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Abstract
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1. Introduction

White's (1982) information matrix (IM) test provides a general procedure for exam-

ining the correct speci�cation of models estimated by maximum likelihood (ML). It directly

assesses the IM equality, which states that the sum of the Hessian matrix and the outer

product of the score vector should be zero in expected value when the estimated model is

correctly speci�ed. Chesher (1984) reinterpreted it as a score test against unobserved het-

erogeneity, a serious concern in microeconometric models as the parameters characterising

objective functions or constraints often vary across agents. Not surprisingly, the IM test

has been extensively studied for univariate probit and tobit models (see Horowitz (1994)

and the references therein).

However, the IM test has not been derived for multinomial logit models. Polytomous

choice models specify how the probabilities of mutually exclusive Bernoulli variables that

make up a multinomial random variable ξ = (ξ1, . . . , ξK)
′ of dimension K vary across

observations as a function of L observed characteristics z. Typically, they are parametrised

as
pk = Pr(ξk = 1|z) = Fk(z;β) k = 1, ..., K, (1)

where β is a �nite vector of parameters. Since the distribution of ξ is necessarily multi-

nomial, correct speci�cation of (1) is equivalent to correct speci�cation of the functional



forms for Fk(.;β).

There are two main categories of logit-type models for polytomous unordered selection:

1. Conditional logit models in which the probabilities depend on the choices' character-

istics (for example, travel costs for transportation mode choice), but their e�ects are

invariant across alternatives, so that βk = β ∀k.
2. Multinomial logit models in which the probabilities depend on the choosers' char-

acteristics (for example, education, age and gender for occupational choice), which

are invariant across choices, while their e�ects are captured by βk's that vary across

alternatives.

We focus on the latter in the text because they are also popular in switching regime

models for time series, but we exploit the close relationship between both speci�cations

to explain how our results can be used to obtain the IM matrix test for the former in

a supplemental appendix. Thus, we complement Mai, Frejinger and Bastin (2015), who

apply the IM test to a variant of the conditional logit model for transportation mode choice

originally introduced by McFadden (1974).1

The rest of the note is organised as follows. We derive our theoretical results in Section

2 and report the Monte Carlo exercises that look at the �nite sample size and power of

the test in Section 3. Finally, we present our conclusions and discuss some avenues for

further research, relegating proofs, details about our simulations and Matlab code to

supplemental appendices.

2. Theoretical results

Consider the following parametrisation of the conditional probabilities in (1):

Fk(z;β) =
eβ

′
kz∑ K

ℓ=1 e
β′
ℓz
, k = 1, . . . , K, (2)

where β = (β′
1, . . . ,β

′
K)

′ is a vector that collects the K coe�cient vectors of dimension L

each. Naturally,
∑ K

k=1 pk(z;β) = 1 for all z and β. For identi�cation purposes, we follow

the usual practice of setting β1 = 0, so that the �rst category becomes the baseline one,

thereby eliminating L elements of the score vector, s(β), and L(L + 1)/2 of the Hessian

matrix, h(β), without loss of generality because the ordering of the categories is arbitrary.

In this respect, Lemma 1 in Amengual, Fiorentini and Sentana (2024a) implies that the

IM test is numerically invariant to reparametrisations.

1See Chesher and Santos Silva (2002) for another generalisation of the conditional multinomial logit
model that explicitly allows for individual heterogeneity in the model parameters.
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Let pr(z;β) = [p2(z;β), . . . , pK(z;β)]
′ represent the vector of conditional probabilities

of the K−1 non-normalised categories, and ur(ξr, z;β) = [u2(ξ2, z;β), . . . , uK(ξK , z;β)]
′ =

ξr − pr(z;β), with ξr = (ξ2, . . . , ξK)
′, the corresponding K − 1 dimensional vector of what

Gouriéroux, Monfort, Renault and Trognon (1987) called generalised residuals by analogy

to OLS regressions. Finally, let β̂N = (0′, β̂
′
2N , . . . , β̂

′
KN)

′ = (0′, β̂
′
rN) denote the ML

estimator. Then, we can show that:

