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A The test in practice

We recommend following these steps for computing the discrete grid test statistics in a

given sample:

1. Estimate the model by non-Gaussian PMLE assuming that the shocks follow indepen-
dent univariate finite Gaussian mixtures, and compute the estimated structural residuals
e%(07)’s evaluated at the PMLEs 7 using expression (4) for the unique ordering and
signs of the matrix C obtained using the selection procedure suggested by Ilmonen and
Paindaveine (2011) and adopted by Lanne et al. (2017). Importantly, the fact the struc-
tural shocks are only identified up to permutations is numerically irrelevant for the test
statistic as long as one uses the same quantile grid for all of them since they only affect
their labelling. Similarly, a change in the sign of one shock is also numerically irrelevant
as long as one adjusts its quantiles accordingly. In fact, there is no need for such an ad-
justment if one uses equally spaced quantiles (say terciles, quartiles or quintiles) for all
shocks.

2. For the ¢ version of the test, partition the [0,1] interval with knots (0,u1,ug,...,ug, 1),

where up = % (2h — 1) H~! in the equally-spaced case, and obtain the corresponding mar-
ginal quantiles of each estimated shock €%, (67), namely [ki1 (u1), ..., kg (ug)], i =1,..., N
using MATLAB’s linear interpolation method. One could then replace the w’s with the mar-
ginal empirical cdf of each shock computed at the estimated quantiles to take into account
the linear interpolation method, but this would generate slightly different partitions of the
unit interval for different shocks.
For the p version of the tests, define H points, k1 < --- < kp < --- < kp, together with
kg = —oo and kpy1 = oo, and estimate the marginal empirical cdf for each shock as
pin = T4 Zle I [5;}(9T) < kp]. One could then replace kj with its marginal empirical
quantile at the estimated p;; for each shock using MATLAB’s linear interpolation method,
but again this would generate slightly different partitions of the real line for different
shocks.

3. For the q version, estimate the joint cdf at the Cartesian product of the empirical quantiles
as qij = TV 20 T[e5(07) < Ein(un);. .., 4,(07) < kas (upy)], while for the p version
do the same but evaluate them at the N-ary Cartesian product of (ki,...,kg)’.

4. Compute the HY influence functions underlying the test as the difference between the
joint and the product of the marginal empirical cdfs.

5. Compute the HY x H matrix whose elements are given by (13).

6. Estimate the asymptotic covariance matrix of the score and the expected Hessian of the
pseudo log-likelihood function replacing the true values of the parameters 8y with 61 and
the expected values with sample averages in the expressions that appear in Appendices
C.3 and C.4, respectively, including (C33)-(C38) and (C39)-(C44), and use them in the



sandwich formula A~'BA, retaining the N x N blocks corresponding to the elements of
vec(C). The consistency of the estimators of A and B follows from Lemma 4.3 in Newey
and McFadden (1994), while that of A~!BA from their Theorem 4.1.

7. Estimate the HY x N expected Jacobian matrix of the influence functions with respect
to the elements of vec(C) replacing the true values of the parameters 8y with 01 and the
expected values with sample averages in the expressions in Lemma 1, using Silverman’s
(1986) robust rule-of-thumb bandwidth to obtain Gaussian kernel estimates of the true
density of the shocks that appear in expression (B1). Despite involving the indicator
function, the consistency of this procedure follows once again from Lemma 4.3 in Newey
and McFadden (1994).

8. Estimate the HY x N asymptotic covariance matrix between the influence functions and
the scores with respect to the elements of vec(C) replacing the true values of the para-
meters 0y with @7 and the expected values with sample averages in the expressions that
appear in Lemma 2, including (B3)-(B9). As before, Lemma 4.3 in Newey and McFadden
(1994) guarantees the consistency of the resulting estimators despite the indicator function
appearing in the influence functions.

9. Combine these matrices to estimate WV using (15), and replace this estimated matrix in (14)
to obtain the discrete grid test statistic. Theorems 2.2 and 2.3 in Newey (1985) guarantee

the consistent estimation of YW and the asymptotic x? distribution of (14), respectively.

Given that the continuous grid test can be regarded as a regularised version of the discrete
grid test computed at the finest partition of the unit interval that remains meaningful when there
are T' observations, its computation shares several of the elements that we have just described.

