of the Gaussian distribu-

tion when their joint density function is given by

fH(x1; x2;';#) = fN2

��
x1
x2

�
;

�
1 '
' 1

��
P (x1; x2;';#); (D35)
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where

P (x1; x2;';#) = 1 +

4X
j=0

#j+1H4�j;j(x1; x2;')

with ' being the correlation between x1 and x2, which we assume is di¤erent from 0, and

#1; : : : ; #5 the coe¢ cients of the expansion. The leading term in (D35) is the normal pdf and

the remaining terms represent departures from normality. Indeed, fH(x1; x2;';#) reduces to a

Gaussian distribution when # = 0.

It is then straightforward to show that the corresponding marginal distributions are given

by
fH(x1;#1) = �(x1)[1 + #1H40(x1; x2)]
fH(x2;#5) = �(x2)[1 + #5H04(x1;x2)]

�
; (D36)

where �(:) the standard normal pdf and H40(x1; x2) and H04(x1;x2) are the (non-standardized)

fourth-order univariate Hermite polynomials for x1 and x2, respectively.

Hermite expansion copulas are based on Hermite expansion distributions: letting y = (y1; y2)

denote the original data, de�ning u = (u1; u2) = [F1(y1); F2(y2)] as the uniform ranks of y,

and �nally x = (x1; x2) = [F�1H (u1;#1); F
�1
H (u2;#5)], where F�1H (:;#i) are the inverse cdfs (or

quantile functions) of the univariate fourth-order Hermite expansions with parameter #i in

(D36).

Consequently, the pdf of the pure fourth-order Hermite expansion copula is

fH(x1; x2;%)

fH(x1;#1)fH(x2;#5)
=

�2(x1; x2;')[1 +
P4
j=0 #j+1H4�j;j(x1; x2;')]

�1(x1)[1 + #1H40(x1; x2)]�1(x2)[1 + #5H04(x1; x2)]
:

D.2 The null hypothesis and the GET test statistic

Straightforward calculations allow us to show that in this case

s#1(';0) + 3's#2(';0) + 3'
2s#3(';0) + '

3s#4(';0) = 0;

s#5(';0) + 3's#4(';0) + 3'
2s#3(';0) + '

3s#2(';0) = 0;

and, hence, our proposed reparametrization, namely

' = �; #1 = �21; #2 = �11 + 3��21 + �
3�22;

#3 = �12 + 3�
2�21 + 3�

2�22; #4 = �13 + 3��22 + �
3�21; #5 = �22;

con�nes the singularity to the scores of �21 and �22. Therefore, we need to obtain the second

order derivatives with respect to �21 and �22. Speci�cally, we can prove that the asymptotic

covariance matrix of

@l

@�
,
@l

@�11
,
@l

@�12
,
@l

@�13
,
@2l

@�221
,
@2l

@�222
and

@2l

@�21@�22

scaled by
p
n has full rank. Although the algebra is a bit messy, after orthogonalizing those sec-

ond derivatives with respect to the score of � to eliminate the e¤ect of the sampling uncertainty

13



in estimating this correlation coe¢ cient under the null, we can express the three second-order

derivatives as linear combinations of all the even-order multivariate Hermite polynomials of

(x1; x2) up to the 8th order, whose coe¢ cients depend on ', as we explain below.

Let �21 = �1� and �22 = �2� with �21 + �
2
2 = 1, and consider the simpli�ed null hypothesis

H0 : �11 = �12 = �13 = � = 0. Then, it is easy to see that the GET statistic will be

1

n
S01nV

�1
11 S1n +

1

n
sup
k�k=1

(V�� � V�1V �111 V1�)
�1D2n1 [Dn > 0] ; (D37)

where

Dn(�; �;�) = H�n(�; �;�)� V�1(�; �;�)V �111 (�)S1n(�;0);

H�n(�; �;�) =

nX
i=1

(�1 �2)

�
h�21�21;i(�) h�21�22;i(�)
h�21�22;i(�) h�22�22;i(�)

��
�1
�2

�
;

S1n(�;0) = [S�11(�;0); S�12(�;0); S�13(�;0)]
0;

where the omitted arguments are (~�;0;�) for Dn, (~�;�) for V��, V�1 and V1�, (~�;0) for S1;n and
~� for V11.