Proposition 1. 1) The score vector and Hessian matrix of model (2), which are of dimen-
sion (K − 1)L, are given by

sr(ξ, z;β) = ur(ξ, z;β)⊗ z, (3)

hr(ξ, z;β) = −{diag[pr(z;β)]− pr(z;β)p
′
r(z;β)} ⊗ zz′, (4)

respectively, so that the K(K − 1)L(L+ 1)/4 IM in�uence functions are:

mr(ξ, z;β)=vech[ur(ξ, z;β)u
′
r(ξ, z;β)−{diag[pr(z;β)]−pr(z;β)p

′
r(z;β)}]⊗vech(zz′). (5)

2) Let mrN(β̂N) denote the sample mean of mr(ξ, z;β) evaluated at β̂N , and de�ne the
joint covariance matrix of the IM in�uence functions and score[

R(β) U(β)
U ′(β) I(β)

]
= V ar

{
mr(ξr, z;β)
sr(ξr, z;β)

}
. (6)

Then, under correct speci�cation, the IM test statistic

N ×m′
rN(β̂N)[R(β0)− U(β0)I−1(β0)U(β0)]

−1mrN(β̂N)
d→ χ2

K(K−1)L(L+1)/4. (7)

If following Newey (1985) and Tauchen (1985) we regard the IM test as a moment test

of the in�uence functions (5), it is clear that it is e�ectively testing the conditional mean

independence of the conditionally demeaned outer product of the generalised residuals.

Thus, it resembles a multivariate version of White's (1980) test for residual conditional

heteroskedasticity, which in turn con�rms Chesher's (1984) reinterpretation of the IM test

as a score test for neglected unobserved heterogeneity.

One feasible version of IM test statistic (7) replaces the elements of (6) by their sam-

ple counterparts evaluated at β̂N , which Chesher (1983) and Lancaster (1984) showed is

numerically identical to NR2 in the regression of 1 on mr(ξr, z; β̂N) and sr(ξr, z; β̂N).

Given that this yields very noisy estimators of (6), we propose another feasible version of

the IM test that evaluates the di�erent elements of (6) by relying on the law of iterated

expectations, with β replaced by β̂N and unconditional expectations by sample averages.

Our next result provides analytical expressions for the required conditional moments for

mjℓ = mjlvech(zz
′), with mjl = ujul, and sj = ujz:

Proposition 2. a) The relevant conditional variances and covariances required to compute
R are: cov(mjℓ,mj′ℓ′) = E[E(mjℓmj′ℓ′ |z)vech(zz′)vech′(zz′)], where
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E(m2
jj|z) = pj − 5p2j + 8p3j − 4p4j , E(m2

jℓ|z) = p2jpℓ + pjp
2
ℓ − 4p2jp

2
ℓ ,

E(mjjmj′j′ |z) = −pjpj′ + 2p2jpj′ + 2pjp
2
j′ − 4p2jp

2
j′ ,

E(mjjmj′ℓ|z) = 2pjpj′pℓ − 4p2jpj′pℓ, E(mjℓmj′ℓ|z) = pℓpjpj′ − 4p2ℓpjpj′

E(mjjmjℓ|z) = −pjpℓ + 4p2jpℓ − 4p3jpℓ and E(mjℓmj′ℓ′|z) = −4pjpℓpj′pℓ′ .

b) In turn, the relevant conditional covariances required to compute U are:

E(mjℓs
′
j′) = cov(mjℓ, sj′) = E[E(mjℓuj|z)vech(zz′)z′], where

E(mjjuj|z) = pj − 3p2j + 2p3j , E(mjjuj′ |z) = −pjpj′ + 2p2jpj′ ,
E(mjℓuj|z) = −pjpℓ + 2p2jpℓ and E(mjℓuj′ |z) = 2pjpℓpj′ .

c) Finally, the information matrix is

I = E(sjs
′
j) = V ar(sj) = E{[diag(pr)− prp

′
r]⊗ zz′}. (8)