Specifically:

1. Estimate the model by non-Gaussian PMLE assuming that the shocks follow indepen-
dent univariate finite Gaussian mixtures, and compute the estimated structural residuals
5;-kt(éT)’s evaluated at the PMLEs 87 using expression (4) for the unique ordering and signs
of the matrix C obtained using the selection procedure suggested by Ilmonen and Paindav-
eine (2011) and adopted by Lanne et al. (2017). The fact the structural shocks are only
identified up to permutations and sign changes is numerically irrelevant for the continuous
test statistic as it effectively depends on the homogeneous, equally-spaced “discrete” grid
up=52r-10)T L r=1,...,T.

2. Compute the empirical uniform ranks using expression (17) and use them to obtain the
elements of the T' x T matrix D in (25).

3. Estimate the T' x T' matrix C by replacing the integrals in (27) by sums over the empirical

~ ~ ~

cdfs of the shocks. Specifically, if we denote by €f(0) = [€}(0),...,€5:(0)] the vector

tth

containing the empirical ranks of the t"* observation of each of the estimated shocks that



B

appear in M, we can estimate the rank one matrix C as

T T
C=trly- Y Y J[€1(0), ... cni ()] A (O)B(O) A (8)j[e5: (), ... 5 (8)],
=1 7=l
where £7 is a vector of T' ones, while A(8), B() and e (8), ..., ¢":(8)] are the consistent
estimators that we mention in points 6 and 7 of the description of the discrete grid test,
with the latter evaluated at u, = 1 (27 —1)T717!, 7 = 1,...,T. Given that sums over

increasingly finer grids converge to the relevant integral, C will be consistent.

. Finally, we consistently estimate £ by adding up the consistent estimators of C and D,

which we then replace in expression (26) for a given choice of the regularization parameter
«. Interestingly, the fact that C is proportional to £r#€/}. implies that the expression (26)
is numerically unaffected if we replace the two £s that appear at the extremes of this

quadratic form with Ds.

Lemmata

Lemma 1 If model (2) satisfies Assumption 1, then the non-zero elements of the expected Ja-

cobian matriz of the linearised my(u) evaluated at Oy and the estimated values of ul in (10) are

given by
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where Mh, = EO[E?tl(foo,%(ui))(Szt)] forie M.

Proof. From (12), we have that
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Moreover, it is worth noticing that
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Therefore, under the independence null,
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except for the off-diagonal elements of C, namely,
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where the first equality uses (B2), the second one follows from the cross-sectional independence

of the shocks, and the last one implicitly defines n,; = E[e},1 (oo s(u;)) (€]:)]- O

Lemma 2 If model (2) satisfies Assumption 1, then the non-zero elements of the covariance
matrix between the linearised influence function my(u) evaluated at Oy and the estimated values

of uﬁl in (10) with the pseudo log-likelihood scores evaluated at the pseudo true values ¢, is

given by
cov[mi(), 8¢, (oo )00, Vo] = E[Kinyt (@, v0)];
where
0
Z,(00) Z4 (0 0
Konildecrvn) = | 25000 200 D] | e gvn) |
a 0

where K, (000, V0) is a N? x 1 vector whose entries s = N(i — 1) +4' fori,i'’ =1,...,N are

alnf 5: 3 Qjco
Km,s(Qoo,Uo)Z—Z Z H Ugrr Ui/E{l(eftSn(ui))'(ag)‘ 90700},

ieMi'eM \i" €M i #i,i" #i! (

for i #1', and zero otherwise.

Proof. We start by computing the covariance of the influence functions underlying our test

with the pseudo log-likelihood scores evaluated at the pseudo true values ¢, namely

cov [mt(u)7 Sq')t(d)oo)‘em 'UO] = ]Cmu (d)oo? UO) = E[lcmut(qsooa UO)]



and
cov[mt(u), S¢t(¢oo)|00’ UO] = ICmu(¢OO’ UO) = E[Kmut((:boo? UO)]7

where

,C-lt(gooyv(])
(s v0) = [ Zzt(()eo) ZSE)HO) I(; ] K.st(0u0s v0)

IC~7"t(Qoo> UO)

Exploiting the cross-sectional independence of the shocks, we get for the mean parameters

aln 5*, 00
Kp (0o, V0) = —cov{mt(u),fggig)lao,vg}
OIn f(&}; Gioo
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and zero otherwise.