As a consequence, the asymptotic distribution of GET is bounded above by a �26 distribution

because of the six in�uence functions, while it is bounded below by a 50:50 mixture of �23 and

�24 because �11, �12 and �13 are �rst-order identi�ed parameters and an even-order derivative of

� is involved.

D.3 Computational details
D.3.1 In�uence functions

In practice, the calculation of the GET statistic requires explicit expressions for all the

di¤erent ingredients that appear in (D37). Tedious but straightforward algebra implies that

@l

@�
= (0; 1; 0) �H2(x1; x2;�);

@l

@�11
= H31(x1; x2;�);

@l

@�12
= H22(x1; x2;�);

@l

@�13
= H13(x1; x2;�);

@2l

@�221
= (0; 6�; 0) �H2(x1; x2;�) + (0; 18�; 36�

2; 18�3; 0) �H4(x1; x2;�)

+ (0; 9�; 36�2; 54�3; 36�4; 9�5; 0) �H6(x1; x2;�)

+ (0; �; 6�2; 15�3; 20�4; 15�5; 6�6; �7; 0) �H8(x1; x2;�);

@2l

@�21@�22
= �(0; 6�3; 0) �H2(x1; x2;�)�

�
0; 18�3; 18

�
�4 + �2

�
; 18�3; 0

�
�H4(x1; x2;�)

�
�
0; 9�3; 18

�
�4 + �2

�
; 9
�
�5 + 4�3 + �

�
; 18

�
�4 + �2

�
; 9�3; 0

�
�H6(x1; x2;�)

�
�
0; �3; 3

�
�4 + �2

�
; 3
�
�5 + 3�3 + �

�
; �6 + 9�4

+9�2 + 1; 3
�
�5 + 3�3 + �

�
; 3
�
�4 + �2

�
; �3; 0

�
�H8(x1; x2;�)
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and

@l

@�222
= (0; 6�; 0) �H2(x1; x2;�) +

�
0; 18�3; 36�2; 18�; 0

�
�H4(x1; x2;�)

+
�
0; 9�5; 36�4; 54�3; 36�2; 9�; 0

�
�H6(x1; x2;�)

+
�
0; �7; 6�6; 15�5; 20�4; 15�3; 6�2; �; 0

�
�H8(x1; x2;�);

where Hk(x1; x2;�) = [Hk0(x1; x2;�);Hk�1;1(x1; x2;�); :::;H0;k(x1; x2;�)]
0 :

D.3.2 Positivity of the Hermite expansion of the Gaussian copula

The foregoing derivations, though, ignore that the positivity of the Hermite copula density

for all values of y imposes highly nonlinear inequality constraints on the elements of � = (�01;�
0
2)
0

with �1 = (�11; �12; �13)
0 and �2 = (�21; �22)

0, the latter being the ones a¤ecting the marginal

distributions after reparametrization. Therefore, Assumption 1.1 fails because �0 lies at the

boundary of the admissible parameter space. Nevertheless, we can still derive an LR-equivalent

test. Speci�cally, given that under the null hypothesis of a Gaussian copula the UMLE estimators

of �1 and �2 converge at rates n�
1
2 and n�

1
4 , respectively, the elements of the sequence �1n are

negligible and we simply need to �nd the asymptotes of the feasible set for (�21; �22). Let

�21 = ��1 = �sin(!) and �22 = ��2 = �cos(!) with ! 2 [0; 2�) to ensure a unit norm for

� = (�1; �2)
0. These parameters lead to a positive density when � is small enough if and only if

! 2 (!l; !u), with !l and !u de�ned in (D40) and, therefore, an asymptotically equivalent GET
statistic that imposes positivity of the Hermite expansion copula under admissible alternatives

local to the null will be given by

1

n
S01nV

�1
11 S1n +

1

n
sup

!2(!l;!u)
D0n
�
V�� � V�1V �111 V1�

��1
Dn1 [Dn > 0] ; (D38)

which is asymptotically equivalent to the LR test by imposing positivity because a zero density

gives rise to an in�nitely penalized log-likelihood. Importantly, our test is again far more com-

putationally convenient than the LR test because the positivity constraints e¤ectively become

linear under local alternatives.