It is important to mention that the IM test cannot be computed when the only regressor

is a constant because in that case the score simpli�es to ur and the in�uence functions

underlying the IM test have zero mean in the sample when evaluated at β̂N . The same

situation arises when the explanatory variables consist of an exhaustive set of dummy

variables that in practice generate a partition of the observations because the coe�cients

of those dummies e�ectively correspond to a model which imposes that the probabilities are

constant within each category but heterogeneous across categories. In both these cases, the

multinomial logit model provides a perfect �t to the data. Nevertheless, as soon as at least

one of the elements of z is a continuous random variable, the IM test can be computed.2

Composite likelihood:. A well-known property of multinomial logit models is that they con-

tinue to represent the relative probabilities of any subset of categories for those observations

belonging to them. In particular, if we focus on the �rst and second categories only, we

will end up with the following binary logit model:

pb2(z;β2) = Pr(ξ2 = 1|ξ3 = . . . = ξK = 0, z) =
eβ

′
2z

1 + eβ
′
2z

= p2(z;β2) ·
1 +

∑ K
ℓ=2 e

β′
ℓz

1 + eβ
′
2z

with the identi�cation condition β1 = 0. Since this is true for any other category, a

popular consistent estimation method for multinomial logit models obtains βj from K − 1

such binary logit models, in what is e�ectively a composite likelihood approach (see Lindsay

(1988)). This yields computational gains at the cost of asymptotic e�ciency. Nevertheless,

the results in Proposition 1 apply to each of those conditional binary logit models as well,

with the number of degrees of freedom becoming L(L + 1)/2. For that reason, in Section

3 we study these binary IM tests too.

2The number of degrees of freedom might need to be adjusted in very special circumstances. For
example, in a binary logit model with a constant and a single continuous explanatory variable, the IM test
statistic will generally be distributed as a χ2

1 when the slope coe�cient is actually 0.
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Unfortunately, the relationship between the IM test for the full model and the K − 1

IM tests for the binary models is not straightforward because they are based on di�erent

subsets of observations. However, they all maintain not only the same distribution for the

underlying choice shocks but also the independence of irrelevant alternatives assumption,

which is precisely what guarantees the validity of the binary models.

3. Monte Carlo simulations

The asymptotic distribution of the IM test might not be very reliable in small sam-

ples. For that reason, we study its size and power properties in simulated samples of length

N = 125, N = 500 and N = 2, 000. To estimate the parameters for binary and multino-

mial logit models, we make use of the Matlab toolbox available at https://www.spatial-

econometrics.com/ (see LeSage and Pace (2009)).

3.1. Size properties

When assessing size, we generate 10, 000 samples under the null for each data gen-

erating process (DGP) we describe below. We then compare two asymptotically equivalent

versions of the infeasible IM test statistic in (7): the Outer-Product-of-the Score version

proposed by Chesher (1983) and Lancaster (1984) (OPS), and one that replaces the true

parameter values β0 with their MLEs β̂N in the theoretical expressions of the conditional

variances and covariances in Proposition 2 (CM). In all cases, we consider not only asymp-

totic critical values but also a parametric bootstrap procedure in which we simulate B = 99

samples from the model estimated under the null, as proposed by Horowitz (1994).3

We simulate multinomial logit models with K = 3 and K = 5 categories, always

including a constant and one or two continuous regressors. Details on the speci�c designs

can be found in Supplemental Appendix C.1. Table 1 contains the rejection rates of the

multinomial IM tests at the 1%, 5% and 10% signi�cance levels. Panels A and B refer to

models with three categories, with two and three explanatory variables, respectively, while

Panels C and D to models with �ve categories.

The rejection rates using asymptotic critical values in the left subpanels of Table 1

con�rm the need for �nite sample size adjustments, especially for the OPS version of the

IM test.4 Still, the quality of the asymptotic approximation is much better when we use the

3Horowitz (1994) found that increasing the number of bootstrap samples beyond 99 had little e�ect on
the results of his experiments.

4Given the number of replications, the 95% asymptotic con�dence intervals for the Monte Carlo rejection
probabilities under the null are (0.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels.
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theoretical expressions for the weighting matrix even in samples of size N = 500, although

there is still a systematic overrejection of the null at the 1% level.

