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1 Introduction

There are several popular identi�cation schemes for structural vector autoregressions (Svar),

including short- and long-run homogenous restrictions (see, e.g., Sims (1980) and Blanchard

and Quah (1989)), sign restrictions (see, e.g., Faust (1998) and Uhlig (2005)), time-varying

heteroskedasticity (Sentana and Fiorentini (2001)) or external instruments (see, e.g., Mertens

and Ravn (2012) or Stock and Watson (2018)). Recently, identi�cation through independent

non-Gaussian shocks has become increasingly popular after Lanne, Meitz and Saikkonen (2017)

and Gouriéroux, Monfort and Renne (2017).1 The signal processing literature on Independent

Component Analysis (Ica) popularised by Comon (1994) shares the same identi�cation scheme.2

Speci�cally, consider a static model the N � 1 observed, square-integrable random vector y �

the so-called signals or sensors�is the result of an a¢ ne combination of N unobserved shocks

"� �the so-called components or sources�whose mean and variance we can set to 0 and IN

without loss of generality, namely

y = �+C"�: (1)

In this context, the matrixC of loadings of the observed variables on the latent ones in (1) can be

identi�ed (up to column permutations and sign changes)3 from an i:i:d: sample of observations

on y provided the following assumption holds:4

Assumption 1 : ICA Identi�cation
1) the N shocks in (1) are cross-sectionally independent,
2) at least N � 1 of them follow a non-Gaussian distribution, and
3) C is invertible.

Failure of any of the three conditions in Assumption 1 results in an underidenti�ed model.

In particular, suppose that "� follows a non-Gaussian spherically symmetric distribution, such

as the standardised multivariate Student t, so that the marginal distribution of each shock is

also a standardised Student t but there is tail dependence among them. The problem is that

any rotation of the structural shocks generates another set of N shocks "�� = Q"�, where Q is a

special orthogonal matrix, which share not only their mean vector (0), covariance matrix (IN )

and margins, but also the same non-linear dependence structure, rendering C underidenti�ed.

In Amengual, Fiorentini and Sentana (2022), we proposed simple to implement and inter-

pret speci�cation tests that check potential cross-sectional dependence among several shocks

1See Fiorentini and Sentana (2023) for a selected list of recent Svar papers that exploit the non-Gaussian
features of the structural shocks.

2See Hyvärinen et al (2010) and Moneta et al (2013) for earlier links between Ica and Svars.
3The elements of "� will be stochastically independent if and only if the elements of I1=2N "� are too, where I1=2N

denotes any orthogonal square root of the identity matrix of order N , so the choice of I1=2N is irrelevant.
4The same result applies to situations in which dim("�) � dim(y) provided that C has full column rank.
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by comparing some integer product moments of those shocks in the sample with their popu-

lation counterparts. Speci�cally, we assessed the statistical signi�cance of their second, third

and fourth cross-moments, which should be equal to the product of the corresponding marginal

moments under independence, thereby nesting the integer moment tests for independence in

Hyvärinen (2013) and Lanne and Luoto (2021). Although our Monte Carlo simulation results

indicated that the tests we proposed have non-negligible power against a variety of empirical

plausible forms of dependence among the shocks, tests based on a �xed number of cross-moments

are not consistent because it is possible to create examples of tail-dependent shocks for which all

those cross-moments are 0. Moreover, tests based on higher-order moments are quite sensitive

to outliers, which renders asymptotic theory unreliable for their �nite sample distributions.

The purpose of this paper is to provide alternative moment tests of independence consistent

against any alternative to the null hypothesis under the maintained assumptions that at least

N � 1 shocks are non-Gaussian and C is invertible. E¤ectively, our proposed procedures check

that the joint cumulative distribution function (cdf) of the shocks is the product of their marginal

cdfs. For pedagogical reasons, we �rst develop our tests for a �nite grid of values of the arguments

of the cdfs, but then we explain how to extend them to the entire range of values by exploiting

a generalisation of the continuum of moments inference procedures put forward by Carrasco

and Florens (2000), which results in a consistent test. Interestingly, we can directly relate our

discrete grid test to the classical Pearson�s independence test statistic for categorical variables in

contingency tables. We also explicitly compare our continuous grid procedures to the consistent

independence tests of Hoe¤ding (1948), who considered a Cramér-von Misses type-test based on

the integral of the square di¤erences between the joint cdf and the product of the marginal cdfs,

and Blum, Kiefer and Rosenblat (1961), who proposed Kolmogorov-Smirnov-type tests based

on the maximum absolute discrepancy.

Importantly, we focus on the latent shocks rather than the observed variables because As-

sumption 1 is written in terms of "� rather than y. If we knew the true values of � and C, �0

and C0 say, with rank(C0) = N , we could trivially recover the latent shocks from the observed

signals without error. In practice, though, both � and C are unknown, and the same is true of

the autoregressive coe¢ cients in the Svar case, so we need to estimate them before conducting

our tests and take into account their sampling variability in computing the asymptotic covari-

ance matrix of the in�uence functions in the discrete grid case, or its operator counterpart in

the continuous one.

Although many estimation procedures for those parameters have been proposed in the lit-

erature (see, e.g., Moneta and Pallante (2022) and the references therein), in this paper we
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consider the discrete mixtures of normals-based pseudo maximum likelihood estimators (PM-

LEs) in Fiorentini and Sentana (2023) for three main reasons. First, they are consistent for all

the model parameters under standard regularity conditions provided that Assumption 1 holds

regardless of the true marginal distributions of the shocks. Second, they seem to be rather

e¢ cient, the rationale being that �nite normal mixtures can provide good approximations to

many univariate distributions. And third, the in�uence functions on which they are based are

the scores of the pseudo log-likelihood, which we can easily compute in closed-form. As is well

known, these in�uence functions play a crucial role in capturing the sampling variability result-

ing from computing the shocks with consistent but noisy parameter estimators. In this respect,

we derive computationally simple closed-form expressions for the asymptotic covariance matrices

and operators of the sample moments underlying our tests under the null adjusted for parameter

uncertainty. Importantly, we do so not only for the static Ica model (1) but also for a Svar,

which is far more relevant for economic and �nancial time series data. In both cases, though,

we show that only the sampling variability in the o¤-diagonal elements of C matters.

In many empirical �nance applications of Svars, the number of observations is su¢ ciently

large for asymptotic approximations to be reliable. In contrast, the limiting distributions of our

tests may be a poor guide for the smaller samples typically used in macroeconomic applications.

For that reason, we thoroughly study the �nite sample size of our tests in several Monte Carlo

exercises and discuss resampling procedures that seem to improve their reliability. Finally,

we explicitly compare our tests to several existing procedures, including not only our earlier

cross-moments tests but also the aforementioned Blum, Kiefer and Rosenblat (1961) procedure

and the consistent Matteson and Tsay (2017) distance covariance statistic, showing that ours

have non-negligible power against a variety of empirically plausible alternatives in which the

cross-sectional independence of the shocks does not hold.

Finally, we apply our proposed tests to a Svar identi�ed through independent non-Gaussian

shocks for market-based volatility indices representative of three of the most actively traded

asset classes: stocks, exchange rates and commodities. Speci�cally, we analyse the VIX, which

captures the one-month ahead volatility of the S&P500 stock market index; the EVZ, which

computes the 30-day volatility of the $US/Euro exchange rate, and the GVZ, which measures

the market�s expectation of 30-day volatility of gold prices. Interestingly, the tests that we

propose fail to reject the null hypothesis of independence, and the same is true of other popular

independence statistics. In contrast, moments tests based on co-skewness and co-kurtosis are

very sensitive to the treatment of the unusual values for those indices observed at the onset of

the Covid-19 pandemic.
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The rest of the paper is organised as follows. Section 2 discusses the model and the estimation

procedure. Then, we present our moment tests for independence for a �nite number of grid points

in section 3, and a continuum of points in section 4. Next, section 5 contains the results of our

Monte Carlo experiments, while we describe our empirical application to the aforementioned

volatility indices in section 6. Finally, we present our conclusions and suggestions for further

research in section 7, relegating the main proofs to the appendix, and computational details and

several auxiliary results to the supplementary material.

2 Structural vector autoregressions

2.1 Model speci�cation

Consider the following N -variate Svar process of order p:

yt = � +
Pp
j=1Ajyt�j +C"

�
t ; "�t jIt�1 � i:i:d: (0; IN ); (2)

where It�1 is the information set, C the matrix of impact multipliers and "�t the structural

shocks, which we normalise to have zero means, unit variances and zero covariances under our

maintained assumption that they are square-integrable.

Let "t = C"�t denote the reduced form innovations, so that "tjIt�1 � i:i:d: (0;�) with

� = CC0. As is well known, a Gaussian (pseudo) log-likelihood is only able to identify �, which

means the structural shocks "�t and their loadings in C are only identi�ed up to an orthogonal

transformation. Speci�cally, we can use the QR matrix decomposition of C0 to relate this matrix

to the Cholesky decomposition of � = �L�
0
L as C = �LQ, where Q is an N �N orthogonal

matrix, which we can model as a function of N(N�1)=2 parameters ! by assuming that jQj = 1

(see e.g. Golub and van Loan (2013)). While �L is identi�ed from the Gaussian log-likelihood,

! is not. In fact, the underidenti�cation of ! would persist even if we assumed for estimation

purposes that "�t followed an elliptical distribution or a location-scale mixture of normals.

Nevertheless, Lanne et al. (2017) show that statistical identi�cation of both the struc-

tural shocks and C (up to column permutations and sign changes) is possible under the Ica

identi�cation Assumption 1, which we maintain henceforth. Popular choices of univariate non-

normal distributions are the Student t (see Brunnermeier et al. (2021)), the generalised error (or

Gaussian) distribution, which includes normal, Laplace and uniform as special cases, and �nite

Gaussian mixtures. Henceforth, we assume that the researcher chooses the order of the columns

of C as well as their signs following for example the scheme proposed by Ilmonen and Paindav-

eine (2011) and explained in detail in section 3.3 of Lanne et al (2017), thereby transforming

the local identi�cation into a global one.
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2.2 Going beyond integer moments

The Lanne et al. (2017) identi�cation result, though, critically hinges on the validity of

Assumption 1. As a consequence, it would be desirable that empirical researchers who rely on it

reported speci�cation tests that would check this assumption. In this paper, we focus on testing

that the structural shocks are indeed independent of each other.

As is well known, stochastic independence between the elements of a random vector is equiv-

alent to the joint cdf being the product of the marginal ones. In turn, this factorisation implies

lack of correlation between not only the levels but also any set of single-variable measurable

transformations of those elements. Thus, a rather intuitive way of testing for independence

without considering any speci�c parametric alternative can be based on in�uence functions of

the form

ch("
�
t ) =

NY
i=1

"�hiit �
NY
i=1

E("�hiit ); (3)

where h =fh1; :::; hNg, with hi 2 Z0+, denotes the index vector characterising a speci�c product

moment. This is precisely the approach that we followed in Amengual, Fiorentini and Sentana

(2022), where we paid particular attention to third and fourth cross-moments. As we mentioned

in the introduction, though, this type of moment test su¤ers from two problems. First, standard

asymptotic theory provides poor �nite sample approximations for tests based on higher-order

moments, whose estimates are quite sensitive to outliers. Second, for any choice of h, one can �nd

joint distributions of the shocks for which (3) is zero on average even though the shocks are cross-

sectionally dependent. For example, Figure 1a displays the contours of the copula corresponding

to a spherically symmetric fourth-order Hermite expansion of the bivariate normal such that all

second, third and fourth cross-moments satisfy this condition when the margins come from the

same distribution even though the shocks are not stochastically independent.

To avoid these criticisms, in what follows we propose to assess the potential cross-sectional

dependence among two or more shocks by directly comparing their joint empirical cdf to the

product of the marginal empirical cdfs. We do so not only for a discrete grid of values of

the arguments of the joint cdf, which provides the intuition for our approach, but also for a

continuous grid of values using an extension of the continuum of moments inference procedures

in Carrasco and Florens (2000), which provides a consistent test.

2.3 Consistent parameter estimation

Let � = [� 0; vec0(A1); : : : ; vec0(Ap); vec0(C)]0 = (� 0;a01; : : : ;a
0
p; c

0) = (� 0;a0; c0) denote the

structural parameters characterising the �rst two conditional moments of yt. If we knew the

true values of �0, we could easily recover the true shocks from the observed variables using the
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expression

"�t (�) = C
�1(yt � � �

Pp
j=1Ajyt�j): (4)

In practice, though, all those mean and variance parameters are unknown, so we need to

both estimate them before computing our tests and take into account that we will be working

with estimated shocks in deriving the asymptotic covariance matrices of the average in�uence

functions underlying them.

Maximum likelihood estimation (MLE) and inference in Svar models with independent

non-Gaussian shocks is conceptually simple: the joint log-likelihood function is the sum of N

univariate log-likelihoods plus the Jacobian term jCj. As is well known, MLE leads to e¢ cient

estimators of all the structural parameters if the assumed univariate distributions are correctly

speci�ed. Unfortunately, while Gaussian pseudo maximum likelihood estimators (PMLE) remain

consistent when the true shocks are not Gaussian, the same is not generally true for other

distributions (see e.g. Newey and Steigerwald (1997)). In this context, though, we cannot use a

Gaussian PMLE because we lose identi�cation.