To justify these claims, it is convenient to remember that in the original parametrization,

P (x1; x2;';#) is equal to

1+ #1H40(x1; x2;') + #2H31(x1; x2;') + #3H22(x1; x2;') + #4H13(x1; x2;') + #5H04(x1; x2;'):

But as mentioned before, �1 is dominated, at least asymptotically. For that reason, we �rst

discuss the positivity constraint on �2 when �1 = 0, and then explain how to simplify the

asymptotic positivity constraint and the extremum test statistic.

Let x2 = tx1, �22 = k�21, k � 0 so that the polynomial that multiplies the Gaussian pdf

simpli�es to

~P (x1; �; k; t; �21) = P [x1; tx1;�; (�21; 0; 0; 0; k�21)
0]

= 1 + 3�21C0(k) +
3�21

1� �2
C2(k; t; �)x

2
1 +

�21

1� �2
C4(k; t; �)x

4
1; where
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C0(k) = k+1; C2(k; t; �) = k
�
�2 � 2

�
t2+(k + 1)�t+�2�2 and C4(k; t; �) = kt4�k�t3��t+1:

It is easy then to see that minx ~P (x; �; k; t; �21) is �nite if and only if (i) C4(k; t; �) > 0 or

(ii) C4(k; t; �) = 0 and C2(k; t; �) � 0. In addition, when �21 is very small under either (i) or

(ii), we have that minx ~P (x; �; k; t; �21) is greater than 0. Thus, we need to �nd a set K(�) such

that 8� 6= 0, 8k 2 K(�) � [0;+1) and 8t 2 R, we have either (i) or (ii), and, thereby, we need
C4(k; t; �) = kt

4 � k�t3 � �t+ 1 � 0 8t.
To guarantee the positivity of this expression, we need k > 0. If the discriminant of C4(k; t; �)

is positive, then C4(�; t; �) = 0 has either only real or only complex roots, while if the discriminant
is negative, then C4(�; t; �) = 0 will have both two real and two complex roots, while if the

discriminant is zero, then at least two roots must be equal. Therefore, to ensure discriminant

of C4(k; t; �) to be non-negative, we need to �nd two functions, lb(�) and ub(�) such that

lb(�) < k < ub(�) if and only if the discriminant is positive while k 2 flb(�); ub(�)g if and only
if the discriminant is zero. Moreover, lb(�) 2 (0; 1), ub(�) 2 (1;+1), and lb(�)ub(�) = 1. The
proof of these statements is as follows:

Speci�cally, we can show that

Disct[C4(k; t; �)] = �k2[27k2�4 + 2k
�
2�6 + 3�4 + 96�2 � 128

�
+ 27�4];

so that the solution to

Disct[C4(k; t; �)] = 0

is given by

8>>>>><>>>>>:
lb(�) = �

2�6 + 3�4 + 96�2 + 2(

q�
�2 � 4

�3 �
�2 � 1

� �
�2 + 8

�2 � 64)
27�4

ub(�) = �
2�6 + 3�4 + 96�2 � 2(

q�
�2 � 4

�3 �
�2 � 1

� �
�2 + 8

�2
+ 64)

27�4

Thus, when k 2 [lb(�); ub(�)], the discriminant is positive and we simply need to check whether
C4(k; t; �) � 0. First, consider � > 0 and C4(k; t; �) = kt3(t��)��t+1. When t � �, C4(k; t; �)
is increasing in k. In this context, we can prove that mint��C4[lb(�); t; �] = 0. In turn, when

t 2 [0; �), C4(k; t; �) is decreasing in k, and we have mint��C4[ub(�); t; �] = 0. Finally, when

t < 0, it is obvious that C4(k; t; �) > 0.