In contrast, the bootstrap-based rejection rates in the right subpanels of Table 1 give a

completely di�erent picture: sizes are very accurate and almost all Monte Carlo rejection

rates fall within the relevant 95% con�dence set, with the exceptions of the OPS version for

N = 125 and N = 500, and the CM version when N = 125 in models with �ve categories

(Panels C and D).

In Table A1 in the supplementary material we report the same �gures but for the

conditional binary logits mentioned at the end of section 2.5 Not surprisingly, there is still

massive overrejection of the OPS version of the tests that rely on asymptotic critical values.

Interestingly, though, the overrejections of the CM test at the 1% level are more moderate,

probably due to the smaller number of degrees of freedom of their asymptotic distribution.

In any event, the parametric bootstrap corrects the size distortions for all the sample sizes

we consider.

3.2. Power properties

We consider three types of alternatives, with Chesher's (1984) neglected heterogene-

ity interpretation of the IM test providing the motivation for the �rst two ones. Speci�cally,

we consider a model in which the coe�cients for one of the z's take di�erent values in two

equally sized subgroups of the population, while remaining homogeneous within subgroups.

In addition, we consider another model in which the coe�cients for one of the z's are ran-

domly distributed as a multivariate Gaussian vector across individuals. Finally, we generate

data from an nested logit model as an example of misspeci�cation of the functional form

F . Again, Supplemental Appendix C.1 contains the details of the speci�c designs.

We simulate 2,500 samples for each of these alternatives. Given our results in the

previous subsection, we take an accept/reject decision by systematically relying on the

bootstrap CM version of the IM test statistic, thereby ensuring that we carry out a feasible

size adjustment.

In Panels A to C of Table 2 we report the results for dgp a to dgp c. As expected,

power increases with the sample size N . In contrast, no clear pattern arises when increasing

the number of explanatory variables. In particular, power seems to increase only for dgp

a. The same comment applies when we move from three to �ve categories.

Finally, Table A2 in Supplemental Appendix C.2 reports the same �gures for the three

5The corresponding results for models with �ve categories are available upon request.
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binary logits implied by the models with three categories. As expected, the same pattern is

obtained. More importantly, the IM test of the multinomial model is more powerful than

the binary ones.

4. Conclusions and extensions

The IM test is a very simple diagnostic that empirical researchers estimating multi-

nomial logit models should routinely report. In this respect, our main contributions are:

(i) a simple interpretation of the in�uence functions underlying the test in relation to the

conditional variances of the generalised residuals, (ii) simple to compute expressions for the

asymptotic covariance matrices, (iii) Monte Carlo evidence showing that when the model is

correctly speci�ed these expressions substantially reduce size distortions, which are practi-

cally eliminated when combined with the parametric bootstrap, and that such size-adjusted

tests have good power against several empirically relevant alternatives.

Our theoretical expressions can be used for related models. Speci�cally, in Supplemental

Appendix B we exploit the fact that the conditional multinomial model mentioned in the

introduction can be written as a multinomial logit model to explain how to derive the

corresponding IM test.

The speci�cation tests in this paper can also be extended in at least three empirically

relevant directions. First, we could consider discrete Markov chains in which each column of

the K ×K transition matrix is a multinomial logit function of the explanatory variables z.

Given that a Markov chain is a collection of K separate multinomial logit models indexed

by the value taken by the preceding multinomial variable ξ with coe�cients which are

variation-free, the IM in�uence functions will be the collection of IM in�uence functions for

each of thoseK multinomial models. Second, we could study mixture models and switching

regression models in which the probabilities of the mixture components or regimes are

determined by another multinomial logit model. Given that the multinomial variable ξ

becomes latent in those circumstances, as in Amengual, Fiorentini and Sentana (2024a),

we would need to compute the conditional expected values of the outer product of the

generalised residuals given the observable variables to obtain the IM test. Finally, we could

combine the previous two extensions in a Markov switching regime model à la in Hamilton

(1989), which would force us to rely on a smoother rather than a �lter, as in Almuzara,

Amengual and Sentana (2019). In Amengual, Fiorentini and Sentana (2024b,c,d) we are

currently pursuing these three interesting research avenues.
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