Fiorentini and Sentana (2023) showed that if the univariate log-likelihoods are based on an

unrestricted �nite Gaussian mixture, then all conditional mean and variance parameters will be

consistently estimated under standard regularity conditions when Assumption 1 holds and the

shape parameters of the mixtures are simultaneously obtained.5 Let % = (%01; : : : ;%
0
N )

0 denote

those shape parameters, so that � = (�0;%0)0. Similarly, let s�t(�) denote the score vector used

for simultaneously estimating � and the �nite mixture shape parameters %. Finally, let '0 =

(�00;�
0
0)
0 denote the true values of the parameters characterising the true DGP, with � containing

the potentially in�nite-dimensional shape parameters of the true distributions of the shocks, and

�1 = (�00;%
0
1)

0 the pseudo-true values of the estimated parameters. Supplemental Appendix C

provides detailed expressions not only for the relevant pseudo log-likelihood function, but also

for its score and Hessian, as well as the conditional variance of the former and the conditional

expected value of the latter, on the basis of which we can obtain closed-form expressions for the

asymptotic variances of the PMLEs of �, �̂T :

A�1(�1;'0)B(�1;'0)A�1(�1;'0); where

A(�1;'0) = �E[@s�t(�1)=@�0j'0] and (5)

B(�1;'0) = V [s�t(�1)j'0] (6)

denote the (-) expected value of the non-Gaussian log-likelihood Hessian and the variance of its
5The rationale is that the discrete normal mixture-based PMLEs of the unconditional mean vector and covari-

ance matrix of a random vector coincide with the corresponding sample moments, just like in the Gaussian case,
as shown by Fiorentini and Sentana (2022).
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score, respectively. Supplemental Appendix A explains how to consistently estimate these matri-

ces in practice, while Supplemental Appendix C.2 lists the regularity conditions that guarantee

their consistency.

3 Discrete grid tests

Our starting point is a test based on the joint probability of events that involve two or more

elements of "�t , which should coincide with the product of the marginal probabilities under the

null of independence. Speci�cally, we begin by de�ning H points, k1 < � � � < kh < � � � < kH ,

so that we can then form a partition of the support of "�it into H + 1 segments, namely kh�1 �

"�it � kh for h = 1; :::;H + 1 after suitably de�ning k0 = �1 and kH+1 = 1.6 We then collect

the indices of the shocks involved in the set M = fi1; :::; img, where m denotes the cardinality

of the set M , so that we can test for pairwise independence (m=2), joint independence of the

entire vector of structural innovations (m=N), and any other intermediate situation.

Next, we de�ne the dummy variables P �iht = 1(kh�1;kh)("
�
it), where 1A(x) denotes the usual

indicator function for x 2 A � R. Moreover, let ��(k;u�) denote the di¤erence between the

joint probability of the event de�ned by the vector k = (khi1 ; : : : ; khim ), Pr(
T
i2MfP �ihit = 1g),

and the product of the marginal probabilities, u�ih = Pr(P �iht = 1), with u� = (ui1 ; : : : ; uim), so

that ��(k;u�) = 0 under independence. Using this notation, we could in principle test the null

on the basis of in�uence functions of the form:

p�("�t ;k;u
�) =

Y
i2M

P �ihit �
Y
i2M

u�ihi � �
�(k;u�): (7)

However, (7) is not computable unless one knows the marginal probabilities in u�, like in

Fisher�s (1922) famous tea cup classi�cation example. Therefore, in practice those probabilities

will in turn be estimated from the exactly identi�ed moment conditions

E[p�hi1 ("
�
i1t)] = 0; :::; E[p�him ("

�
imt)] = 0;

p�h("
�
it) = P �iht � u�ih , for i 2M , h = 1; :::;H; (8)

which results in the analogue estimator û�ih = 1
T

PT
t=1 P

�i
ht , a fact that we need to take into

account in computing the asymptotic covariance matrix of the feasible version of (7) that ade-

quately re�ects the sampling uncertainty in û�ih for all intervals and shocks.

If the true shocks were observed and we considered all possible cells from an N -dimensional

6For notational simplicity, we maintain the assumption that the number of intervals and their limits are
common across shocks. Although this assumption is plausible when a researcher has no prior views on the
marginal distributions of the di¤erent standardised shocks, it would be straightforward to relax it.
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contingency table whose elements are the Cartesian product of the di¤erent marginal partitions,7

then we would end up with a GMM version of Pearson�s joint (or multi-way) independence test,

which would in fact be numerically identical to Pearson�s original test statistic (see Sentana

(2022)).8

Let us now replace the partition of the support of "�it into the H+1 segments discussed above

by the sequence of overlapping increments "�it � kh for h = 1; :::;H + 1. For practical purposes,

let us de�ne P iht = 1(�1;kh)("
�
it) and

ph("
�
it) = P

i
ht � uih; (9)

with uih = E(P
i
ht) = Pr("

�
it � kh) � Fi(kh), as the new dummy variables and marginal in�uence

functions, respectively, which trivially give rise to the empirical cdf estimator

ûih =
1

T

TX
t=1

P iht: (10)

Let us also de�ne the joint in�uence function

p("�t ;k;u) =
Y
i2M

P ihit �
Y
i2M

uihi � �(k;u); (11)

which is such that �(k;u) = 0 under the independence null.

Importantly, the fact that the estimating moment conditions (9) exactly identify the relevant

uih�s implies that there is no e¢ ciency loss in sequentially estimating the �(k;u)�s from (11) by

replacing the marginal cdfs by their sample counterparts relative to estimating them jointly from

(9) and (11), which in turn implies that the non-centrality parameters of corresponding moment

tests that impose �(k;u) = 0 will coincide.

Then, we can show the following:

Proposition 1 Let p�("�t ) and p("
�
t ) denote the H

M � 1 vectors containing two mutually com-
patible full sets of non-redundant in�uence functions (7) and (11), respectively. Independence
tests based on them are numerically identical after taking into consideration the estimation of
the marginal probabilities from (8) and (9), respectively.

This convenient re-interpretation of the usual Pearson test for independence will allow us to

extend our tests to a continuous grid in section 4.

7The adding up restrictions of the elements of the contingency table by rows and columns imply that the
information in some of the cells is redundant, so we can avoid using generalised inverses in computing the test
statistic by getting rid of them. We would suggest excluding all the cells involving a speci�c category for each of
the m shocks, but the choice of excluded category for each shock is arbitrary.

8 In principle, one could deviate from Pearson�s test by not including all non-redundant cells in the contingency
table, but unless one has a priori knowledge of which speci�c subset of intervals is likely to capture larger departures
from the null, it is not clear that the consequent reduction in degrees of freedom will translate into power gains.

8



The choice of the k�s, though, will crucially a¤ect power even though it does not a¤ect the

(�rst-order) asymptotic distribution of the test under the null. For that reason, it would be

useful to adapt the grid to the marginal distribution of the shocks. With this in mind, we

recommend the following simple way of choosing the partition which achieves precisely that

goal: instead of �xing arbitrarily the grid points at which we evaluate the cdfs of each of the

"�i �s, we chose them so that they correspond to speci�c quantiles of the marginal distributions.

Speci�cally, let kih = {i(uh) for each i 2 M be the uh-quantile of "�it for h = 1; :::;H, with

0 = u0 < u1 < � � � < uH < uH+1 = 1, {i(0) = �1 and {i(1) = 1. We can compute an

alternative independence test for the shocks using the same in�uence function p("�t ) in (11),

but now estimating the marginal quantiles kih for given u
i
h from the exactly identi�ed moment

conditions (9) rather than each marginal cdf uih for �xed k
i
h. Intuitively, a moment test based on

a collection of such in�uence functions will e¤ectively assess that the copula linking the di¤erent

marginal distributions is �at, which corresponds to the independent one.

An obvious question at this stage is whether practitioners should rely on the event-based

approach that treats the k�s as �xed or the copula-�avoured test, which instead treats the u�s as

�xed. A priori, it might seem that the former should dominate the latter because the asymptotic

variance of the estimators of the probabilities of an interval only depend on the probability of said

interval, while the asymptotic variance of the estimators of the quantiles depend not only on the

quantile probability (directly), but also on the value of the density at said quantile (inversely).

Somewhat surprisingly, though, it turns out that both tests are asymptotically equivalent if we

chose the limits of the intervals kih�s so that they exactly match the theoretical quantiles {i(uh)�s,

as we show in the next proposition:

Proposition 2 Regardless of whether k is �xed and u estimated, or u �xed and k estimated:
a) The testing in�uence function linearised to consider the estimation of the relevant marginal
quantities is given by

mt(u) =

"Y
i2M

1(�1;khi )("
�
it)�

Y
i2M

ui

#
�
X
i2M

h
1(�1;khi )("

�
it)� ui

i Y
i02M;i0 6=i

ui0 : (12)

b) If the shocks in M are stochastically independent, then the asymptotic covariance of the
in�uence functions mt(u) and mt(u

0) will be given by

Y
i2M

min(uiki ; u
0i
k0i
)+(m�1)

Y
i2M

uikiu
0i
k0i
�
X
i2M

min(uiki ; u
0i
k0i
)

0@ Y
i02M;i0 6=i

ui
0
ki0

1A0@ Y
i02M;i0 6=i

u0i
0

k0
i0

1A : (13)
For empirical considerations, in what follows we focus on the copula version, which naturally

adapts the grid to the unknown marginal distribution of each shock.

The linearised in�uence functions (12) are particularly useful in practice because �0 is un-
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known and the quantiles are computed on the basis of estimated "�t�s that replace those true

values with their PMLE �̂. Speci�cally, we can apply the theory of moment tests in Newey

(1985) and Tauchen (1985) to them to derive the following result:

Proposition 3 Let mt(�) denote an HM � 1 vector containing a full set of non-redundant
linearised in�uence functions (12) and �̂ the consistent PMLE estimators of �. Under standard
regularity conditions

T �m0
T (�̂)W�1

p �mT (�̂)! �2HM ; (14)

under the independence null, where �mT (�) is the sample mean of mt(�);

Wm = Vm + JmA�1BA�1J 0m + FmA�1J 0m + JmA�1F 0m; (15)

Vm = Vm(�1;'0) = V [mt(�0)j'0], whose entries are given by (13);
Jm = Jm(�1;'0) = E[@mt(�0)=@�

0��'0], whose only non-zero elements are
jmucii0 (%1;'0) = �

X
i2M

X
i02M;i0 6=i

0@ Y
i002M;i00 6=i0 6=i

ui00

1A �ui0fi(ki), for i 6= i0; (16)

with �i = E0["
�
it1(�1;ki)("

�
it)] and fi(:) denoting the true marginal density of shock i 2M ;

Fm = Fm(�1;'0) = cov[mt(�0); s�t(�1)j'0], whose typical element is E[Kmut(�1;�0)];

Kmut(�1;�0) =

�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 0
Kpk(%1;�0)

0

35 ;
Zlt(�) = [(1;y0t�1; :::;y

0
t�p;01�N2)0 
 IN ]C�10; Zst(�) = (0N2�N(N+1); IN2)(IN 
 C�10), and

Kmu(%1;�0) an N
2 � 1 vector whose entries s = N(i� 1) + i0 for i; i0 = 1; :::; N are

km;s(%1;�0) = �
X
i2M

X
i02M

0@ Y
i002M;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�khi ) � @ ln f("�it;%i1)@"�i

�����0;�0� ;
for i 6= i0, and zero otherwise; and A = A(�1;'0) and B = B(�1;'0) given by (5) and (6).

Supplemental Appendix A explains in detail how to transform the infeasible statistic in (14)

into a feasible one by replacing Wm with a consistent estimator without altering its asymptotic

distribution.

A key implication of this result is that the sampling variability in estimating the mean

parameters or the diagonal elements of the matrix C is asymptotically irrelevant. In fact, the

variability in the intercepts � i� and scales cii�s of the shocks does not matter even in �nite

samples because a contingency table based on quantiles is numerically invariant to a¢ ne linear

transformations of each shock as the new quantiles are the same a¢ ne transformation of the

original ones. And even though changes in the elements in Aj will a¤ect shocks di¤erently in

di¤erent periods, it turns out that the corresponding expected Jacobian is zero. Therefore, the

only parameters whose sampling variability matter are the o¤-diagonal elements of C.
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Importantly, our tests will also be numerically invariant to alternative ways of selecting

a particular column permutation of C for identi�cation purposes as long as we use the same

quantile grid for all shocks because those permutations only a¤ect the labelling of the shocks.

Similarly, a change in the sign of one shock and the corresponding column is also numerically

irrelevant as long as we adjust its quantiles accordingly. In fact, given that we recommend using

the same equally spaced quantiles in the discrete grid case (say terciles, quartiles, quintiles, etc.),

we do not even need to consider such an adjustment.

In contrast, the choice of H is crucial for both small sample performance and power consid-

erations even though the asymptotic distribution under the null is always a �2 with Hm degrees

of freedom. Intuitively, too �ne a partition relative to the sample size may introduce size dis-

tortions because the joint probability of some individual cells will be poorly estimated. Even in

large samples, a �ne partition will generate substantial correlation between the in�uence func-

tions, potentially causing numerical instability. Finally, there is also a power trade-o¤ between

the size of the non-centrality parameter and the number of degrees of freedom of the limiting

distribution. Partly for these reasons, next we discuss tests which do not depend on H.

4 A continuous grid

A more fundamental problem with the tests discussed in the previous section is that they

are not consistent for any speci�c �nite partition of the domain of the shocks because one could

always �nd joint distributions such that the probability of each joint interval is exactly the

product of the marginal probabilities even though the shocks are stochastically dependent. In

fact, any spherically symmetric bivariate distribution for the shocks, like the one in Figure 1a,

will provide an example of such a situation with only two equally likely intervals for each shock.

More interestingly, Figure 1b relies on another spherically symmetric Hermite expansion of the

bivariate normal to illustrate the same issue if we considered three equally likely intervals per

shock. To address this shortcoming, we now extend our procedures to a continuous grid.

Consistent tests of independence based on comparing the joint cdf to the product of the

marginal cdfs for all possible values of the arguments go back at least to Hoe¤ding (1948), who

considered a Cramér-von Misses type-test based on the integral of the square di¤erences between

the joint cdf and the product of the marginal cdfs, and Blum, Kiefer and Rosenblat (1961),

who considered Kolmogorov-Smirnov-type tests based on the maximum absolute discrepancy.9

However, those tests rely on speci�c functionals of the di¤erence, while the discrete grid tests

9See Kheifets (2015) for an application of these procedures to the probability integral transforms of the con-
ditionally standardised residuals of a fully parametric univariate time series model for the purposes of testing
its correct speci�cation taking into account the estimated character of those residuals, and Scaillet (2005) for a
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that we studied in the previous section also take into account not only the asymptotic variance

of the in�uence functions for each value of the arguments, like an Anderson-Darling (1952) test

would do, but more importantly, the covariance between those in�uence functions for di¤erent

values of the arguments.