However, when either k = lb(�) or k = ub(�), we have tl; tu de�ned by C4[lb(�); tl; �] = 0

and C4[ub(�); tu; �] = 0, respectively, so that

C2[lb(�); tl; �] < 0 and C2[ub(�); tu; �] < 0 for all �;

which in turn implies that k 2 flb(�); ub(�)g does not hold.
Therefore, when �1 = 0, the asymptotes of the feasible set near 0 are �22 = lb(�)�21 and

�22 = ub(�)�21, and Theorem 1 implies that

LR = ET (�ET ) +Op(n
� 1
2r ) (D39)
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with

ETn(�) = 2

0BBB@
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n
1
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2 �21�22

n
1
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n�
1
2H�21�21(
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1
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n
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n
1
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n
1
2 �222

1CCCA
0

V��(~�)

0BBB@
n
1
2�1

n
1
2 �221

n
1
2 �21�22

n
1
2 �222

1CCCA ;
�ET = argmax�2�ETn(�);

where � is the set of parameters that satis�es the positivity constraint. Unfortunately, ETn(�ET )

is not very easy to calculate because � is di¢ cult to characterize explicitly. For that reason, we

below show that

ETn(�
ET ) = GETn + op(1); where

GETn =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0) + sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
;

with �1 = sin(!) and �2 = cos(!) so that k�k = 1, and

!l = arctan[lb(~�)]; !u = arctan[ub(~�)]; (D40)

so that letting �21 = �1� and �22 = �2�, then

ETn(�1; �;�)= 2

�
�1
�2

�0� S�1(~�;0)
S�2(~�;0;�)

�
�n
�
�1
�2

�0�
V11(~�) V12(~�;�)

V21(~�;�) V22(~�;�)

��
�1
�2

�
; (D41)

with S�2(�; 0;�) =
�
�1
�2

�0 �
H�21�21(�;0) H�21�22(�;0)
H�21�22(�;0) H�22�22(�;0)

��
�1
�2

�
:

Similarly, letting ~� = maxf�ET ; n�kg with 1
4 < k <

1
2 it is easy to notice that

ETn(�
ET
1 ; ~�;�ET ) = ETn(�

ET
1 ; �ET ;�ET ) + op(1): (D42)

Next, considering (��1; �
�; ��)=argmaxpc^f��n�kgETn(�1; �; �), where pc=f(�1; ��1; ��2) 2 �g,

it is easy to see that w.p.a.1,

ETn(�
ET
1 ; �ET ;�ET ) � ETn(��1; ��;��) � ETn(�ET1 ; ~�;�ET ) (D43)

because (�ET1 ; �ET ; �ET ) = argmaxpcETn(�1; �; �) is over a larger feasible set, and the event

(�ET1 ; ~�; �ET ) 2 pc and
�
~� � n�k

	
happens w.p.a.1. Combining (D42) and (D43), we get

ETn(�
�
1; �

�;��) = ETn(�
ET
1 ; �ET ;�ET ) + op(1); (D44)

so we only need to calculate (��1; �
�;��).

Next, noticing that there exists a k0 2 (k; 12) such that

limn Pr(k��1k < n�k
0
< n�k � ��) = 1; (D45)

��1 becomes asymptotically irrelevant for the positivity constraints because it is e¤ectively un-

restricted and, consequently, (D45) implies that the only relevant restriction will a¤ect the

direction of �2.
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In view of (D41), the �rst order condition for ��1 for given �
� and �� implies that

n
1
2��1(�

�;��) = V �111 (
~�)[n�

1
2S�1(

~�;0)� V12(~�;��)n
1
2 ��2]

and, hence, if we substitute ��1(�
�; ��) in the expression for ET (�1; �; �), we end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

� n
1
2 ��2[V22(~�;�

�)� V21(~�;��)V �111 (
~�)V12(~�;�

�)]n
1
2 ��2

+ 2n
1
2 ��2[n�

1
2S�2(~�;0;��)� V21(~�;��)V �111 (

~�)n�
1
2S�1(

~�;0)]: (D46)

Given that (D46) is quadratic in ��2, if take into account the restriction �� � n�k, we obtain

��(��)=max
�
n�

1
4

q
[V22(~�;��)�V21(~�;��)V �111 (

~�)V12(~�;��)]n
� 1
2D(~�;��)1[D(~�;��)�0];n�k

�
;

where D(�;�) = S�2(�;0;�
�) � V21(�;�)V �111 (�)S�1(�;0). Finally, if we replace the previous

expression for ��(��) into (D46), we end up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+
1

n

D2(~�;��)1[D(~�;��) � 0]
V22(~�;��)� V21(~�;��)V �111 (

~�)V12(~�;��)| {z }
part 2

+op(1): (D47)

