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Abstract

We obtain simple and intuitive expressions for the information matrix test for the multi-
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1. Introduction

White’s (1982) information matrix (IM) test provides a general procedure for exam-
ining the correct specification of models estimated by maximum likelihood (ML). It directly
assesses the IM equality, which states that the sum of the Hessian matrix and the outer
product of the score vector should be zero in expected value when the estimated model is
correctly specified. Chesher (1984) reinterpreted it as a score test against unobserved het-
erogeneity, a serious concern in microeconometric models as the parameters characterising
objective functions or constraints often vary across agents. Not surprisingly, the IM test
has been extensively studied for univariate probit and tobit models (see Horowitz (1994)
and the references therein).

However, the IM test has not been derived for multinomial logit models. Polytomous
choice models specify how the probabilities of mutually exclusive Bernoulli variables that
make up a multinomial random variable & = (§,...,&k)" of dimension K vary across
observations as a function of L observed characteristics z. Typically, they are parametrised

as
where 3 is a finite vector of parameters. Since the distribution of £ is necessarily multi-

nomial, correct specification of (1) is equivalent to correct specification of the functional



forms for Fy(.; 3).
There are two main categories of logit-type models for polytomous unordered selection:
1. Conditional logit models in which the probabilities depend on the choices’ character-
istics (for example, travel costs for transportation mode choice), but their effects are

invariant across alternatives, so that 8, = 3 Vk.

2. Multinomial logit models in which the probabilities depend on the choosers’ char-
acteristics (for example, education, age and gender for occupational choice), which
are invariant across choices, while their effects are captured by 3,’s that vary across
alternatives.

We focus on the latter in the text because they are also popular in switching regime
models for time series, but we exploit the close relationship between both specifications
to explain how our results can be used to obtain the IM matrix test for the former in
a supplemental appendix. Thus, we complement Mai, Frejinger and Bastin (2015), who
apply the IM test to a variant of the conditional logit model for transportation mode choice
originally introduced by McFadden (1974).!

The rest of the note is organised as follows. We derive our theoretical results in Section
2 and report the Monte Carlo exercises that look at the finite sample size and power of
the test in Section 3. Finally, we present our conclusions and discuss some avenues for
further research, relegating proofs, details about our simulations and MATLAB code to

supplemental appendices.

2. Theoretical results

Consider the following parametrisation of the conditional probabilities in (1):
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where 3 = (B,...,8%)" is a vector that collects the K coefficient vectors of dimension L

each. Naturally, > le pr(z;8) = 1 for all z and B. For identification purposes, we follow
the usual practice of setting 3, = 0, so that the first category becomes the baseline one,
thereby eliminating L elements of the score vector, s(3), and L(L + 1)/2 of the Hessian
matrix, h(3), without loss of generality because the ordering of the categories is arbitrary.
In this respect, Lemma 1 in Amengual, Fiorentini and Sentana (2024a) implies that the

IM test is numerically invariant to reparametrisations.

!See Chesher and Santos Silva (2002) for another generalisation of the conditional multinomial logit
model that explicitly allows for individual heterogeneity in the model parameters.



Let p-(z; 8) = [p2(z; B), ..., pr(z; B)] represent the vector of conditional probabilities
of the K —1 non-normalised categories, and u,.(§,,2z; 3) = [u2(&,2;8), ..., ux &k, 2; 8)] =
& —pr(z;3), with £, = (&, ..., &k)’, the corresponding K — 1 dimensional vector of what
Gouriéroux, Monfort, Renault and Trognon (1987) called generalised residuals by analogy
to OLS regressions. Finally, let 3, = (0’,,3/2]\,,...,,@/[{]\,)’ = (0’,[%;]\,) denote the ML

estimator. Then, we can show that:

Proposition 1. 1) The score vector and Hessian matriz of model (2), which are of dimen-
sion (K — 1)L, are given by