In principle, we could try to �nd the limiting distribution of our discrete grid tests in a double

asymptotic framework in which the partitions get �ner and �ner as the sample size increases.

However, this is really unnecessary because the in�uence functions indexed with respect to the

arguments of the joint cdf over Rm give rise to a continuum of moments in an L2 space. As a

result, we can readily extend Carrasco and Florens (2000) and directly construct a Hansen (1982)

overidentifying restrictions-type test based on the same in�uence functions as in the discrete grid

case, but with a covariance operator playing the role of the usual covariance matrix.10

Speci�cally, by transforming "�it into its empirical uniform rank

��it =
1

T

XT

s=1
1(�1;"�it)("

�
is); (17)

we can de�ne the marginal and joint in�uence functions

qit(ui) = 1(0;ui)(�
�
it)� ui; and (18)

qt(u) =
Y
i2M

1(0;ui)(�
�
it)�

Y
i2M

ui; (19)

which are numerically identical to (9) and (11) in the previous section, respectively.

Next, let $ be a probability density function with support the unit hypercube. Then, the

function qt(u) may be regarded as a random element of L2 ($), the space of real-valued functions

which are square integrable with respect to the density $. For any functions f and g in L2 ($),

the inner product on this Hilbert space is de�ned as hf; gi =
R
[0;1]m f (u) g(u)$ (u) du. By the

central limit theorem for iid random elements of a separable Hilbert space (see e.g. proof of

Theorem 9 in Rackauskas and Suquet (2006)), we have that under independence,
p
T �qT (u) )

N (0;K) in L2 ($) as T goes to in�nity, where �qT (u) denotes the sample average of (19) and

N (0;K) a Gaussian process of L2 ($) fully characterised by its covariance operator K, which

is an integral operator from L2 ($) to L2 ($) such that

(Kf) (u) =

Z
[0;1]m

k(u;v)f(v)$ (v) dv; (20)

whose kernel k (u;v) = E[qt(u)qt(v)] is given by (13).

related test against positive quadrant dependence.
10A straightforward extension of Proposition 2 implies that the continuum of moments test that looks at (11)

over Ri will be numerically equivalent to the one that looks at the di¤erence between the empirical copula and the
unit hyperplane over the unit hypercube. For that reason, in what follows we simply focus on the copula-based
version of the moment tests for overidentifying restrictions.
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As we mentioned before, we are interested in applying an overidentifying restrictions test to

our continuum of moments, but replacing the usual covariance matrix by the aforementioned

covariance operator K, which has a countable in�nite number of positive eigenvalues �jk and

associated eigenfunctions �jk. Speci�cally, Blum, Kiefer and Rosenblat (1961) proved that in

the bivariate case with �0 known, the eigenvalues �jk and the complete set of orthonormal

eigenfunctions �jk(u) of K, which are the solutions to the functional equation

K�jk(u) =

Z 1

0

Z 1

0
K(u;v)�jk(v)dv = �jk�jk(u);

are given by 1=(�4j2k2) and 2(sin�ju1)(sin�ku2) for j; k = 1; 2; : : : :11 This covariance operator

is compact, meaning that its inverse is not bounded. Consequently, its smallest eigenvalues will

converge to zero as j or k go to in�nity, as can be clearly seen in the bivariate case we have just

discussed, so taking the inverse of K is problematic. In terms of the spectral decomposition of

K, the direct analogue to the J test statistic would be written asDp
T �qT ;K

�1�qT
E
=
X
j

X
k

1

�kj

���DpT �qT ; �jkE���2 : (21)

Unfortunately, this expression will blow up because of the division by the small eigenvalues. This

is related to the problem of solving an integral equation Kf = g where g is known and f is the

object of interest. This problem is said to be ill-posed because f is not continuous in g. Indeed,

a small perturbation in g will result in a large change in f . To stabilise the solution, one needs

to use some regularisation scheme (see Kress (1999) and Carrasco, Florens, and Renault (2007)

for various possibilities). As in Carrasco and Florens (2000), we use Tikhonov regularisation,

which consists in replacing K�1g by the regularised solution
�
K2 + �I

��1
Kg where � � 0 is

a regularisation parameter. In what follows, we use the notation (K�)�1 for
�
K2 + �I

��1
K,

which is the operator with eigenvalues �jk(�2jk + �)
�1 and corresponding eigenfunctions �jk,

and (K�)�1=2 for the operator with eigenvalues �1=2jk (�
2
jk + �)

�1=2 and the same eigenfunctions.

Thus, the regularised version of the J-type test will be(K�)�1=2
p
T �qT

2 =X
j

X
k

�jk

�2jk + �

���DpT �qT ; �jkE���2 : (22)

Comparing the expressions (21) and (22), it is easy to see that we have e¤ectively replaced ��1jk

with �jk(�2jk + �)
�1, which is bounded.

For computational reasons, it is convenient to rewrite the test statistic (22), which uses as

eigenvalues and eigenfunctions those of K, in terms of certain matrices and vectors (see Carrasco

11 It is not worth extending their results for i> 2 because they apply to observed variables rather than estimated
shocks.
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et al. (2007) for analogous expressions for K under time series dependence). Speci�cally, we use

the following computationally convenient expression for (22):

W0f�IT + [(IT � `T `0T =T )D2(IT � `T `0T =T )]2g�1W; (23)

whereW is a T �1 vector whose tth element is wt =
R
qt (u) �qT (u)$ (u) du, D is a T �T matrix

whose (t; s)th element is dts = hqt; qsi =T , and `T is a T � 1 vector of ones. In practice, only D

is needed to compute the test statistic because (23) is equivalent to

`0TD(IT � `T `0T =T )f�IT + [(IT � `T `0T =T )D2(IT � `T `0T =T )]2g�1(IT � `T `0T =T )D`T ; (24)

with the analytical expression for the (t; s)th element of the matrix D provided in the following

result, which generalises expression (13) to a continuous grid:

Proposition 4 If the m shocks in M are stochastically independent, then

dts =
1

T

(Y
i2M

[1�max[��it; ��is)]�
�
1

2

�m Y
i2M

(1� ��2it )�
�
1

2

�m Y
i2M

(1� ��2is ) +
�
1

3

�m)
; (25)

for t; s = 1; :::; T .

In addition to the e¤ects of estimating the marginal cdfs of the shocks on the covariance

operator, we must again take into account the sampling variability in estimating �. Fortunately,

the only di¤erence with the discrete grid case is that the expected Jacobian will now be a function

of the values of the arguments of the cdf, and the same will be true of the covariance between the

in�uence functions and the score of the Gaussian PMLE. With this trivial re-interpretation, all

the expressions in Proposition 3 continue to be valid. In e¤ect, the only thing we need to do is to

apply the Carrasco and Florens (2000) procedure to the residuals from projecting the in�uence

function (19) on the linear span generated by the in�uence functions de�ning the marginal cdfs

and the scores of the pseudo log-likelihood function for each value of u (see Khmaladze (1981)

for an analogous transformation). As we explained in the previous section, the only parameters

whose sampling variability matter are the o¤-diagonal elements of C.

In this context, we can obtain the adjusted covariance operator by combining the expressions

in Proposition 4 with Lemma 3 in Supplemental Appendix B to obtain:

Proposition 5 Let �̂ be a consistent estimator of �. Under standard regularity conditions, the
overidentifying test statistic will be given

`0TE(IT � `T `0T =T )f�IT + [(IT � `T `0T =T )E2(IT � `T `0T =T )]2g�1(IT � `T `0T =T )E`T ; (26)
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with E = D + C, where the elements of D are given by (25),

C = `T `0T �
Z 0

[0;1]m
j(uM )

0T (�̂ � �0)(�̂ � �0)0j(uM )duM ; (27)

and j(uM ) is a vector whose only non-zero entries are the ones corresponding to cii0 (for i 6= i0),
whose expression appears in (16).

For a �xed value of �, the results in Carrasco and Florens (2000) indicate that the test

statistic in (26) will converge under the null to a weighted sum of �2�s so that one could obtain

the corresponding p-values using the approach in Imhof (1961). In this respect, Supplemental

Appendix A explains in detail how to transform the infeasible test statistic in (26) into a feasible

one by replacing C and D with consistent estimators without altering its asymptotic distribu-

tion, as originally shown in section 3 of Carrasco and Florens (2000) (see also Proposition 6 in

Amengual, Carrasco and Sentana (2020)). In principle, one could also study the rates at which

� should go to 0 with the sample size for the asymptotic distribution of (26) suitably centred

and scaled to converge to a standard normal distribution, as in Proposition 10 in Amengual,

Carrasco and Sentana (2020). Nevertheless, we recommend the resampling procedures described

in section 5.1.3 to obtain more reliable p-values in small samples.

5 Monte Carlo analysis

In this section, we evaluate the �nite sample behaviour of the independence tests discussed

in the previous sections by means of several Monte Carlo simulation exercises. We also compare

our proposed procedures not only to the co-skewness/co-kurtosis tests in Amengual, Fiorentini

and Sentana (2022), but also to the Kolmogorov-Smirnov test that imposes the independent

copula under the null, like in Blum, Kiefer and Rosenblat (1961), as well as to the normalized

marginal ranks version of the Matteson and Tsay (2017) distance covariance statistic, which is

also consistent against all types of dependence.

5.1 Design and computational details

To keep CPU time within bounds, we focus on bivariate and trivariate Dgps with Var(1)

dynamics. Speci�cally, we generate samples of size T from the following processes:�
y1t
y2t

�
=

�
1

�1

�
+

�
1=2 1=4
0 1=3

��
y1t�1
y2t�1

�
+

�
1 1=2
0 2

��
"�1t
"�2t

�
(28)

and0@ y1t
y2t
y3t

1A =

0@ 1
�1
0

1A+
0@ 1=2 1=4 1=8

0 1=3 1=9
0 0 1=4

1A0@ y1t�1
y2t�1
y3t�1

1A+
0@ 1 1=2 0
0 2 0
0 0 1

1A0@ "�1t
"�2t
"�3t

1A . (29)
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Our PML estimation procedure, though, assumes that the drift vector, the matrix of autoregres-

sive coe¢ cients and the matrix of the impact multipliers are fully unconstrained, so it does not

exploit the upper triangularity of the last two. Given that our tests are asymptotically pivotal

with respect to the parameters of the companion matrix of the Var, their true values are largely

irrelevant in our simulations. More importantly, our results below do not depend on the true

values of � or C either as long as rank(C) = N because we can show that the estimated shocks

are numerically invariant to full-rank multivariate a¢ ne transformations of the y�s, and the same

is true of the di¤erent test statistics.

We consider both T = 250, which is realistic in most macro applications, and T = 1; 000,

which is representative of empirical �nance ones. In the next subsection, we describe in detail

our estimation method. Next, in section 5.1.2, we characterise the precise Dgps we consider for

the shocks. Finally, we outline the resampling procedures that we use in section 5.1.3.

5.1.1 Estimation details

To estimate the model parameters by non-Gaussian PMLE, we assume that each shock

"�it is serially and cross-sectionally identically and independently distributed as a standardised

discrete mixture of two normals, or "�it � DMN(�i;{i; �i) for short, so that

"�it =

�
N [��1(%i); �

�2
1 (%i)] with probability �i

N [��2(%i); �
�2
2 (%i)] with probability 1� �i

(30)

where %i = (�i;{i; �i)0,

��1(%i) =
�i(1� �i)q

1 + �2i�i(1� �i)
; ��2(%i) = �

�i�iq
1 + �2i�i(1� �i)

;

��21 (%i) =
1 + �i(1� �i)�2i
�i + (1� �i){i

; and ��22 (%i) = {i��21 (%i):

Thus, we can interpret {i as the ratio of the two variances and �i as the parameter that regulates

the distance between the means of the two underlying components.12

As a consequence, the contribution of observation (i; t) to the pseudo log-likelihood function

will be

l["�it(�);%i] = lnf�i � �["�it(�);��1(%i); ��21 (%i)] + (1� �i) � �["�it(�);��2(%i); ��22 (%i)]g;

where �(";�; �2) denotes the pdf of a Gaussian random variable with mean � and variance �2

evaluated at ". We jointly maximise the log-likelihood with respect to the N elements of � ,

12We can trivially extend this procedure to three or more components if we replace the normal random variable
in the �rst branch of (30) by a k-component normal mixture with mean and variance given by ��1(%) and �

�2
1 (%),

respectively, so that the resulting random variable will be a (k+1)-component Gaussian mixture with zero mean
and unit variance.
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the N2 elements of A, the N2 elements of C, and the 3N shape parameters. Without loss of

generality, we also restrict {i 2 (0;1) which in turn ensures the strict positivity of ��22 (%i).

Finally, we impose �i 2 (0; 1) to avoid degenerate mixtures.13

We maximise the log-likelihood subject to these constraints on the shape parameters using a

derivative-based quasi-Newton algorithm, which converges quadratically in the neighbourhood

of the optimum.14 To exploit this property, we start the iterations by obtaining consistent

initial estimators as follows. First, we compute OLS estimates of the Var parameters � and

a, ��OLS and �aOLS . We then apply the FastICA15 algorithm of Gävert, Hurri, Särelä, and

Hyvärinen to the residuals yt � ��OLS � �AOLSyt�1, obtaining CFICA. Finally, we obtain initial

values of the shape parameters of each shock by performing 20 iterations of the expectation

maximisation (EM) algorithm in Dempster, Laird and Rubin (1977) on each of the elements of

"�t;F ICA = C
�1
FICA

�
yt � ��OLS � �AOLSyt�1

�
.16

As we mentioned before, Assumption 1 only guarantees the identi�cation of C up to sign

changes and column permutations. We systematically choose a unique global maximum from the

di¤erent observationally equivalent permutations and sign changes of the columns of the matrix

C using the selection procedure suggested by Ilmonen and Paindaveine (2011) and adopted by

Lanne et al. (2017). In addition, we impose that diag(C) is positive by simply changing the

sign of all the elements of the relevant columns. Naturally, we apply the necessary changes to

the shape parameters estimates, and in particular to the sign of �i. In any event, our tests are

not numerically a¤ected by these choices.