Similarly, K.s(0.,v0) is a N2 x 1 vector whose entries are such that for i with j; > 0,

* d1n 5;; 100 *
Kpisi (@ocs Vo) = —cov {p(et;k, u),1+ f(agig) " it 907’00}
Jdln 5*; 100 *
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and zero otherwise.
Finally, i, (040, v0) = K}, vecd(I,), where Ky, another block diagonal matrix of order N x ¢
with typical block of size 1 x ¢;,

Oln f(e}; 000
Kprl@svn) = oo {myfu), 2L 80) g, 0,
g;
Oln f(€}; Oino



Ky (80, U0) Cov{mt<u),fmmmgmﬂ’90,vo}

o0,
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and zero otherwise, again because of the cross-sectional independence of the shocks and the fact
that E[01n f(e}y; 040)/02|00,v0] = 0.

Next, to obtain the covariance of the influence function evaluated at 68y and the estimated
values of uﬁL in (10) with the pseudo log-likelihood scores evaluated at the true values 8g, vg, we

can make use of (12) to write
cov[mi(u), ¢t(Poo) |00, vo] = cov{p(er; k, 1), s¢¢(o0) |00, vo} (B10)

ST T e | cov {pn(eh). ser(¢00)[60, o}

i€M \i'eM,i'#i

Then, substituting (B3) and (B4) into (B10), we get

cov[mi(u), $r4(¢o0)60, vo] = 0

and

CO'U[mt(u),Sajt(¢m)’007U0] = 0) for j = 17 - P

Similarly, substituting (B5) and (B6) into (B10), we get
cov[m(), Se;t(Poo)|00,v0] =0, for i=1,...,N;
and substituting (B8) and (B9) into (B10), we get
cov[m(u),8,.¢(hs)|00,v0] =0, fori=1,...,N.
Finally, substituting (B5) and (B7) into (B10), we get the result stated in the statement. [

Lemma 3 If model (2) satisfies Assumption 1, then the adjustment of the covariance operator

that accounts for the estimation of @ is given by (27).

Proof. From 1, the expected Jacobian with respect to @ of the influence functions linearised

with respect to the s¢’s can be written as
ony (ups
R RS DD SR (N | T EAY S0 T}
iEM i'eM il £i \i" €M, i #i'#i

where
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ieM ieM ieM i EM.i'#i



We are after

L. {mtusn) = £ |2 VI - 00) } {naturn) - £ | 25| VTG - 60 |

Let us consider each of the four terms separately. The first one, namely
/[ s s
0,1

is given in (13). Next, we have the cross-terms, which are of the form

B /[0,1}“ b [8”88(;’]‘4)} VT(6 — 6o)ne(urr)duns.

If we then use the fact that

T

\/T(é - 00) = \/T'A_l(qboo7 900)§9 + Op(l) = 'A_l(qboo; SOO)\Q—vT Z Sgt + OP(1)7

t=1

we can see that

1 Ons(upy) 3 ‘ T B
VT Joap ™ S (““ (@i o) ZSw) ne(uar)dury = 0p(1)

=1

because of the scaling factor 1/v/T and the fact that the £’s entering into sg,(¢) are asymp-
totically independent of the ones that appear in n(uy) and E [Ong(ups)/06']. Therefore, the
covariance of the linearised influence function with the pseudo log-likelihood scores evaluated at
the pseudo true values ¢, is asymptotically negligible.

Finally, regarding the last term, we obtain (27), as desired. O

C ML estimators with cross-sectionally independent shocks

In this appendix, we derive analytical expressions for the conditional variance of the score
and the expected value of the Hessian of SVAR models with cross-sectionally independent non-
Gaussian shocks when the distributions assumed for estimation purposes may well be misspeci-
fied, but all the parameters that characterise the conditional mean and covariance functions are
consistently estimated, as in the case of finite normal mixtures. Fiorentini and Sentana (2023)

consider the general case.

C.1 Log-likelihood, its score and Hessian

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation ¢ will be given by

L(yt; ) = —In[C| +1[e14(0); 01] + ... + l[en(0); on], (C11)



where €(0) = C Yy — 7 — Ayyi—1 — ... — Apyi—p) and I(e};; 0;) = In f(g};; 0;) is the log of
the univariate density function of €},, which we assume twice continuously differentiable with
respect to both its arguments, although this is stronger than necessary, as the Laplace example
illustrates.