But since part 2 in (D47) is a function of ��, which by de�nition is a maximizer of ETn, we end

up with

ETn(�
�
1; �

�;��) =
1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+ sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
+ op(1);

which, in view of (D44), con�rms that

ETn(�
ET
1 ; �ET ;�ET ) =

1

n
S0�1(

~�;0)V �111 (
~�)S�1(

~�;0)

+ sup
!2(!l;!u)

1

n

D2(~�;�)1[D(~�;�) � 0]
V22(~�;�)� V21(~�;�)V �111 (

~�)V12(~�;�)
+ op(1):

D.4 Simulation evidence

For simplicity, we assume the marginal distributions are known, so that we can directly work

with the uniform ranks, which we immediately convert into Gaussian ranks (see Amengual and

Sentana (2020)). We estimate the correlation parameter, whose true value we set to 0:5 under

both the null and alternative hypotheses using the Gaussian rank correlation in Amengual,

Sentana and Tian (2022), which e¤ectively imposes the null. As alternative hypotheses, we

consider two Hermite expansion copulas: one with #0 = (0:03; 0; 0; 0; 0) (Ha1) and another
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with #0 = (0:02; 0; 0; 0; 0:02) (Ha2). While the second one generates a copula density which is

symmetric around the 45� line, the �rst one does not. In any event, both departures from the

Gaussian copula are rather mild, as they only involve one or two parameters di¤erent from 0.

If the correlation coe¢ cient were known, we could again compute exact critical values under

the null for any sample size to any degree of accuracy by repeatedly simulating samples of iid

bivariate normals with correlation '. In practice, though, we �x the correlation coe¢ cient to

its estimated value in each sample in what is e¤ectively the parametric bootstrap procedure

described in section 2.3 (see Appendix D.1 in Amengual and Sentana (2015) for further details).

In Table 3 we compare the results of our tests with three alternative procedures: KS, which

denotes the non-parametric Kolmogorov�Smirnov test for copula models (see Rémillard (2017)),

KT-AS, which is the Kuhn-Tucker test based on the score of a symmetric Student t copula

evaluated under Gaussianity (see Amengual and Sentana (2020)), and GMM, which refers to

the moment test based on the underlying in�uence functions in GET.

Following the structure of Table 1, the �rst three columns of Table 3 report rejection rates

under the null at the 1%, 5% and 10% levels for n = 400 (Panel A) and n = 1600 (Panel B).

The results make clear that the parametric bootstrap works remarkably well for both sample

sizes. In turn, the last six columns present the rejection rates at the same levels for the two

alternatives. By and large, the behavior of the di¤erent test statistics is in accordance with

expectations: �rst, when the sample size is large our proposal is the most powerful as it is

designed to direct power against alternatives in which the copula follows a Hermite expansion

of the Gaussian one and, second, its non-parametric competitor has close to trivial power in

samples of 400 observations, a situation that improves marginally when n = 1600. Interestingly,

the Kuhn-Tucker version of the Gaussian versus Student t copula test in Amengual and Sentana

(2020) performs quite well when n is large in spite of not being designed for these alternatives.

Importantly, GET does a better job than the moment test based on the in�uence functions Sn

implied by the higher-order expansion of the log-likelihood on which it is based, which is partly

due to the fact that it takes into account the partially one-sided nature of the alternatives.

Finally, it is important to mention that in this example the log-likelihood function under the

alternative is particularly di¢ cult to maximize over the �ve parameters involved. In fact, we

systematically encounter multiple local maxima in samples of up to 100,000 observations even

if we �x the correlation parameter to its true value and use global optimization methods, which

forced us to repeat the calculations over a huge grid of initial values. For that reason, we have

only computed the Gaussian rank correlation coe¢ cient between the LR test and GET across

ten such simulated samples, obtaining a high value of .96.
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E Example 4: Purely non-linear predictive regression