5.1.2 DGPs under the null and the alternative

The Dgps for the standardised shocks that we consider under the null of independence are:

Dgp 0: In the bivariate case, "�1t follows a Student t with 10 degrees of freedom (and kurtosis

coe¢ cient equal to 4), and "�2t is generated as an asymmetric t with kurtosis and skewness

coe¢ cients equal to 4 and �:5, respectively, so that � = �1:354 and � = 18:718 in the

notation of Mencía and Sentana (2012). These �rst two shocks share the same distributions

in the trivariate case, while "�3t follows an asymmetric t with the same kurtosis but opposite

skewness coe¢ cient as "�2t.

13Speci�cally, we impose {i 2 [{; 1] with { = :0001, and �i 2 [�; �] with � = 2=T and � = 1� 2=T:
14This maximization can be made e¤ectively unconstrained by a suitable reparametrisation. In particular, we

consider � = 2=T + (1 � 4=T )(1 + e�h1��)�1 and { = { + e�h2{
�
where h1 and h2 are arbitrary constants that

control the slope of the functions, which we set to 1.
15See Hyvärinen (1999) and https://research.ics.aalto.�/ica/fastica/ for details on the FastICA package.
16As is well known, the EM algorithm progresses very quickly in early iterations but tends to slow down

signi�cantly as it gets close to the optimum. After some experimentation, we found that 20 iterations achieves
the right balance between CPU time and convergence of the parameters.
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In turn, we simulate from the following three standardised joint distributions under the

alternative of cross-sectionally dependent shocks:

Dgp 1: Standardised scale mixture of two zero mean normals with scalar covariance matrices in

which the higher variance component has probability � = 0:8 and the ratio of the two

variances is { = 0:05.

Dgp 2: Multivariate discrete mixture of two normals with parameters

�2 =

�
0:5
-0:5

�
and @2 =

�
0:2 0
0:2 0:2

�
, or �3 =

0@ 0:5
-0:5
0

1A and @3 =

0@ 0:2 0 0
0:2 0:2 0
0:2 0:2 0:2

1A
for the bivariate and trivariate cases, respectively. In both cases, the mixing probability is

set to � = 0:7 (see Appendix D in Amengual, Fiorentini and Sentana (2023) for details).

Dgp 3: Asymmetric Student t with skewness vector � = �10`N and degrees of freedom parameter

� = 12.

Panels A�D of Figure 2 display the contours of the copula densities associated to Dgp 0�3

in the bivariate case.

5.1.3 Resampling procedures

We follow Matteson and Tsay (2017) and Davis and Ng (2023) in reshu ing the estimated

standardised residuals as follows. For each Monte Carlo sample, we generate another B samples

of size T that impose the null by generating NT draws Ris from random permutations of the

vector (1; : : : ; T ) independently drawn for each shock, which we then use to construct

~ys = �̂T + ÂT ~ys�1 + ĈT~"
�
s;

where ~"�is = "̂
�
iRis

and "̂�t = "
�
t (�̂T ) = Ĉ

�1
T (yt� �̂T � ÂTyt�1) are the estimated residuals in said

Monte Carlo sample.17

5.1.4 Simulation results

To gauge the �nite sample size and power of our proposed independence tests, we generate

10; 000 samples for the designs under the null and 2; 500 for those under the alternative. For

each sample, we also compute B = 99 random permutation samples that impose the null to

obtain resampling critical values, as explained in the previous subsection.
17Two implications of this approach is that the marginal empirical cdfs do not include jumps of size bigger

than 1/T and that the tails of the shocks are the same in the actual and simulated data (see e.g. Camponovo,
Scaillet and Trojani (2012) for the e¤ects that in�uential observations may have on the reliability of resampling
procedures).
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In Table 1 we report the results on the �nite sample size of the independence tests proposed in

sections 3 and 4 for T = 250 and T = 1; 000 in the bivariate case, and T = 250 in the trivariate

one. As can be observed, overall, the size of the tests is quite accurate and the resampling

procedures tend to adjust the slight size distortions of the discrete grid test when T = 250. In

particular, the Monte Carlo rejection rates are not signi�cantly di¤erent from the nominal ones

in any of the cases, although the continuous grid test with N = 3 and T = 250 is moderately

undersized. Interestingly, the size of the quantile-based discrete grid test does not deteriorate

when the dimension of the partition becomes larger. For example, when N = 3 and H = 5,

the size of the test is acceptable when T = 250 even though it is e¤ectively based on H3 = 125

moment conditions. Remarkably, the continuous grid test is not very sensitive to the choice of

the regularisation parameter � either, with stable results over the interval of values we have

experimented with, namely � 2 [1e�5; 1e�8]:

In turn, Tables 2, 3 and 4 display the simulation results on �nite sample power for the three

other Dgps in section 5.1.2. For comparison, we have also included the power of the integer

moment tests based on the in�uence functions (3) in Amengual, Fiorentini and Sentana (2022),

the Kolmogorov-Smirnov (KS) test that imposes the independent copula under the null, like in

Blum, Kiefer and Rosenblat (1961), and the normalised marginal ranks version of the Matteson

and Tsay (2017) (MT) test.

Under Dgp 1 (scale mixtures of normals), our contingency table tests with estimated quan-

tiles have substantially more power than the tests based on integer cross-moments of third- and

fourth-order. When T = 250 and N = 2, the discrete grid test is better than the continuous

one when H � 3, but it becomes worse for larger values of H. The discrete grid test is also

the best for T = 250 and N = 3 or T = 1; 000 and N = 2. In contrast, the tests based on

integer cross moments largely fails to detect the dependence among the structural components

when T = 250, and only displays limited power for T = 1; 000. The MT and KS tests have little

power when the sample size is small (T = 250) but their performance improves substantially

when T = 1; 000 even though they both underperform our proposed tests.

When the true distribution is a mixture of two multivariate Gaussian components (Dgp 2),

the power of the continuous grid test is very close to 1 in all cases. Still, the discrete grid test

performs very well, especially when H � 3. The integer moment test is again the worst, as

it only has an acceptable power when T = 1; 000. The MT test also performs very well in all

cases, but it is slightly worse than the continuous grid test. In turn, the power of the KS test

deteriorates for N = 3.

Under Dgp 3 (asymmetric Student t), the integer moment and MT tests are the most
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powerful, with most of the power of the former coming from the co-skewness component. This

is perhaps not surprising given that the in�uence functions that this test uses coincide with the

ones underlying the LM tests for a Gaussian copula with arbitrary correlation, which includes

the independent one, versus an asymmetric Student t copula in Amengual and Sentana (2020).

Nevertheless, the continuous grid test performs reasonably well and it is better than the discrete

grid version, whose performance is similar to the one of the KS test. When T = 1; 000, all tests

have power close to one.

Finally, notice that the power of the tests is larger in the trivariate case than in the bivariate

one except for KS, a fact that is most evident for the continuous grid test, which is the best

overall. From the computational point of view, though, the cross-moment tests and the �nite

grid tests are the fastest, especially for large T .

6 Empirical application to volatility indices

We consider the same three series of market-based implied volatilities that Fiorentini and

Sentana (2023) used, namely the VIX index, the EVZ EuroCurrency ETF volatility index and

the GVZ Gold ETF volatility index. They represent three of the most actively traded asset

classes, namely stocks, exchange rates and commodities, and since their inception have become

incredibly popular among academics, �nancial market practitioners and commentators. Our

sample spans from January 7th, 2009 to June 21st, 2023, a total of 753 weekly observations.18

Let xt = (xGV Z;t; xEV Z;t; xV IX;t)0 denote the log-transformation of these volatility indexes,

which we depict in Figure 3a. As can be seen, they show mean reversion over the long run

but persistent deviations from the mean during extended periods. We can also identify speci�c

events, such as various phases of the European Sovereign Debt crises, the February 2018 scare

or the onset of the Covid-19 pandemic.

To study the dynamic linkages between them, we estimate the following trivariate Svar(2)

model

yt=

0BBBBBB@

:068
(:031)

:135
(:032)

:146
(:045)

1CCCCCCA+
0BBBBBB@

:906 -.002 -.006
(:037) (:035) (:024)

:137 :664 :043
(:039) (:036) (:024)

:155 -.045 :663
(:055) (:051) (:035)

1CCCCCCAyt�1+
0BBBBBB@

:068 :014 �:011
(:037) (:035) (:024)

-.122 :266 -.033
(:038) (:036) (:025)

-.126 :082 :227
(:054) (:051) (:035)

1CCCCCCAyt�2+
0BBBBBB@

:090 :011 :024
(:004) (:004) (:004)

:030 :090 :032
(:004) (:005) (:004)

:023 :016 :141
(:006) (:006) (:006)

1CCCCCCA"
�
t

whose lag length we selected by looking at the Akaike information criterion and the likelihood

18The series, which are compiled by the Chicago Board of Options Exchange (CBOE), can be freely downloaded
from the St. Louis FRED site. To minimise the e¤ect of holidays, we focus on Wednesday observations, �lling
forward the previous day data when they are not available.
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ratio test for lack of residual serial correlation.

As in the Monte Carlo section, we consistently estimate (� ;a; c;%) by PML assuming that

the structural shocks follow a two-component normal mixture, or "�it � i:i:d: DMN(�i; �i;�i)

for short. For initial values, once again we run OLS regressions for each of the three variables

(� and a), apply the fastICA routine to the OLS residuals (c), and �nally, employ the EM

algorithm for the mixture parameters %.

The estimated structural shocks are shown in Figure 3b. Reassuringly, they appear to be

serially i:i:d: but highly non-normal. Speci�cally, their skewness and excess kurtosis coe¢ cients

are (0:095; 1:134; 1:248) and (1:200; 3:901; 4:027), respectively, which are highly signi�cantly dif-

ferent from 0.

If we use the �unmixing�matrix C�1 to interpret the shocks as �long/short portfolios�of the

one-period ahead prediction errors, we �nd that each of them �invests�approximately between

133 and 187% on one of the reduced form shocks and between -13 and -54% on each of the other

two.19 We can get a more standard interpretation by looking at the IRFs and FEVDs up to

a year ahead depicted in Figure 4. The strong persistence implied by the Svar(2) parameter

estimates implies that all the Irfs decay rather slowly. As can be seen, each series reacts mostly

to one shock. Nevertheless, they also react signi�cantly to the other ones, especially in the case

of the Gold volatility index and to some extent the VIX.

The main objective of our empirical exercise, though, is to assess whether the structural

shocks are stochastically independent. In this respect, the di¤erent test procedures that we

have considered fail to reject the null hypothesis, with the exception of the co-skewness and

co-kurtosis tests in Amengual, Fiorentini and Sentana (2022). Nevertheless, this rejection seems

to be closely associated to the unusual behaviour of the three series at the onset of the Covid-

19 pandemic (see Ng (2021) for a discussion of pandemic shocks in macroeconometric models).

Speci�cally, if we remove two additive outliers from the observations on the three series for

March 11 and 18, 2020, using the procedures in Chen and Liu (1993), the integer moment tests

no longer reject. In contrast, the quantile-based independence tests that we have proposed in

this paper, and indeed the MT and KS tests, seem far more robust to the presence of these

unusual observations.

7 Conclusions and directions for further research

Identi�cation of Svar models through independent non-Gaussian shocks is a very power-

ful tool. At the same time, it is not without concerns, as forcefully argued by Montiel-Olea,

19Speci�cally, the (normalised) rows of C�1 are (1.33, -0.13, -0.20), (-0.53, 1.87, -0.33) and (-0.31, -0.23, 1.55).
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Plagborg-Møller and Qian (2022). In particular, given that the parametric identi�cation of the

structural shocks and their impact coe¢ cients C in the Svar model in (2) critically hinges on

the validity of the identifying restrictions in Assumption 1, as we illustrated in section 5.3 of

Amengual, Fiorentini and Sentana (2022), it would be desirable that empirical researchers esti-

mating those models reported speci�cation tests that checked those assumptions to increase the

empirical credibility of their �ndings. The speci�cation tests that we propose in this paper can

be very useful in this respect.

Our tests e¤ectively check that the joint distribution function of some or all of the structural

shocks is the product of their marginal distribution functions. We do so �rst for a �nite grid of

values for the arguments of the distribution functions, explicitly relating our proposed test to

Pearson�s test for independence in contingency tables. But then we extend them to a continuum

of values, which results in consistent tests di¤erent from the existing ones in the literature.

Importantly, we explicitly consider the sampling variability resulting from using shocks computed

with consistent parameter estimators. We study the �nite sample size of our tests in several

simulation exercises and discuss some resampling procedures. We also show that our tests have

non-negligible power against a variety of empirically plausible alternatives.

Finally, we fail to reject independence of the shocks in an application to three volatility

indices, while simultaneously highlighting the lack of robustness of tests based on third- and

fourth-order cross-moments to the unusual observations right at the beginning of the Covid-19

pandemic.

Most of the existing empirical applications that rely on cross-sectionally independent shocks

make use of estimators for the parameters of the static Ica model (1) or the dynamic Svar (2)

which di¤er from the ones we have considered in this paper. In this respect, the fact that the

only parameters whose sampling variability matter for our discrete or continuous grid copula-

based tests are the o¤-diagonal elements of C, combined with Proposition 1 in Fiorentini and

Sentana (2023), which says that if we reparametrise C = J	, with 	 a diagonal matrix whose

elements contain the scale of the structural shocks, then a and the o¤-diagonal elements of J will

be consistently estimated even if we do not rely on �nite Gaussian mixtures, implies that our

tests would continue to be valid for models estimated with alternative marginal distributions of

the shocks. Obviously, the asymptotic covariance matrices that take into account their sampling

variability will depend on the speci�c estimation method used.

The numerical invariance of our tests to the estimators of � and the diagonal of 	 also

suggests that our approach may be robust (in the statistical sense of the word) to the presence

of outliers in shocks with fat tails, which will a¤ect mostly the estimation of the mean parameters
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and the scale of the shocks rather than their quantiles. Studying this issue in more detail along

the lines of Davis and Ng (2023) constitutes an interesting topic for further research.

The moment conditions that we consider for testing independence could also form the basis

of a GMM estimation procedure for the model parameters � along the lines of Lanne and Luoto

(2021), although with either a much larger but �nite set of moments or a continuum of them.