Let s¢(¢) denote the score function dly(¢)/d¢p, and partition it into two blocks, sg;(¢p) and
Set (), whose dimensions conform to those of 8 and g, respectively. Given that the mean vector

and covariance matrix of (2) conditional on I;_; are

() = THAyi1 4. F Ay, (Cl2a)
¥.(0) = CC, (C12b)

respectively, we can use the expressions in Supplemental Appendix D.1 of Fiorentini and Sentana

(2021) with 21/%(8) = C to show that
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which confirms that the conditional mean and variance parameters are variation free. In addition,
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wher
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by virtue of the cross-sectional independence of the shocks, so that the derivatives involved
correspond to the assumed univariate densities.
Let h;(¢) denote the Hessian function ds:(¢)/0¢" = 9%l;(¢)/0¢pO¢’. Supplemental Appen-
dix D.1 of Fiorentini and Sentana (2021) implies that
den(9) dest()
00’ 00’
+ [€(®) @ Iy (pr1)nz)

hgg: () = Z1:(6)

dvec(Zuy(6)]
06’
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where Z;;(0) and Zg(0) are given in (C15) and (C16), respectively. Therefore, we need to obtain
Ovec(C™1) /00" and dvec(Iy @ C~V)/00'.

Let us start with the former. Given that
dvec(C™Y) = —vec[C7Vd(CC™V] = —(C7 L @ CY)dvec(C') = —(C! @ CV)K yndvec(C),

where Ky is the commutation matrix (see Magnus and Neudecker (2019)), we immediately

get that

-1
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Similarly, given that
vec(In ® C™V) = {[(Iy @ Kyn)(vec(In) @ Iy)] @ Iy tvec(C™Y)
so that

vec(In®@ C™Y) = ((Iy @ Kyn)(vee(In) @ Iy) ® Iy)dvec(C™Y)
= —{[Ix ® Kyn)(vec(Iy) @ Iy)] @ INHC™ @ C™Y)Kyndvec(C),

we will have that
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In addition,
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The assumed independence across innovations implies that
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which substantially simplifies the above expressions.
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Moreover,

dew () des ()
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because of the cross-sectional independence assumption.
As for the shape parameters of the independent margins,
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h = = 2
QQt(¢) agag/ 0 (C 6)
9 In fnleh,(0)son]
I 0 0 Jondely

Finally, regarding the Jacobian term — In|C|, we have that differentiating (C13) once more

yields
0 0
0 0
— : dvec(C™Y) = : (C!' @ CYYKyydvec(C),
0 0
]:N2 IN2
SO
0
0%dy(0) 0
80;0’ = : [ Onzy(vipnzy (CTTO@CVKyy |.
0
IN2

As usual, the pseudo true values of the parameters of a globally identified model, ¢,
are the unique values that maximise the expected value of the log-likelihood function over the
admissible parameter space, which is a compact subset of R1™(®)  where the expectation is
taken with respect to the true distribution of the shocks. Under standard regularity conditions
(see e.g., White (1982)), those pseudo true values will coincide with the values of the parameters
that set to 0 the expected value of the pseudo-log likelihood score.

More formally, if we define vg as the true values of the shape parameters, and ¢, = (69, vo),

11



we would normally expect that
Elst(¢o0)lpo] = 0.

Let us now consider the alternative parametrisation C = J¥ studied in Fiorentini and Sen-
tana (2021, 2023), so that the parameters of interest become 7, a; = vec(A;) (j = 1,...,p),
j = veco(J) and ¥ = vecd(¥), where veco(.) stacks by columns all the elements of the zero-
diagonal matrix J — Iy except those that appear in its diagonal, and vecd(.) places the elements
in the main diagonal of ¥ in a column vector (see Magnus and Sentana (2020) for some use-
ful properties of these operators). Given that a pseudo log-likelihood function based on finite
Gaussian mixtures for the shocks will lead to consistent estimators for all these parameters re-
gardless of the true distribution, e;(¢,,) will be serially independent and not just martingale

difference sequences. Moreover, given that

C_ll ONXN2 0N><q
(L@IN)CV  Onzenz Opzyg
Z(0) = E|Z:(0)|ip,] = 5 f 3
(@IN)CTY  Onaynz Opzyg

Onzxn In®@CY) Opzy,
quN 0q><N2 Iq

has full column rank,
Elei(¢oo)t—1,p9] =0 (C28)

because
0 = Efst(@oo)| o] = E{E[st(¢o0) [ lt—1, @ollpot = Z(0) Elet(Poo) | It-1, po] = Z(0)Eler(Pos )| o]

Furthermore, the diagonality of ¥ means that the pseudo-shocks e} (0~) will also inherit
the cross-sectional independence of the true shocks €;. In addition, given that the estimators of

6 that we consider are consistent, we will have that under standard regularity conditions

T ~
T3 €i(0) —  Elei(0s0)lo] = 0 and (C29)
t=1
-1 I *2 (N *2
T t;é‘it (0) — FEleir (0o0)lpo] = 1, (C30)

where 6 are the PMLEs of the conditional mean and variance parameters.