E.1 The model and its log-likelihood function

Consider the following extension of the nonlinear regression model in Bottai (2003), where

n observations on y = (y1; y2; y3) are drawn from a joint distribution characterized by f(y;�) =

f(y3jy1; y2;�)f(y1; y2) with f(y1; y2) �xed and known, and

f(y3jy1; y2;�) = �
�
y3 � exp (�1y1 + �2y2) + �1y1 + �2y2 +

1

2
�22y

2
2

�
; (E48)

with � = (�1; �2)
0 unknown. This model has an interesting interpretation in the context of

predictive regressions. Speci�cally, a Taylor expansion of the exponential function immediately

shows that the mean predictability of y3 does not come from the terms that also enter outside

the exponent (namely, y1, y2 and y22) but rather, from higher order powers of the two regressors

as well as their cross-products. Therefore, model (E48) provides an interesting functional form

for predictive regressions of variables such as �nancial returns when a researcher believes in

predictability but not through standard linear terms (see for example Spiegel (2008) and the

references therein for a discussion of return predictability).

E.2 The null hypothesis and the GET test statistic

In the case of a single regressor, Bottai (2003) showed that the nullity of the information

matrix is one when the regressand is unpredictable. Not surprisingly, the information matrix

has several rank de�ciencies under the null hypothesis H0 : � = 0 in the multiple regressor case.

The relevant derivatives of the log-likelihood function with respect to �1; �2 evaluated under H0

are

@l

@�1
= 0;

@l

@�2
= 0;

@2l

@�21
= y21(y3 � 1),

@2l

@�1@�2
= y1y2(y3 � 1),

@2l

@�22
= 0 and

@3l

@�32
= y32(y3 � 1):

Therefore, we have a situation in which the degree of underidenti�cation is di¤erent for the

two regression coe¢ cients. But since Assumption 5 is satis�ed with C = f(2; 0); (1; 1); (0; 3)g; a
straightforward application of Theorem 2 implies that

LRn = GETn +Op(n�
1
6 )

= sup
�1;�2

2(�21; �1�2; �
3
2)

0B@ L
[2;0]
n

L
[1;1]
n

L
[0;3]
n

1CA�n(�21; �1�2; �32)
0@ I11 I12 I13
I21 I22 I23
I31 I32 I33

1A0@ �21
�1�2
�32

1A+Op(n� 1
6 ); (E49)

where

0@ I11 I12 I13
I21 I22 I23
I31 I32 I33

1A = lim
n!1

V ar

24pn
0@ l[2;0]

l[1;1]

l[0;3]

1A35 :
In this case, though, we need to obtain the maximum with respect to �1 and �2 over the entire

Euclidean space of dimension 2 rather than over the unit circle.
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Nevertheless, we can provide an asymptotically equivalent but much simpler statistic. Let

p1 =
p
n(�ET1 )2, p2 =

p
n�ET1 �ET2 and p3 =

p
n(�ET2 )3. It is then straightforward to show that

n
1
6 p1p

2
3
3 = p

2
2:

As a result, we must have that either p1 or p3 are negligible when n is large because p2 is Op(1)

from Lemma 1 in Appendix B. If p1 is negligible, then (E49) is asymptotically equivalent to

supLM1n = sup
�1;�2

2(�1�2; �
3
2)
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L
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��
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I22 I23
I32 I33

��1 
L
[1;1]
n

L
[0;3]
n

!
:

If instead p3 is negligible, then (E49) becomes asymptotically equivalent to

supLM2n = sup
�1;�2

2(�21; �1�2)

 
L
[2;0]
n

L
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�
I11 I12
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��
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�1�2

�

=
1

n

(
(L
[1;1]
n )2

I22
+
(L
[2;0]
n � I12I�122 L

[1;1]
n )2

I11 � I12I�122 I21
1[L[2;0]n � I12I�122 L[1;1]n > 0]

)
:

Consequently, we could obtain an asymptotically equivalent statistic up to a term of order op(1)

by simply retaining GETn = max fsupLM1n; supLM2ng.
In addition to computational advantages, it turns out that the asymptotic distribution of

our test is easy to obtain. Speci�cally, letting

Z1n = n
� 1
2
L
[2;0]
n � I12I�122 L

[1;1]
nq

I11 � I12I�122 I21
; Z2n = n

� 1
2
L
[1;1]
np
I22

and Z3n = n
� 1
2
L
[0;3]
n � I32I�122 L

[1;1]
nq

I33 � I32I�122 I23
; where

0@ Z1n
Z2n
Z3n

1A d�!