The overidenti�cation restrictions tests obtained as a by product of such procedures could be

used as a speci�cation test of the assumed cross-sectional independence assumption.

Similarly, we could consider related tests of independence that exploit the fact that the

joint characteristic function is the product of the marginal characteristic functions under the

independence null, along the lines of Csörgó (1985), but using an overidenti�cation test for a

continuum of moment conditions, as in Amengual, Carrasco and Sentana (2020), rather than

the Cramér-von Mises and Kolmogorov-Smirnov functionals that he used.

The behaviour of our proposed tests in the other extreme case in which the true joint dis-

tribution of the shocks is Gaussian is also of interest. If the parameters in � were known, our

independence test will continue to work without any problem, as the assumption of mutually

independent shocks will be automatically guaranteed by the combination of multivariate nor-

mality with the orthogonality of the shocks. However, the parameters in C will no longer be

identi�ed, which will a¤ect the distribution of their estimators, as Hoesch, Lee and Mesters

(2022) have recently shown. The extent to which this will also a¤ect the independence tests

remains unknown.

Finally, it should also be of interest to apply our independence tests to the shocks of Svar

models identi�ed using some of the more traditional methods mentioned in the introduction,

even when they have been estimated by Gaussian PMLE. The reason is that most of the the-

oretical macroeconomic models that justify those identifying strategies implicitly assume the

independence of the underlying economic shocks. We are currently pursuing some of these

research avenues.
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Appendix

Proofs of Propositions

Preliminaries

Given that
@1(�1;k)("

�
it)

@"�it
=
@�k("

�
it)

@"�it
= ��f"�it�kg;

where �f�g denotes the Dirac delta function, we have

E

�
@1(�1;k)("

�
it)

@"�it

�
= �fi(k):

This is due to the fact that 1(�1;k)("�it) is a shifted and �ipped Heaviside step function, i.e. the

indicator function of the one-dimensional positive half-line, whose distributional derivative is

equal to the Dirac delta function. Speci�cally, since 1(0;1)(x) = �(x) andZ 1

�1
�(x)fi(x)dx = fi(0);

then

E0[�f"�it�kg] = fi(k):

We will also exploit the related fact that

E0["
�
it�f"�it�kg] = kfi(k):

Proposition 1

Regardless of the independence between the shocks, we have that, �rst,

Fi(khi) = Pr("
�
it � khi) =

hiX
ji=1

Pr(kji�1 � "�it � kji);

which implies that the û�ih will be replaced by the values of the empirical cdf at the chosen grid

points, say ûih; and second,

Fk(khi ; khi0 ; :::; khim ) = Pr

"\
i2M

f"�it � khig
#
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i2M

hiX
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In addition, it is also easy to see that under the independence null

Fk(khi ; khi0 ; :::; khim ) = Pr
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#
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i2M

24 hiX
ji=1
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because

Pr

"\
i2M

fkji�1 � "�it � kjig
#
=
Y
i2M

Pr(kji�1 � "�it � kji) 8i 2M and 8kji ; j 2 H;

whence the result follows. �

Proposition 2

To simplify the notation, in what follows let ui = uihi and vi = uih0i
. Regarding part a),

linearising the in�uence function (10) when the khi�s are �xed yields

p
T [ûi(khi)� ui] =

p
T

T

TX
t=1

1(�1;khi )("
�
it)� ui + op(1);

while for the in�uence function (11), we have that

@
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i02M;i0 6=i
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Thus, it is clear that (12) is the linearised in�uence function that takes into account the estima-

tion of ui, for i 2 M . Analogously, when ui�s are �xed, linearising the in�uence function (10)

that de�nes {̂i(ui) yields

p
T [{̂i(ui)� {i(ui)] = �

1

fi[{i(ui)]

"p
T

T
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1(�1;{i(ui))("
�
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i2M

1(�1;{i(ui))("
�
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Y
i2M

ui

#
=

0@ Y
i02M;i0 6=i

ui0

1AE �@1(�1;{i(ui))("�it)
@{i

�

=

0@ Y
i02M;i0 6=i

ui0

1A fi[{i(ui)]:
for (11). Then, the result follows by choosing the limits of the intervals kih�s so that they exactly

match the theoretical quantiles {i(uh)�s.
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As for part b), we have to compute
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Regarding the �rst term,

E

8<:
"Y
i2M

1(�1;khi ]("
�
it)�

Y
i2M

ui

#24Y
j2M

1(�1;khj ]("
�
jt)�

Y
j2M

u0j

359=;
= E

8<:
"Y
i2M

1(�1;khi ]("
�
it)

#24Y
j2M

1(�1;khj ]("
�
jt)

359=;+
 Y
i2M

ui

!0@Y
j2M

u0j

1A
�E

8<:
0@Y
j2M

vj

1A"Y
i2M

1(�1;khi ]("
�
it)

#9=;� E
8<:
 Y
i2M

ui

!24Y
j2M

1(�1;khj ]("
�
jt)

359=;
=

Y
i2M

min(ui; u
0
i) +

Y
i2M

uiu
0
i � 2

Y
i2M

uiu
0
i

=
Y
i2M

min(ui; u
0
i)�

Y
i2M

uiu
0
i;

where the second equality follows from expanding the product, and the last one from the fact

that
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and
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Similarly, the second term becomes
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where the �rst equality follows from the fact that
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and the last one from (A.1). By symmetry, the third term is the same.
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where we have used (A.2) in the �rst equality and (A.1) in the second one.

Collecting the four terms, we �nally get the desired result. �

Proposition 3

It follows from Proposition 1 in Amengual, Fiorentini and Sentana (2022), and Lemmas 1

and 2 in Supplemental Appendix B. �

Proposition 4

Let uM denote the vector containing all the ui�s such that i 2M . Using the independence

copula as weighting function, so that $(u) = 1 8u, we have to compute

hqt; qsi =
Z
[0;1]m

qt (uM ) qs (uM ) duM ;
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with

qt (uM ) qs (uM ) =
Y
i2M

1(0;ui)(�it)1(0;ui)(�is)�
Y
i2M

ui1(0;ui)(�it)�
Y
i2M

ui1(0;ui)(�is)+
Y
i2M

u2i ; (A.3)

where we have used (19) evaluated at the observations t and s. Next, we need to compute the

integrals for each of the four terms of the right-hand side of (A.3). Regarding the �rst term,

under the independence null,Z
[0;1]m

"Y
i2M

1(0;ui)(�it)1(0;ui)(�is)

#
duM =

Y
i2M

�Z 1

0
1(0;ui)(maxf�it; �isg)dui

�

=
Y
i2M

"Z 1

maxf�it;�isg
dui

#
=
Y
i2M

[1�max(�it; �is)] � d1(�t; �s):

As for the second and third ones,Z
[0;1]m

"Y
i2M

1(0;ui)(�it)ui

#
duM =

Y
i2M

�Z 1

0
1(0;ui)(�it)uidui

�

=
Y
i2M

�Z 1

uit

uidui

�
=

�
1

2

�m Y
i2M

(1� �2it) � d2(�t);

Next, integrating the fourth term,Z
[0;1]m

 
NY
i=1

u2i

!
duM =

Y
i2M

�Z 1

0
u2i dui

�
=

�
1

3

�m
� d3:

Finally, collecting them in dts = d1(�t; �s)� d2(�t)� d2(�s) + d3 delivers the desired result. �

Proposition 5

It follows from Proposition 4 and Lemma 3 in Supplemental Appendix B. �
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Table 1: Monte Carlo size of independence tests based on quantiles

Discrete grid tests Continuous grid tests
Asymptotic Resampling Resampling
critical values critical values critical values
10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: N = 2, T = 250
H = 2 8.4 4.0 0.6 9.2 4.6 0.7 � = 10�5 9.6 4.4 0.8
H = 3 8.4 4.0 0.9 9.2 4.5 0.8 � = 10�6 9.4 4.5 0.8
H = 4 8.1 4.0 0.7 8.8 4.3 0.9 � = 10�7 9.4 4.5 0.9
H = 5 8.6 4.4 0.8 9.2 4.4 0.8 � = 10�8 9.3 4.5 0.9

Panel B: N = 3, T = 250
H = 2 8.0 3.7 0.7 8.9 4.1 0.9 � = 10�5 8.2 3.8 0.6
H = 3 8.2 3.8 0.8 9.2 4.3 0.9 � = 10�6 8.3 3.8 0.7
H = 4 8.3 3.8 0.7 9.3 4.4 0.8 � = 10�7 8.0 4.1 0.7
H = 5 8.5 4.1 0.9 9.5 4.5 0.9 � = 10�8 8.0 4.1 0.7

Panel C: N = 2, T = 1; 000
H = 2 9.8 4.7 1.0 10.1 4.9 1.1 � = 10�5 10.7 5.4 1.2
H = 3 9.2 4.3 0.9 9.4 4.8 0.9 � = 10�6 10.7 5.5 1.3
H = 4 9.7 5.0 1.0 10.2 5.3 1.1 � = 10�7 10.6 5.5 1.2
H = 5 9.6 4.6 0.8 10.3 5.2 1.0 � = 10�8 10.6 5.4 1.2

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 10,000 replications.
Details on the data generating processes: Dgp 0: "�1t follows a Student t with 10 degrees of freedom
(and kurtosis coe¢ cient equal to 4), and "�2t is generated as an asymmetric t with kurtosis and skewness
coe¢ cients equal to 4 and �:5, respectively; in addition, in the trivariate case "�3t follows an asymmetric
t with the same kurtosis but opposite skewness coe¢ cient as "�2t. See sections 3 and 4 for a detailed
description of the discrete and continuous grid test statistics, respectively. The asymptotic distribution
of the discrete grid test is chi-squared with HN degrees of freedom. See section 5.1.3 for a description of
the resampling procedures used for the discrete and continuous grid test statistics.
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Table 2: Monte Carlo power of independence tests dgp 1: Scale mixture of two normals.

N = 2 N = 3 N = 2
T = 250 T = 250 T = 1; 000

10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Discrete grid tests
H = 2 62.3 48.2 22.0 88.2 82.6 62.9 100.0 100.0 99.6
H = 3 54.8 41.4 16.4 90.8 84.3 61.4 100.0 99.9 99.2
H = 4 37.8 24.4 8.6 71.7 58.8 30.2 99.8 99.6 96.1
H = 5 36.6 23.0 7.1 61.6 46.2 22.8 99.8 99.7 96.7

Panel B: Continuous grid tests
� = 10�5 48.2 35.0 12.4 69.3 54.5 24.2 99.5 98.5 91.1
� = 10�6 46.5 33.0 11.7 68.5 53.9 23.3 98.6 96.7 83.5
� = 10�7 45.9 32.3 11.5 67.6 53.6 23.3 97.6 95.3 79.9
� = 10�8 45.7 32.2 11.4 66.9 51.9 21.6 97.4 94.8 78.4

Panel C: Integer moment tests
Co-cov 8.2 3.7 0.8 9.6 5.0 1.3 11.3 6.0 1.2
Co-skew 9.4 4.4 0.6 9.6 4.7 1.0 11.6 6.0 1.5
Co-kurt 14.3 8.0 1.7 13.2 7.2 1.3 50.4 36.8 15.7
Joint 12.6 7.0 1.3 12.8 6.7 1.2 41.7 30.3 12.4

Panel D: Other tests
MT 15.1 7.2 1.0 19.6 9.0 1.6 99.8 98.4 72.2
KS 18.9 9.6 2.0 11.3 5.7 1.0 82.0 69.9 36.1

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 2,500 replications.
Details on the data generating process Dgp 1: Standardised scale mixture of two zero mean normals
�with scalar covariance matrix�in which the higher variance component has probability � = 0:2 and the
ratio of the variances is { = 0:05. For Panels A and B, see sections 3 and 4 for a detailed description
of the discrete and continuous grid test statistics, respectively, and Amengual, Fiorentini and Sentana
(2022) for a description of the integer moment tests in Panel C. In Panel D, MT and KS denote the
Matteson and Tsay (2017) and Kolmogorov-Smirnov testing procedures, respectively. See section 5.1.3
for a description of the resampling procedures we used for discrete and continuous grid test statistics.
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Table 3: Monte Carlo power of independence tests dgp 2: Finite normal mixture.

N = 2 N = 3 N = 2
T = 250 T = 250 T = 1; 000

10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Discrete grid tests
H = 2 70.0 58.6 32.5 90.0 82.6 61.1 100.0 99.7 97.4
H = 3 89.3 81.7 55.1 98.1 96.2 86.3 100.0 100.0 100.0
H = 4 91.6 85.2 62.2 99.2 98.1 90.3 100.0 100.0 100.0
H = 5 90.4 81.9 56.1 98.4 96.1 83.0 100.0 100.0 100.0

Panel B: Continuous grid tests
� = 10�5 95.7 91.6 72.1 99.6 99.0 93.1 100.0 100.0 100.0
� = 10�6 95.0 90.1 69.8 99.6 98.8 92.7 100.0 100.0 100.0
� = 10�7 94.7 90.0 69.8 99.6 98.7 92.6 100.0 100.0 100.0
� = 10�8 94.7 90.1 69.7 99.3 98.6 91.9 100.0 100.0 100.0

Panel C: Integer moment tests
Cov 28.7 19.8 8.4 33.2 23.1 9.0 33.9 26.0 14.4
Co-skew 32.7 21.3 7.7 38.8 25.8 9.4 84.4 76.0 53.4
Co-kurt 28.8 17.8 5.2 38.6 26.3 8.1 80.4 71.9 40.2
Joint 36.2 23.4 7.2 45.5 30.7 8.7 92.2 85.5 58.2

Panel D: Other tests
MT 89.7 79.9 48.2 95.3 89.1 59.7 100.0 100.0 100.0
KS 76.2 65.5 40.4 28.6 16.8 4.5 99.9 99.9 98.5

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 2,500 replications.
Details on the data generating process Dgp 2: Multivariate discrete mixture of two normals with mixing
probability � = 0:7, relative-means di¤erence �3 = (0:5;-0:5; 0)0 and relative-covariance di¤erence such
that @3 is lower triangular with vech(@3) = 0:2`6 (see Appendix D in Amengual, Fiorentini and Sentana
(2023) for details). For Panels A and B, see sections 3 and 4 for a detailed description of the discrete
and continuous grid test statistics, respectively, and Amengual, Fiorentini and Sentana (2022) for a
description of the integer moment tests in Panel C. In Panel D, MT and KS denote the Matteson and
Tsay (2017) and Kolmogorov-Smirnov testing procedures, respectively. See section 5.1.3 for a description
of the resampling procedures we used for discrete and continuous grid test statistics.
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Table 4: Monte Carlo power of independence test: dgp 3: Asymmetric Student t.