C.2 Asymptotic distribution

For simplicity, we assume henceforth that there are no unit roots in the autoregressive
polynomial, so that the SVAR model (2) generates a covariance stationary process in which
rank(In — Ay —... — A,) = N. If the autoregressive polynomial (In — AjL — ... — A,LP)
had some unit roots, then y; would be a (co-) integrated process, and the estimators of the

conditional mean parameters would have non-standard asymptotic distributions, as some (linear

12



combinations) of them would converge at the faster rate 7. In contrast, the distribution of the
ML estimators of the conditional variance parameters would remain standard (see, e.g., Phillips
and Durlauf (1986)).

We also assume that the regularity conditions A1-A6 in White (1982) are satisfied, although
like in his Theorems 3.1 and 3.2, we drop Assumption A3(b) when talking about the neg-
ative definiteness of the expected Hessian or the asymptotic normality of the PML estima-
tors because they are both local rather than global results. These conditions are only slightly
stronger than those in Crowder (1976), which guarantee that MLEs will be consistent and as-
ymptotically normally distributed under correct specification. In particular, Crowder (1976)
requires: (i) ¢ is locally identified and belongs to the interior of the admissible parameter
space, which is a compact subset of RAm(®), (ii) the Hessian matrix is non-singular and con-
tinuous throughout some neighbourhood of ¢g; (iii) there is uniform convergence to the inte-
grals involved in the computation of the mean vector and covariance matrix of s;(¢); and (iv)
—E7 [T ()| T3, hy () 5 1,,,, where B [—T71Y", he(e)] is positive definite
on a neighbourhood of ¢.

We can use the law of iterated expectations to compute

'A(d)cxw (PO) = E[_h¢¢t(d)oo>|007 CP()] =E [At(d)ooa QOO)]

and
V[S¢t(¢oo)|900] = B((:boov ‘PO) =FE [Bt(d)oov 90)] :

In this context, the asymptotic distribution of the PMLESs of ¢ under the regularity conditions
A1-A6 in White (1982) will be given by

\/T(a) - ¢oo) - N[O? 'A_l(¢oo7 QOO)B(Q')(XM ()00)“4_1(@5007 ‘PO)]

As we explained before, analogous expressions apply mutatis mutandi to a restricted PML
estimator of @ that fixes p some a priori chosen value to p. In that case, we would simply
need to replace O by O, (@) and eliminate the rows and columns corresponding to the shape
parameters g from the A and B matrices.

If we write C = JW¥, then the chain rule for first derivatives implies that the gradient
with respect to the parameters in C will be a linear combination of those corresponding to
j=wveco(J —1Iy) and ¢ = vecd(P).

Therefore, we can invoke Proposition 3 in Fiorentini and Sentana (2023), which shows the

consistency of the Gaussian mixture-based Pseudo MLEs of j and 1), to show that

E |:811’lf[52t(0;oo)a Qoo] ‘ 00,’1)0:| -0
Oe}
and
1 1(000); 000 &
p |1+ O e 0, 61, v0 | —0 (c31)
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for ¢ = 1,...,N. Moreover, the maintained assumption of cross-sectional independence of the

shocks also implies that

dln f[e},(0); 0]

E
Oe;

E;t(ooo)’ 00, 'U()] =0

As a consequence,

Elen(¢s)|00,v0) =0 and  FEles(¢o)|00,vo] = 0.

C.3 Variance of the score

If we maintain that 8., = @y because of the aforementioned consistency, and adapt Propo-

sition D.2 in Fiorentini and Sentana (2023) to a PMLE context, we can show that

where

and

with

Visgt(Peo)[00, Vo] = B(¢oo, o) = E [Bi(Peo, vy)]

Buloer 09) = Zu00) Ol 0er ) 2401, (€32)
zio) = (29 B0 D).