0@ Z1
Z2
Z3

1A � N

240@ 0
0
0

1A ;
0@ 1 0 r13

0 1 0
r13 0 1

1A35 and

r13 =
I13 � I12I�122 I23q

I11 � I12I�122 I21
q
I33 � I32I�122 I23

;

then, supLM1n = Z
2
2n + Z

2
3n and supML2n = Z

2
2n + Z

2
1n1 [Z1n � 0]. As a consequence,

GETn
d! maxfZ211 fZ1 � 0g ; Z23g+ Z22 :

That is, the asymptotic distribution of GETn will be a �22 50% of the time (when Z1 < 0) and

the sum of a �21 with the largest of two other possibly dependent �
20
1 s (when Z1 � 0). If we

further assume that the regressors y1 and y2 are two independent normals with 0 means and

variances �21 and �
2
2, respectively, then the Z

0s will be three independent standard normals.

E.3 Simulation evidence

As alternatives, we consider �1 = 0:3, �2 = 0 (Ha1) and �1 = 0, �2 = 0:5 (Ha2) in model

(E48). And like in the normal versus SNP example, if we maintain that y1 and y2 are uncor-

related, we can compute exact critical values for any sample size to any degree of accuracy by

repeatedly drawing iid spherical normal vectors (y1; y2; y3), which e¤ectively imposes the null.
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In Table 4 we compare the results of the two versions of our tests discussed above, with

the GMM test mentioned at the end of section 2.2 and two simple alternative procedures.

First, a standard LM test based on pseudo-Gaussian ML that checks the joint signi�cance of

y21 and y1y2 in the OLS regression of y3 on a constant and these two variables, which are the

transformations of the predictors missing from the part outside the exponent in the conditional

mean speci�cation. And second, a closely related LM test based on pseudo-Gaussian ML which

augments the previous regression with the following four cubic terms y31, y
2
1y2, y1y

2
2 and y

3
2. We

refer to these tests as OLS1 and OLS2, respectively.

The �rst three columns of Table 4 report rejection rates under the null at the 1%, 5% and

10% levels for n = 400 (Panel A) and n = 1600 (Panel B) for the �rst alternative hypothesis

we consider while the last three do the same for the second one. Once again, the behavior

of the di¤erent test statistics is in accordance with expectations. In particular, our proposed

statistics are the most powerful in both cases. Part of the reason has to do with the fact that the

linear regressions only provide an approximation to the true non-linear conditional expectation.

However, the fraction of the theoretical variance of y3 explained by y21; y1y2; y
3
1, y

2
1y2, y1y

2
2 and

y32 is essentially the same as the fraction explained by the true conditional mean in Ha2. As a

result, the superior power of our tests relative to OLS2 comes from the reduction in degrees of

freedom.

Given that in this case our test has a relatively standard asymptotic distribution �namely,

a 50:50 mixture of �22 and the sum of �21 with the larger of two other independent �
2
1�s�we can

also compute Davidson and MacKinnon (1998)�s p-value discrepancy plots to assess the �nite

sample reliability of this large sample approximation for every possible signi�cance level. The

results for the two sample sizes we consider, which are available on request, con�rm the high

quality of the asymptotic approximation.

Finally, our results indicate a .94-.95 Gaussian rank correlation between our proposed test

statistic and the LR across Monte Carlo simulations generated under the null, which is in

line with our asymptotic equivalence results in Theorem 2. At the same time, they con-

�rm that the LR test typically takes about 200 times as much CPU time to compute as the

max fsupLM1n; supLM2ng version of our test.

F Relationship to the previous literature

Davies (1987) proposed perhaps the most cited sup-type test, so it is illustrative to provide

a link between Theorem 1 and his results. In view of the fact that k�rk remains irrelevant
regardless of qr, without loss of generality we consider the reparametrization �r = ��, with

� 2 Rqr , k�k = 1 and � � 0, so that � and � represent the magnitude and direction of the

parameter vector �r, respectively. Given that

sup
�;�1;k�k=1;��0

Ln(�;�1; ��) = sup
�;�1;�r

Ln(�;�1;�r);
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we can rewrite the null hypothesis as H0 : �1 = 0; � = 0, where � is a nuisance parameter that

only appears under the alternative. If we considered the rth derivative of li(�) along a speci�c

direction �, which would e¤ectively coincide with the rth derivative with respect to �, then we

could directly apply the Lee and Chesher (1986) approach to obtain the relationship between

the LR and ET tests along that direction. We then look at the supremum of those tests over all

possible directions, as suggested by Davies (1987), which would e¤ectively yield GETn.