N = 2 N = 3 N = 2
T = 250 T = 250 T = 1; 000

10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A: Discrete grid tests
H = 2 29.5 19.0 6.2 24.4 15.2 2.0 87.1 78.4 53.4
H = 3 34.9 23.0 7.0 19.6 11.2 2.8 95.1 90.2 72.6
H = 4 33.5 22.3 7.6 20.4 10.8 2.8 97.2 93.4 78.6
H = 5 33.5 21.1 6.3 16.8 9.6 1.2 96.6 93.6 78.4

Panel B: Continuous grid tests
� = 10�5 43.8 30.8 12.3 57.6 40.0 16.4 95.3 92.2 74.9
� = 10�6 43.9 30.1 12.1 58.4 44.4 20.0 94.1 89.8 69.3
� = 10�7 43.1 29.8 12.1 58.8 47.2 20.4 93.5 88.7 67.6
� = 10�8 42.9 29.8 11.8 58.4 45.2 21.2 93.5 88.8 67.0

Panel C: Integer moment tests
Cov 62.0 54.2 33.4 78.8 68.4 48.8 85.8 82.2 73.5
Co-skew 89.1 80.9 52.5 94.8 88.4 69.2 100.0 100.0 99.6
Co-kurt 60.4 48.8 23.0 73.2 66.4 40.8 95.7 91.1 70.4
Joint 84.2 67.7 26.0 94.0 78.4 43.2 100.0 100.0 96.3

Panel D: Other tests
MT 70.4 58.3 29.6 76.0 63.2 32.4 100.0 100.0 99.7
KS 34.4 21.7 6.1 32.8 15.6 2.8 97.2 92.4 67.7

Notes: Monte Carlo empirical rejection rates of Svar speci�cation tests based on 2,500 replications.
Details on the data generating process Dgp 3: Asymmetric Student t with skewness vector � = �10`N
and degrees of freedom parameter � = 12 (see Mencía and Sentana (2012) for details). For panels A
and B, see sections 3 and 4 for a detailed description of the discrete and continuous grid test statistics,
respectively, and Amengual, Fiorentini and Sentana (2022) for a description of the integer moment tests
in Panel C. In Panel D, MT and KS denote the Matteson and Tsay (2017) and Kolmogorov-Smirnov
testing procedures, respectively. See section 5.1.3 for a description of the sampling procedure we used for
discrete and continuous grid test statistics.
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Figure 1: Copula contours for spherically symmetric, Hermite polynomial expansions of

bivariate normal

Figure 1a: d2 = 0 and d3 = �0:35

Figure 1b: d2 = 0:61 and d3 = �0:39

Notes: The copula density is given by

c(u1; u2; d2; d3) =
f2[F

�1
1 (u1; d2; d3); F

�1
1 (u2; d2; d3); d2; d3]

f1[F
�1
1 (u1; d2; d3); d2; d3]f1[F

�1
1 (u2; d2; d3); d2; d3]

;

where f1 and f2 denote the densities of spherically symmetric univariate and bivariate Hermite expansions
of univariate and bivariate Gaussian distributions, respectively, which are obtained as Laguerre expansions
of the corresponding generating �2N random variates &, namely

hN (&) =
1

2N=2� (N=2)
&
N=2�1
t exp

�
�1
2
&

�
PN (&), for N = 1 and N = 2;

and where PN (&) =
�
1 + d2pN=2�1;2(&) + d3pN=2�1;3(&)

�
; with pN=2�1;j(:) denoting the generalized La-

guerre polynomial of order j and parameter N=2 � 1 (see Amengual, Fiorentini and Sentana (2013) for
the detailed expressions). In turn, F�11 (u; d2; d3) denotes the corresponding inverse cdf of the univariate
distribution.
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Figure 2: Bivariate copula contours associated to the Dgps in section 5

Figure 2a: Independence (Dgp 0) Figure 2b: Scale mixture of normals (Dgp 1)

Figure 2c: Mixture of normals (Dgp 2) Figure 2d: Asymmetric t (Dgp 3)

Notes: Details on the copula densities: Dgp 0: "�1t follows a Student t with 10 degrees of freedom
(and kurtosis coe¢ cient equal to 4), and "�2t is generated as an asymmetric t with kurtosis and skewness
coe¢ cients equal to 4 and �:5, respectively; Dgp 1: Standardised scale mixture of two zero mean normals
�with scalar covariance matrix�in which the higher variance component has probability � = 0:2 and the
ratio of the variances is { = 0:05; Dgp 2: Multivariate discrete mixture of two normals with mixing
probability � = 0:7, relative-means di¤erence �2 = (0:5;-0:5)0 and relative-covariance di¤erence such that
@2 is lower triangular with vech(@2) = 0:2`2 (see Appendix D in Amengual, Fiorentini and Sentana
(2023) for details); and Dgp 3: Asymmetric Student t with skewness vector � = �10`2 and degrees of
freedom parameter � = 12 (see Mencía and Sentana (2012) for details).
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A The test in practice

We recommend following these steps for computing the discrete grid test statistics in a

given sample:

1. Estimate the model by non-Gaussian PMLE assuming that the shocks follow indepen-

dent univariate �nite Gaussian mixtures, and compute the estimated structural residuals

"�it(�̂T )�s evaluated at the PMLEs �̂T using expression (4) for the unique ordering and

signs of the matrix C obtained using the selection procedure suggested by Ilmonen and

Paindaveine (2011) and adopted by Lanne et al. (2017). Importantly, the fact the struc-

tural shocks are only identi�ed up to permutations is numerically irrelevant for the test

statistic as long as one uses the same quantile grid for all of them since they only a¤ect

their labelling. Similarly, a change in the sign of one shock is also numerically irrelevant

as long as one adjusts its quantiles accordingly. In fact, there is no need for such an ad-

justment if one uses equally spaced quantiles (say terciles, quartiles or quintiles) for all

shocks.

2. For the q version of the test, partition the [0; 1] interval with knots (0; u1; u2; :::; uH ; 1),

where uh = 1
2 (2h� 1)H

�1 in the equally-spaced case, and obtain the corresponding mar-

ginal quantiles of each estimated shock "�it(�̂T ), namely [ki1(u1); : : : ; kiH(uH)], i = 1; : : : ; N

usingMatlab�s linear interpolation method. One could then replace the u�s with the mar-

ginal empirical cdf of each shock computed at the estimated quantiles to take into account

the linear interpolation method, but this would generate slightly di¤erent partitions of the

unit interval for di¤erent shocks.

For the p version of the tests, de�ne H points, k1 < � � � < kh < � � � < kH , together with
k0 = �1 and kH+1 = 1, and estimate the marginal empirical cdf for each shock as
pih = T�1

PT
t=1 I["

�
it(�̂T ) � kh]. One could then replace kh with its marginal empirical

quantile at the estimated pih for each shock using Matlab�s linear interpolation method,

but again this would generate slightly di¤erent partitions of the real line for di¤erent

shocks.

3. For the q version, estimate the joint cdf at the Cartesian product of the empirical quantiles

as qij = T�1
PT
t=1 I["

�
1t(�̂T ) � kih(uh); : : : ; "�Mt(�̂T ) � kMh0(uh0)], while for the p version

do the same but evaluate them at the N -ary Cartesian product of (k1; : : : ; kH)0.

4. Compute the HN in�uence functions underlying the test as the di¤erence between the

joint and the product of the marginal empirical cdfs.

5. Compute the HN �HN matrix whose elements are given by (13).

6. Estimate the asymptotic covariance matrix of the score and the expected Hessian of the

pseudo log-likelihood function replacing the true values of the parameters �0 with �̂T and

the expected values with sample averages in the expressions that appear in Appendices

C.3 and C.4, respectively, including (C33)-(C38) and (C39)-(C44), and use them in the
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sandwich formula A�1BA, retaining the N � N blocks corresponding to the elements of

vec(C). The consistency of the estimators of A and B follows from Lemma 4.3 in Newey

and McFadden (1994), while that of A�1BA from their Theorem 4.1.

7. Estimate the HN � N expected Jacobian matrix of the in�uence functions with respect

to the elements of vec(C) replacing the true values of the parameters �0 with �̂T and the

expected values with sample averages in the expressions in Lemma 1, using Silverman�s

(1986) robust rule-of-thumb bandwidth to obtain Gaussian kernel estimates of the true

density of the shocks that appear in expression (B1). Despite involving the indicator

function, the consistency of this procedure follows once again from Lemma 4.3 in Newey

and McFadden (1994).

8. Estimate the HN �N asymptotic covariance matrix between the in�uence functions and

the scores with respect to the elements of vec(C) replacing the true values of the para-

meters �0 with �̂T and the expected values with sample averages in the expressions that

appear in Lemma 2, including (B3)-(B9). As before, Lemma 4.3 in Newey and McFadden

(1994) guarantees the consistency of the resulting estimators despite the indicator function

appearing in the in�uence functions.

9. Combine these matrices to estimateW using (15), and replace this estimated matrix in (14)

to obtain the discrete grid test statistic. Theorems 2.2 and 2.3 in Newey (1985) guarantee

the consistent estimation of W and the asymptotic �2 distribution of (14), respectively.

Given that the continuous grid test can be regarded as a regularised version of the discrete

grid test computed at the �nest partition of the unit interval that remains meaningful when there

are T observations, its computation shares several of the elements that we have just described.

Speci�cally:

1. Estimate the model by non-Gaussian PMLE assuming that the shocks follow indepen-

dent univariate �nite Gaussian mixtures, and compute the estimated structural residuals

"�it(�̂T )�s evaluated at the PMLEs �̂T using expression (4) for the unique ordering and signs

of the matrix C obtained using the selection procedure suggested by Ilmonen and Paindav-

eine (2011) and adopted by Lanne et al. (2017). The fact the structural shocks are only

identi�ed up to permutations and sign changes is numerically irrelevant for the continuous

test statistic as it e¤ectively depends on the homogeneous, equally-spaced �discrete�grid

u� =
1
2 (2� � 1)T

�1, � = 1; : : : ; T .

2. Compute the empirical uniform ranks using expression (17) and use them to obtain the

elements of the T � T matrix D in (25).

3. Estimate the T �T matrix C by replacing the integrals in (27) by sums over the empirical
cdfs of the shocks. Speci�cally, if we denote by ��t (�̂) = [��it(�̂); :::; �

�
mt(�̂)] the vector

containing the empirical ranks of the tth observation of each of the estimated shocks that

2



appear in M , we can estimate the rank one matrix C as

bC = `T `0T � TX
�1=1

� � �
TX

�m=1

j0[���1(�̂); :::; �
�
�m(�̂)]A�1(�̂)B(�̂)A�1(�̂)j[���1(�̂); :::; �

�
�m(�̂)];

where `T is a vector of T ones, while A(�̂), B(�̂) and j[���1(�̂); :::; �
�
�m(�̂)] are the consistent

estimators that we mention in points 6 and 7 of the description of the discrete grid test,

with the latter evaluated at u� = 1
2 (2� � 1)T

�1�1, � = 1; : : : ; T . Given that sums over

increasingly �ner grids converge to the relevant integral, bC will be consistent.
4. Finally, we consistently estimate E by adding up the consistent estimators of C and D,
which we then replace in expression (26) for a given choice of the regularization parameter

�. Interestingly, the fact that bC is proportional to `T `0T implies that the expression (26)
is numerically una¤ected if we replace the two Es that appear at the extremes of this
quadratic form with Ds.

B Lemmata

Lemma 1 If model (2) satis�es Assumption 1, then the non-zero elements of the expected Ja-

cobian matrix of the linearised mt(u) evaluated at �0 and the estimated values of uih in (10) are

given by

jphcii0 (%1;'0) = �
X
i2M

X
i02M;i0 6=i

0@ Y
i002M;i00 6=i0 6=i

ui00

1A �ui0f [{(ui)], for i 6= i0; (B1)

where �hi0 = E0["
�
it1(�1;{(ui))("

�
it)] for i 2M .

Proof. From (12), we have that

@mt(u)

@�
= E

"
@

@�

"Y
i2M

1(�1;{(ui))("
�
it)�

Y
i2M

ui

##

� @

@�

8<:X
i2M

�
1(�1;{(ui))("

�
it)� ui

� Y
i02M;i0 6=i

ui0

9=;
35

= �
X
i2M

24 Y
i02M;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

35 �1(�1;{(ui))("�it)� ui� @1(�1;{(ui))("�it)@"�it

@"�it
@�
:

Moreover, it is worth noticing that

@"�it(�)

@� 0
= �ci:;

@"�it(�)

@a0j
= �(y0t�j 
 ci:) for j = 1; :::; p, and

@"�it(�)

@c0
= �["�0t (�)
 ci:]: (B2)

3



Therefore, under the independence null,

E

�
@mt(u)

@�i

�
= 0

except for the o¤-diagonal elements of C, namely,

E

8<:X
i2M

0@ X
i02M;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

1A @1(�1;{(ui))("
�
it)

@"�it

@"�it
@c0

9=;
= �E

8<:X
i2M

0@ X
i0=1;i0 6=i

1(�1;{(ui0 ))("
�
i0t)

1A @1(�1;{(ui))("
�
it)

@"�it
["�0t (�)
 ci:]

�

= �
X
i2M

X
i02M;i0 6=i

E

0@ Y
i002M;i00 6=i0 6=i

1(�1;{(ui00 ))("
�
i00t)

1A
�E[1(�1;{(ui0 ))("

�
i0t)"

�
i0t]E

�
@1(�1;{(ui))("

�
it)

@"�it

�
(e0j 
 ci:)

= �
X
i2M

X
i02M;i0 6=i

0@ Y
i002M;i00 6=i0 6=i

ui00

1A �ui0f [{(ui)]
where the �rst equality uses (B2), the second one follows from the cross-sectional independence

of the shocks, and the last one implicitly de�nes �uj = E["
�
jt1(�1;{(uj))("

�
jt)]. �

Lemma 2 If model (2) satis�es Assumption 1, then the non-zero elements of the covariance

matrix between the linearised in�uence function mt(u) evaluated at �0 and the estimated values

of uih in (10) with the pseudo log-likelihood scores evaluated at the pseudo true values �1 is

given by

cov[mt(u); scii0 t(�1)j�0;�0] = E[Kmut(�1;�0)];

where

Kmut(�1;�0) =

�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 0
Kmu(%1;�0)

0

35 ;
where Kmu(%1;�0) is a N

2 � 1 vector whose entries s = N(i� 1) + i0 for i; i0 = 1; :::; N are

km;s(%1;�0)=�
X
i2M

X
i02M

0@ Y
i002M;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�{(ui)) � @ ln f("�it;%i1)@"�i

�����0;�0� ;
for i 6= i0, and zero otherwise.