O1(050:v0)  O15(000,v0) Ot (000, V0)
O(0005v0) = | O1(000,v0) Oss(000;v0) O
OZT(QOO,’U()) O;r(gowvo) OTT(Qoovv())

( )

( )
Os5(000,v0) = Vest(doo)[60, vol,
Ot (@o0: V0) = Eler (@) €1t (D)0, Vo],
Osr(000: V0) = Elest(@o0)er4(Po0)00, vo], and
O11(000,v0) = Vert(9o) |60, vo]

On(04,v0) will be a diagonal matrix of order N with typical element

01 ; 3 Oico
On(@ir o) =V | L) (©33)

O15(000, o) =0sE’y, where Ey is the so-called diagonalization matrix and O, is a diagonal

matrix of order N with typical element

Ols(giooa UO) = Cov |: 88} ) (‘)si Eit

i

vg} : (C34)

Oss5(000, Vo) is the sum of the commutation matrix Ky and a block diagonal matrix Y
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of order N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the

following structure:

[ ou1 O 0 0 0 0 0
o . 0 0 0 0 0
0 0 Oyt 0 0 0 0

Yi(0s,v0) = 0 0 0 0s5(0in0, Vo) — 1 0 0 0 ,

0 0 0 0 Ouiv1 0 0
0 0 0 0 0 . 0

L 0 0 0 0 0 0 Oou,nN |

where 01, =0y(0;40, V0) to shorten the expressions and
Oln f(ey; 0iso) &
Ouliervn) = v | PL SO | (©35)
i

O1-(0505v0) is an N x ¢ block diagonal matrix with typical diagonal block of size 1 X g;

Oln f(e}; 0ino) OIn f(€)y; 0i00)
Oet ’ do;

01 (000, Vo) = —COV [ vo} , (C36)

Osr(000, Vo) = ENOyg,, where Oy, another block diagonal matrix of order N x ¢ with typical
block of size 1 x g;

OST(Qioo”UO) = —cov |: 86; Eits agtl

vo] , (C37)

and O, (04, v0) is a ¢ X ¢ block diagonal matrix with typical block of size g; x ¢;

Oln f(g}; 0ioo)
an’

Orr(@ier v0) = V [ vo} | (C38)

C.4 Expected Hessian

We can also show that

E[_h¢¢t(¢oo)’007vo] = ‘A((:boo? UO) =F [At(¢007v0)]

where
At(¢oo7 UO) = Zt(OO)H(goov UO)ZQ(GO)a
Hiu(0s0,v0) Mis(@o0>v0)  Hir(Qoos V0)
H(Qoo7UO): H;5<Qomv0) Hss(goo7U0) Hsr(gooa'UO) )
2T(Qoo»UO) H;T(Qomvo) HT?“(QoovUO)
B [0%1n f(ef; 000)
Hi(0o0s v0) = —E_W UO]
[0%In f(e]; 000) , _»
His(00o,v0) = —E_Ek*—éé“(stl(@IN) Uo]
(. 0%In f(&}; Oln f(ef; .
Hulewon) = 5| {let Ty T 1580 1y o P S e [ ey
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Hir(000,v0) = E[a%nf(&:;mw)'vo}

Oe*0o’
« 9*In f(e}; 050
Hsr(0sv0) = E [[Et ®IN]a€*8tQ,"UO}

Hi (04, Vo) will be a diagonal matrix of order N with typical element

9? In f 5;( 3 @ico
Hll(@ioovv()) == |: (8(8*32 )

Uo} ) (C39)

His(0oos Vo) =HsEy, Hs is a diagonal matrix of order N with typical element

821 *; 100 *
(@i v0) =~ | TR (C40)
Given (C31),

80 Hss(000, Vo) Will be the sum of the commutation matrix Ky and a block diagonal matrix
I of order N? in which each of the N diagonal blocks is a diagonal matrix of size N with the

following structure:

CHyp 00 0 0 0 0

0 0 0 0 0 0

0 0 Hy—1 0 0 0 0

I'i(00,v0) = 0 0 0 Hss(0j00, V0) 0 0 0 )
0 0 0 0 Hyig1 O 0
0 0 0 0 0 .0
0 0 0 0 0 0 mHyy |
where Hy;; =H};(0;40, Vo) to shorten the expressions and
0%In f(e¥; 0 .
(@i v0) = ~5 { ST (2 g . (o)

(0e7)

Hir (000, v0) is an N x g block diagonal matrix with typical diagonal block of size 1 X ¢;

2 *
0% 1In f(efsic0 ) ’ Uo] 7

S (C42)

Hl'l’(gioo7v0) = E |:

Hsr (000 v0) = EnHg,, where Hy, another block diagonal matrix of order N x g with typical

block of size 1 X g;

0% 1n f(e};; Gioo)
sr(0inss = F 1) &100/ _k
H (ono UO) |: 88:8&% &

and H,r (04, V0) is a g X g block diagonal matrix with typical block of size ¢; X ¢;

Uo] ) (C43)

0?In f(e}; 0ioo
HTT(QZ.OO,UO)_—E[ ;;az;,? )’uo]. (C44)
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