Nevertheless, this intuitive explanation in terms of � and � has some limitations. First, Lee

and Chesher (1986) would yield a pointwise result for a given �, while Theorem 1 relies on

uniform convergence. More importantly, Davies (1987) method is designed for models in which

the log-likelihood function is absolutely �at for some parameters under the null, so regardless

of its analytic nature, no higher order derivatives will provide moments to test. In contrast, we

consider situations in which the log-likelihood function written in terms of � only has a �nite

number of zero derivatives, so a test statistic can be based on the �rst round of non-zero ones.

In this respect, the underidenti�cation of � is an artifact of the �r = �� reparametrization that

would persist even if the information matrix had full rank, in which case the supremum over �

of the test of H0 : �1 = 0; � = 0 will yield the usual LM test. In any event, in Theorems 2 and

3 we derive generalized extremum tests in more general contexts without resorting to any such

reparametrization.
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Table 3: Monte Carlo rejection rates (in %) under null and alternative hypotheses for the
Gaussian versus Hermite expansion copula test

Null Alternative hypotheses
hypothesis Ha1 Ha2

1% 5% 10% 1% 5% 10% 1% 5% 10%
Panel A: n = 400

GET 1.1 5.1 10.2 18.4 49.7 65.1 26.9 60.9 74.2
KS 0.9 4.7 9.3 0.9 4.7 9.9 1.1 5.4 10.6
KT-AS 1.2 5.3 10.3 18.9 39.2 52.0 31.7 55.4 68.0
GMM 1.1 5.2 10.2 3.8 38.4 57.0 6.3 49.7 67.2

Panel B: n = 1600
GET 0.9 4.9 10.3 90.8 98.9 99.6 96.8 99.7 99.9
KS 0.9 4.7 9.8 1.9 7.7 14.5 3.1 10.4 18.6
KT-AS 0.9 5.3 10.6 60.9 82.8 90.1 87.1 95.9 98.2
GMM 1.1 5.0 9.9 44.0 95.5 99.0 68.2 98.8 99.7

Notes: Results based on 10,000 samples. Margins are assumed to be known. GET, KS, KT-AS and
GMM are de�ned in Supplemental Appendix D. Finite sample critical values are computed using the
parametric bootstrap. DGPs: The correlation parameter ' is set to 0:5 under both the null and alternative
hypotheses. As for Ha1 and Ha2 correspond to pure, fourth-order Hermite expansion copulas with
#0 = (0:03; 0; 0; 0; 0) and #0 = (0:02; 0; 0; 0; 0:02), respectively.

Table 4: Monte Carlo rejection rates (in %) under alternative hypotheses for white noise versus
a purely nonlinear regression test

Alternative hypotheses
Ha1 Ha2

1% 5% 10% 1% 5% 10%
Panel A: n = 400

GET 19.5 41.3 54.4 18.5 39.7 52.4
LR 21.7 41.7 56.2 20.5 40.4 54.1
GMM 15.3 34.3 47.0 14.3 33.4 45.5
OLS1 16.2 34.6 47.2 12.9 30.5 41.9
OLS2 9.6 23.9 37.0 7.3 20.2 32.4

Panel B: n = 1600
GET 65.5 83.9 90.2 61.3 80.5 87.6
LR 66.3 84.5 91.2 61.9 81.5 88.5
GMM 57.6 78.3 86.0 54.3 75.2 83.6
OLS1 53.2 74.1 83.3 42.7 64.6 75.1
OLS2 37.7 61.6 73.3 25.7 48.8 61.8

Notes: Results based on 10,000 samples. GET, LR, GMM, OLS1 and OLS2 are de�ned in Supplemental
Appendix E. Finite sample critical values are computed by simulation. DGPs: (y1; y2) � iid N(0; I2)

under both alternative hypotheses, with �1 = 0:25 and �2 = 0:25 (Ha1), and �1 = 0:3 and �2 = 0:1 (Ha2).
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