Proof. We start by computing the covariance of the in�uence functions underlying our test

with the pseudo log-likelihood scores evaluated at the pseudo true values �1, namely

cov[mt(u); s�t(�1)j�0;�0] = Kmu(�1;�0) = E[Kmut(�1;�0)]

4



and

cov[mt(u); s�t(�1)j�0;�0] = Kmu(�1;�0) = E[Kmut(�1;�0)];

where

K�t(�1;�0) =
�
Zlt(�0) Zs(�0) 0
0 0 Iq

�24 K�lt(%1;�0)
K�st(%1;�0)
K�rt(%1;�0)

35 :
Exploiting the cross-sectional independence of the shocks, we get for the mean parameters

kpkl(%1;�0) = �cov
�
mt(u);

@ ln f("�it;%i1)

@"�i

�����0;�0�
= �E

�
1("�it�{(ui))

@ ln f("�it;%i1)

@"�i

�����0;�0� ; (B3)

kpkl(%1;�0) = �cov
�
mt(u);

@ ln f("�it;%i1)

@"i�

�����0;�0�

= �

0@ Y
i02M;i0 6=i

ui0

1AE�1("�it�{(ui))@ ln f("�it;%i1)@"�i

�����0;�0� ; (B4)

and zero otherwise.

Similarly, K�s(%1;�0) is a N2 � 1 vector whose entries are such that for i with ji > 0,

kpks1(%1;�0) = �cov
�
p("�t ;k;u); 1 +

@ ln f("�it;%i1)

@"�i
� "�it
�����0;�0�

= �E
�
1("�it�khi )

�
1 +

@ ln f("�it;%i1)

@"�i
� "�it
������0;�0� ; (B5)

kpks1(%1;�0) = �cov
�
mt(u); 1 +

@ ln f("�it;%i1)

@"�i
� "�it
�����0;�0�

= �

0@ Y
i02M;i0 6=i

�i0

1AE�"�it1("�it�khi ) �
�
1 +

@ ln f("�it;%i1)

@"�i
� "�it
������0;�0�; (B6)

kpks2(%1;�0) = �cov
�
mt(u); 1 +

@ ln f("�it;%i1)

@"�i
� "�i0t

�����0;�0�

= �

0@ Y
i002M;i00 6=i;i00 6=i0

ui00

1A �i0E�1("�it�khi ) � @ ln f("�it;%i1)@"�i

�����0;�0� ; (B7)
and zero otherwise.

Finally, Kkr(%1;�0) = K0krvecd(In), where Kkr another block diagonal matrix of order N�q
with typical block of size 1� qi,

kpkr(%1;�0) = cov

�
mt(u);

@ ln f("�it;%i1)

@%0i

�����0;�0�
= E

�
1("�it�{(ui)) �

@ ln f("�it;%i1)

@%0i

�����0;�0� (B8)
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kpkr(%1;�0) = cov

�
mt(u);

@ ln f("�it;%i1)

@%0i

�����0;�0�

=

0@ Y
i02M;i0 6=i

ui0

1AE�1("�it�khi ) � @ ln f("�it;%i1)@%0i

�����0;�0� (B9)

and zero otherwise, again because of the cross-sectional independence of the shocks and the fact

that E[@ ln f("�it;%1)=@"
�
i j�0;�0] = 0.

Next, to obtain the covariance of the in�uence function evaluated at �0 and the estimated

values of uih in (10) with the pseudo log-likelihood scores evaluated at the true values �0;�0, we

can make use of (12) to write

cov[mt(u); s�t(�1)j�0;�0] = covfp("�t ;k;u); s�t(�1)j�0;�0g (B10)

�
X
i2M

0@ Y
i02M;i0 6=i

ui0

1A cov fpki("�it); s�t(�1)j�0;�0g :
Then, substituting (B3) and (B4) into (B10), we get

cov[mt(u); s� t(�1)j�0;�0] = 0

and

cov[mt(u); sajt(�1)j�0;�0] = 0, for j = 1; :::; p:

Similarly, substituting (B5) and (B6) into (B10), we get

cov[mt(u); sciit(�1)j�0;�0] = 0, for i = 1; :::; N ;

and substituting (B8) and (B9) into (B10), we get

cov[mt(u); s%it(�1)j�0;�0] = 0, for i = 1; :::; N:

Finally, substituting (B5) and (B7) into (B10), we get the result stated in the statement. �

Lemma 3 If model (2) satis�es Assumption 1, then the adjustment of the covariance operator

that accounts for the estimation of � is given by (27).

Proof. From 1, the expected Jacobian with respect to � of the in�uence functions linearised

with respect to the {�s can be written as

E

�
@nt (uM )

@�0

�
= �

X
i2M

X
i02M;i0 6=i

0@ Y
i002M;i00 6=i0 6=i

ui00

1A �ui0f [{(ui)](e0i0 
 ci:);
where

nt(uM ) =

"Y
i2M

1(�1;{i(ui))("
�
it)�

Y
i2M

ui

#
�
X
i2M

�
1(�1;{i(ui))("

�
it)� ui

� Y
i02M;i0 6=i

ui0 :

6



We are afterZ
[0;1]m

�
nt(uM )� E

�
@nt(uM )

@�0

�p
T (�̂ � �0)

��
ns(uM )� E

�
@ns(uM )

@�0

�p
T (�̂ � �0)

�
duM :

Let us consider each of the four terms separately. The �rst one, namelyZ
[0;1]m

nt(uM )ns(uM )duM ;

is given in (13). Next, we have the cross-terms, which are of the form

�
Z
[0;1]m

E

�
@ns(uM )

@�0

�p
T (�̂ � �0)nt(uM )duM :

If we then use the fact that

p
T (�̂ � �0) =

p
TA�1(�1;'0)s� + op(1) = A�1(�1;'0)

p
T

T

TX
t=1

s�t + op(1);

we can see that

� 1p
T

Z
[0;1]m

E

�
@ns(uM )

@�0

� 
A�1(�1;'0)

TX
�=1

s��

!
nt(uM )duM = op(1)

because of the scaling factor 1=
p
T and the fact that the "�s entering into s�� (�) are asymp-

totically independent of the ones that appear in nt(uM ) and E
�
@ns(uM )=@�

0�. Therefore, the
covariance of the linearised in�uence function with the pseudo log-likelihood scores evaluated at

the pseudo true values �1 is asymptotically negligible.

Finally, regarding the last term, we obtain (27), as desired. �

C ML estimators with cross-sectionally independent shocks

In this appendix, we derive analytical expressions for the conditional variance of the score

and the expected value of the Hessian of Svar models with cross-sectionally independent non-

Gaussian shocks when the distributions assumed for estimation purposes may well be misspeci-

�ed, but all the parameters that characterise the conditional mean and covariance functions are

consistently estimated, as in the case of �nite normal mixtures. Fiorentini and Sentana (2023)

consider the general case.

C.1 Log-likelihood, its score and Hessian

Given the linear mapping between structural shocks and reduced form innovations, the con-

tribution to the conditional log-likelihood function from observation t will be given by

lt(yt;') = � ln jCj+ l["�1t(�);%1] + : : :+ l["�Nt(�);%N ]; (C11)
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where "�t (�) = C�1(yt � � �A1yt�1 � : : : �Apyt�p) and l("�it;%i) = ln f("�it;%i) is the log of

the univariate density function of "�it, which we assume twice continuously di¤erentiable with

respect to both its arguments, although this is stronger than necessary, as the Laplace example

illustrates.

Let st(�) denote the score function @lt(�)=@�, and partition it into two blocks, s�t(�) and

s%t(�), whose dimensions conform to those of � and %, respectively. Given that the mean vector

and covariance matrix of (2) conditional on It�1 are

�t(�) = � +A1yt�1 + : : :+Apyt�p; (C12a)

�t(�) = CC0; (C12b)

respectively, we can use the expressions in Supplemental Appendix D.1 of Fiorentini and Sentana

(2021) with �1=2t (�) = C to show that

@dt(�)

@�
= �@vec

0(C)

@�
vec(C�10) = �

0BBBBB@
0
0
...
0
IN2

1CCCCCA vec(C�10) = �Z0st(�)vec(IN ) (C13)

and

@"�t (�)

@�0
= �C�1@�t(�)

@�0
� ["�0t (�)
C�1]

@vec(C)

@�0
(C14)

= �fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g;

where

Zlt(�) =
@�0t(�)

@�
�
�1=20
t (�) =

0BBBBB@
IN

yt�1 
 IN
...

yt�p 
 IN
0N2�N

1CCCCCAC�10; (C15)

Zst(�) =
@vec0[�t(�)]

@�
[IN 
��1=20t (�)] =

0BBBBB@
0N�N2

0N2�N2

...
0N2�N2

IN2

1CCCCCA (IN 
C�10); (C16)

which con�rms that the conditional mean and variance parameters are variation free. In addition,

st(�) =

�
s�t(�)
s%t(�)

�
=

�
Zlt(�) Zst(�) 0
0 0 Iq

�24 elt(�)
est(�)
ert(�)

35
=

�
Zdt(�) 0
0 Iq

� �
edt(�)
ert(�)

�
= Zt(�)et(�); (C17)
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where

elt(�) = �
@ ln f ["�t (�);%]

@"�
= �

26664
@ ln f1["

�
1t(�);%1]=@"

�
1

@ ln f2["
�
2t(�);%2]=@"

�
2

...
@ ln fN ["

�
Nt(�);%N ]=@"

�
N

37775 ; (C18)

est(�) = �vec
�
IN +

@ ln f ["�t (�);%]

@"�
"�0t (�)

�

= �vec

8>><>>:
1 +

@ ln f1["�1t(�);%1]
@"�1

"�1t(�) : : :
@ ln f1["�1t(�);%1]

@"�1
"�Nt(�)

...
. . .

...
@ ln fN ["

�
Nt(�);%N ]
@"�N

"�1t(�) : : : 1 +
@ ln fN ["

�
Nt(�);%N ]
@"�N

"�Nt(�)

9>>=>>; (C19)

and

ert(�) =
@ ln f ["�t (�);%]

@%
=

8>><>>:
@ ln f1["�1t(�);%1]

@%1
...

@ ln fN ["
�
Nt(�);%N ]
@%N

9>>=>>; =

26664
er1t(�)
er2t(�)
...

erN t(�)

37775 (C20)

by virtue of the cross-sectional independence of the shocks, so that the derivatives involved

correspond to the assumed univariate densities.

Let ht(�) denote the Hessian function @st(�)=@�0 = @2lt(�)=@�@�0. Supplemental Appen-

dix D.1 of Fiorentini and Sentana (2021) implies that

h��t(�) = Zlt(�)
@elt(�)

@�0
+ Zst(�)

@est(�)

@�0

+
�
e0lt(�)
 IN+(p+1)N2

� @vec[Zlt(�)]
@�0

+
�
e0st(�)
 IN+(p+1)N2

� @vec[Zst(�)]
@�0

; (C21)

where Zlt(�) and Zst(�) are given in (C15) and (C16), respectively. Therefore, we need to obtain

@vec(C�10)=@�0 and @vec(IN 
C�10)=@�0.
Let us start with the former. Given that

dvec(C�10) = �vec[C�10d(C0)C�10] = �(C�1 
C�10)dvec(C0) = �(C�1 
C�10)KNNdvec(C);

where KNN is the commutation matrix (see Magnus and Neudecker (2019)), we immediately

get that
@vec(C�10)

@�0
=
�
0N2�(N+pN2) �(C�1 
C�10)KNN

�
;

so that

@vec[Zlt(�)]

@�0
=

2666664IN 

0BBBBB@

IN
yt�1 
 IN

...
yt�p 
 IN
0N2�N

1CCCCCA

3777775
@vec(C�10)

@�0

9



=

2666664IN 

0BBBBB@

IN
yt�1 
 IN

...
yt�p 
 IN
0N2�N

1CCCCCA

3777775
�
0N2�(N+pN2) (C�1 
C�10)KNN

�
:

Similarly, given that

vec(IN 
C�10) = f[(IN 
KNN )(vec(IN )
 IN )]
 INgvec(C�10)

so that

vec(IN 
C�10) = ((IN 
KNN )(vec(IN )
 IN )
 IN )dvec(C�10)

= �f[(IN 
KNN )(vec(IN )
 IN )]
 INg(C�1 
C�10)KNNdvec(C);

we will have that

@vec[Zst(�)]

@�0
=
@vec

@�0

��
0(N+pN2)�N2

IN2

�
(IN 
C�10)

�
:

But�
IN2 


�
0(N+pN2)�N2

IN2

��
@vec(IN 
C�10)

@�0

= �
�
IN2


�
0(N+pN2)�N2

IN2

��
[ 0 f[(IN
KNN )(vec(IN )
IN )]
INg(C�1
C�10)KNN ]:

In addition,

@elt(�;%)

@�0
= �@

2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
=
@2 ln f ["�t (�);%]

@"�@"�0
fZ0lt(�) + ["�0t (�)
 IN ]Z0st(�)g (C22)

and

@est(�)

@�0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@"�0
@"�t (�)

@�0
�
�
IN 


@ ln f ["�t (�);%]

@"�

�
@"�t (�)

@�0

=

�
["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@"�0
+

�
IN 


@ ln f ["�t (�);%]

@"�

��
�fZ0lt(�) + ["0�t (�)
 IN ]Z0st(�)g: (C23)

The assumed independence across innovations implies that

ln f ["�t (�);%]

@"�@"�0
=

26666664

@2 ln f1["�1t(�);%1]
(@"�1)

2 0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

(@"�N )
2

37777775 ; (C24)

which substantially simpli�es the above expressions.
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Moreover,

h�%t(�) = Zlt(�)
@elt(�)

@%0
+ Zst(�)

@est(�)

@%0
;

where

@elt(�)

@%0
= �@

2 ln f ["�t (�);%]

@"�@%0
;

@est(�)

@%0
= �["�t (�)
 IN ]

@2 ln f ["�t (�);%]

@"�@%0
:

with

@2 ln f ["�t (�);%]

@"�@%0
=

2666664
@2 ln f1["�1t(�);%1]

@"�1@%
0
1

0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

@"�N@%
0
N

3777775 (C25)

because of the cross-sectional independence assumption.

As for the shape parameters of the independent margins,

h%%t(�) =
@2 ln f ["�t (�) ;%]

@%@%0
=

2666664
@2 ln f1["�1t(�);%1]

@%1@%
0
1

0 � � � 0

0
. . .

...
...

. . . 0

0 � � � 0
@2 ln fN ["

�
Nt(�);%N ]

@%N@%
0
N

3777775 : (C26)

Finally, regarding the Jacobian term � ln jCj, we have that di¤erentiating (C13) once more
yields

�

0BBBBB@
0
0
...
0
IN2

1CCCCCA dvec(C�10) =
0BBBBB@

0
0
...
0
IN2

1CCCCCA (C�1 
C�10)KNNdvec(C);

so

@2dt(�)

@�@�0
=

0BBBBB@
0
0
...
0
IN2

1CCCCCA
�
0N2�(N+pN2) (C�1 
C�10)KNN

�
:

As usual, the pseudo true values of the parameters of a globally identi�ed model, �1,

are the unique values that maximise the expected value of the log-likelihood function over the

admissible parameter space, which is a compact subset of Rdim(�), where the expectation is
taken with respect to the true distribution of the shocks. Under standard regularity conditions

(see e.g., White (1982)), those pseudo true values will coincide with the values of the parameters

that set to 0 the expected value of the pseudo-log likelihood score.

More formally, if we de�ne �0 as the true values of the shape parameters, and '0 = (�0;�0),
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we would normally expect that

E[st(�1)j'0] = 0:

Let us now consider the alternative parametrisation C = J	 studied in Fiorentini and Sen-

tana (2021, 2023), so that the parameters of interest become � , aj = vec(Aj) (j = 1; : : : ; p),

j = veco(J) and  = vecd(	), where veco(:) stacks by columns all the elements of the zero-

diagonal matrix J� IN except those that appear in its diagonal, and vecd(:) places the elements
in the main diagonal of 	 in a column vector (see Magnus and Sentana (2020) for some use-

ful properties of these operators). Given that a pseudo log-likelihood function based on �nite

Gaussian mixtures for the shocks will lead to consistent estimators for all these parameters re-

gardless of the true distribution, et(�1) will be serially independent and not just martingale

di¤erence sequences. Moreover, given that

Z(�) = E[Zt(�)j'0] =

266666664

C�10 0N�N2 0N�q
(�
 IN )C�10 0N2�N2 0N2�q

...
...

...
(�
 IN )C�10 0N2�N2 0N2�q
0N2�N (IN 
C�10) 0N2�q
0q�N 0q�N2 Iq

377777775
=

�
Zd(�) 0
0 Iq

�
(C27)

has full column rank,

E[et(�1)jIt�1;'0] = 0 (C28)

because

0 = E[st(�1)j'0] = EfE[st(�1)jIt�1;'0]j'0g = Z(�)E[et(�1)jIt�1;'0] = Z(�)E[et(�1)j'0]:

Furthermore, the diagonality of 	 means that the pseudo-shocks "�t (�1) will also inherit

the cross-sectional independence of the true shocks "�t . In addition, given that the estimators of

� that we consider are consistent, we will have that under standard regularity conditions

T�1
TP
t=1
"�it(�̂) ! E["�it(�1)j'0] = 0 and (C29)

T�1
TP
t=1
"�2it (�̂) ! E["�

2

it (�1)j'0] = 1; (C30)

where �̂ are the PMLEs of the conditional mean and variance parameters.

C.2 Asymptotic distribution

For simplicity, we assume henceforth that there are no unit roots in the autoregressive

polynomial, so that the Svar model (2) generates a covariance stationary process in which

rank(IN � A1 � : : : � Ap) = N . If the autoregressive polynomial (IN � A1L � : : : � ApLp)
had some unit roots, then yt would be a (co-) integrated process, and the estimators of the

conditional mean parameters would have non-standard asymptotic distributions, as some (linear

12



combinations) of them would converge at the faster rate T . In contrast, the distribution of the

ML estimators of the conditional variance parameters would remain standard (see, e.g., Phillips

and Durlauf (1986)).

We also assume that the regularity conditions A1-A6 in White (1982) are satis�ed, although

like in his Theorems 3.1 and 3.2, we drop Assumption A3(b) when talking about the neg-

ative de�niteness of the expected Hessian or the asymptotic normality of the PML estima-

tors because they are both local rather than global results. These conditions are only slightly

stronger than those in Crowder (1976), which guarantee that MLEs will be consistent and as-

ymptotically normally distributed under correct speci�cation. In particular, Crowder (1976)

requires: (i) �0 is locally identi�ed and belongs to the interior of the admissible parameter

space, which is a compact subset of Rdim(�); (ii) the Hessian matrix is non-singular and con-
tinuous throughout some neighbourhood of �0; (iii) there is uniform convergence to the inte-

grals involved in the computation of the mean vector and covariance matrix of st(�); and (iv)

�E�1
�
�T�1

P
t ht(�)

�
T�1

P
t ht(�)

p! Ip+q, where E�1
�
�T�1

P
t ht(�)

�
is positive de�nite

on a neighbourhood of �0.

We can use the law of iterated expectations to compute

A(�1;'0) = E[�h��t(�1)j�0;'0] = E [At(�1;'0)]

and

V [s�t(�1)j'0] = B(�1;'0) = E [Bt(�1;')] :

In this context, the asymptotic distribution of the PMLEs of � under the regularity conditions

A1-A6 in White (1982) will be given by

p
T (�̂� �1)! N [0;A�1(�1;'0)B(�1;'0)A�1(�1;'0)]:

As we explained before, analogous expressions apply mutatis mutandi to a restricted PML

estimator of � that �xes % some a priori chosen value to �%. In that case, we would simply

need to replace �1 by �1(�%) and eliminate the rows and columns corresponding to the shape

parameters % from the A and B matrices.
If we write C = J	, then the chain rule for �rst derivatives implies that the gradient

with respect to the parameters in C will be a linear combination of those corresponding to

j = veco(J� IN ) and  = vecd(	).
Therefore, we can invoke Proposition 3 in Fiorentini and Sentana (2023), which shows the

consistency of the Gaussian mixture-based Pseudo MLEs of j and  , to show that

E

�
@ ln f ["�it(�1);%1]

@"�i

�����0;�0� = 0
and

E

�
1 +

@ ln f ["�it(�1);%1]

@"�i
"�it(�1)

�����0;�0� = 0 (C31)
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for i = 1; :::; N . Moreover, the maintained assumption of cross-sectional independence of the

shocks also implies that

E

�
@ ln f ["�it(�1);%1]

@"�i
"�jt(�1)

�����0;�0� = 0
As a consequence,

E[elt(�1)j�0;�0] = 0 and E[est(�1)j�0;�0] = 0:

C.3 Variance of the score

If we maintain that �1 = �0 because of the aforementioned consistency, and adapt Propo-

sition D.2 in Fiorentini and Sentana (2023) to a PMLE context, we can show that

V [s�t(�1)j�0;�0] = B(�1;�0) = E [Bt(�1;�0)]

where

Bt(�1;�0) = Zt(�1)O(%1;�0)Z0t(�1); (C32)

Zt(�) =

�
Zlt(�) Zs(�) 0
0 0 Iq

�
;

and

O(%1;�0) =

24 Oll(%1;�0) Ols(%1;�0) Olr(%1;�0)
O0ls(%1;�0) Oss(%1;�0) Osr(%1;�0)
O0lr(%1;�0) O0sr(%1;�0) Orr(%1;�0)

35 ;
with

Oll(%1;�0) = V [elt(�1)j�0;�0],

Ols(%1;�0) = E[elt(�1)e0st(�1)j�0;�0],

Oss(%1;�0) = V [est(�1)j�0;�0],

Olr(%1;�0) = E[elt(�1)e0rt(�1)j�0;�0],

Osr(%1;�0) = E[est(�1)e0rt(�1)j�0;�0], and

Orr(%1;�0) = V [ert(�1)j�0;�0]:

Oll(%1;�0) will be a diagonal matrix of order N with typical element

oll(%i1;�0) = V
�
@ ln f("�it;%i1)

@"�i

�����0� ; (C33)

Ols(%1;�0) =OlsE0N , where E0N is the so-called diagonalization matrix and Ols is a diagonal
matrix of order N with typical element

ols(%i1;�0) = cov
�
@ ln f("�it;%i1)

@"�i
;
@ ln f("�it;%i1)

@"�i
"�it

�����0� ; (C34)

Oss(%1;�0) is the sum of the commutation matrix KNN and a block diagonal matrix �
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of order N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the

following structure:

�i(%1;�0) =

266666666664

oll;1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 oll;i�1 0 0 0 0
0 0 0 oss(%i1;�0)� 1 0 0 0
0 0 0 0 oll;i+1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 oll;N

377777777775
;

where oll;i =oll(%i1;�0) to shorten the expressions and

oss(%i1;�0) = V
�
@ ln f("�it;%i1)

@"�i
"�it

�����0� ; (C35)

Olr(%1;�0) is an N � q block diagonal matrix with typical diagonal block of size 1� qi

olr(%i1;�0) = �cov
�
@ ln f("�it;%i1)

@"�i
;
@ ln f("�it;%i1)

@%i

�����0� ; (C36)

Osr(%1;�0) = ENOsr, where Osr another block diagonal matrix of order N �q with typical
block of size 1� qi

osr(%i1;�0) = �cov
�
@ ln f("�it;%i1)

@"�i
"�it;

@ ln f("�it;%i1)

@%i

�����0� ; (C37)

and Orr(%1;�0) is a q � q block diagonal matrix with typical block of size qi � qi

orr(%i1;�0) = V
�
@ ln f("�it;%i1)

@%i

�����0� : (C38)

C.4 Expected Hessian

We can also show that

E[�h��t(�1)j�0;�0] = A(�1;�0) = E [At(�1;�0)]

where
At(�1;�0) = Zt(�0)H(%1;�0)Z0t(�0);

H(%1;�0) =

24 Hll(%1;�0) Hls(%1;�0) Hlr(%1;�0)
H0ls(%1;�0) Hss(%1;�0) Hsr(%1;�0)
H0lr(%1;�0) H0sr(%1;�0) Hrr(%1;�0)

35 ;

Hll(%1;�0) = �E
�
@2 ln f("�t ;%1)

@"�@"�0

�����0�
Hls(%1;�0) = �E

�
@2 ln f("�t ;%1)

@"�@"�0
("�0t 
 IN )

�����0�
Hss(%1;�0) = �E

��
["�t 
 IN ]

@2 ln f("�t ;%1)

@"�@"�0
+

�
IN 


@ ln f("�t ;%1)

@"�

��
["0�t 
 IN ]

�����0�
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Hlr(%1;�0) = E

�
@2 ln f("�t ;%1)

@"�@%0

�����0�
Hsr(%1;�0) = E

�
["�t 
 IN ]

@2 ln f("�t ;%1)

@"�@%0

�����0�
Hll(%1;�0) will be a diagonal matrix of order N with typical element

hll(%i1;�0) = �E
�
@2 ln f("�it;%i1)

(@"�i )
2

�����0� ; (C39)

Hls(%1;�0) =HlsE0N , Hls is a diagonal matrix of order N with typical element

hls(%i1;�0) = �E
�
@2 ln f("�it;%i1)

(@"�i )
2

� "�it
�����0� ; (C40)

Given (C31),

�E
���

IN 

@ ln f("�t ;%1)

@"�

��
["0�t 
 IN ]

�����0� = KNN ;

so Hss(%1;�0) will be the sum of the commutation matrix KNN and a block diagonal matrix

� of order N2 in which each of the N diagonal blocks is a diagonal matrix of size N with the

following structure:

�i(%1;�0) =

266666666664

hll;1 0 0 0 0 0 0

0
. . . 0 0 0 0 0

0 0 hll;i�1 0 0 0 0
0 0 0 hss(%i1;�0) 0 0 0
0 0 0 0 hll;i+1 0 0

0 0 0 0 0
. . . 0

0 0 0 0 0 0 hll;N

377777777775
;

where hll;i =hll(%i1;�0) to shorten the expressions and

hss(%i1;�0) = �E
�
@2 ln f("�it;%1)

(@"2i )
("�it)

2

�����0� : (C41)

Hlr(%1;�0) is an N � q block diagonal matrix with typical diagonal block of size 1� qi

hlr(%i1;�0) = E
�
@2 ln f("�it;i1 )

@"�i @%
0
i

�����0� ; (C42)

Hsr(%1;�0) = ENHsr, where Hsr another block diagonal matrix of order N �q with typical
block of size 1� qi

hsr(%i1;�0) = E
�
@2 ln f("�it;%i1)

@"�i @%
0
i

"�i

�����0� ; (C43)

and Hrr(%1;�0) is a q � q block diagonal matrix with typical block of size qi � qi

Hrr(%i1;�0) = �E
�
@2 ln f("�it;%i1)

@%i@%
0
i

�����0� : (C44)
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