ST(EvZ;/B) = ur(EaZ;ﬁ)@?Za (3>
h,(&,2:8) = —{diaglp,(z;B)] - pr(z B)p,(2 B)} @ 22/, (4)

respectively, so that the K(K — 1)L(L + 1)/4 IM influence functions are:
m, (&, z; ) =vech[u,(§, z; B)w,(§, z; B)—{diag[p, (z; B)|-p.(z; B)p,(2; B) }gvech(zz'). (5)

2) Let mrN(BN) denote the sample mean of m,(&,z;B) evaluated at BN, and define the
joint covariance matriz of the IM influence functions and score

Lartey iy | =ver{ e ) 0

Then, under correct specification, the IM test statistic
N i (B)[R(Bo) —UBo)T ™ (B (Bo)) ™ Mo (Br) > Xicoe vpanya- ()

If following Newey (1985) and Tauchen (1985) we regard the IM test as a moment test
of the influence functions (5), it is clear that it is effectively testing the conditional mean
independence of the conditionally demeaned outer product of the generalised residuals.
Thus, it resembles a multivariate version of White’s (1980) test for residual conditional
heteroskedasticity, which in turn confirms Chesher’s (1984) reinterpretation of the IM test
as a score test for neglected unobserved heterogeneity.

One feasible version of IM test statistic (7) replaces the elements of (6) by their sam-
ple counterparts evaluated at 3, which Chesher (1983) and Lancaster (1984) showed is
numerically identical to NR? in the regression of 1 on m,(£,,2; 3y) and s,.(£,,2z; By).
Given that this yields very noisy estimators of (6), we propose another feasible version of
the IM test that evaluates the different elements of (6) by relying on the law of iterated
expectations, with 3 replaced by B ~ and unconditional expectations by sample averages.
Our next result provides analytical expressions for the required conditional moments for
m;, = mjvech(zz'), with m; = u;w;, and s; = u;z:

Proposition 2. a) The relevant conditional variances and covariances required to compute

R are:

cov(myg, myp) = E[E(mjmjip|z)vech(zz' yvech'(z2')], where



= p; — 50} +8p) —dpj,  E(m}|z) = pipe + ppi — wip7,
= —p;py + 2050y + 2003 — 4p3pT,

= 2p;pype — 4p5pype.  E(mjemgilz) = ppjpy — Apipipy

b) In turn, the relevant conditional covariances required to compute U are:
E(mys)) = cov(myy, sy) = E[E(myeu;|z)vech(zz')2],  where
E(myjuj|z) = p; — 3p; + 2p3, E(mjjuj|z) = —pipy + 2p5py,
E(mjeus|z) = —pjpe +2pipe  and  E(mjeuy|z) = 2p;pep;-
¢) Finally, the information matriz is
T = E(s;8})) = Var(s;) = E{|diag(p,) — p,p,] ® z2'}. (8)
It is important to mention that the IM test cannot be computed when the only regressor
is a constant because in that case the score simplifies to u, and the influence functions
underlying the IM test have zero mean in the sample when evaluated at BN. The same
situation arises when the explanatory variables consist of an exhaustive set of dummy
variables that in practice generate a partition of the observations because the coefficients
of those dummies effectively correspond to a model which imposes that the probabilities are
constant within each category but heterogeneous across categories. In both these cases, the
multinomial logit model provides a perfect fit to the data. Nevertheless, as soon as at least
one of the elements of z is a continuous random variable, the IM test can be computed.?
Composite likelihood:. A well-known property of multinomial logit models is that they con-
tinue to represent the relative probabilities of any subset of categories for those observations
belonging to them. In particular, if we focus on the first and second categories only, we

will end up with the following binary logit model:

Bz 14+ K bl
b € (=2
zZ; =Pr(&=1§&&=... = =0,z) = — = pa(2z; : :
Po(2; Bs) (& [$ 19 ) 11 Pz pa(2z; Bs) 11 Pz
with the identification condition 8; = 0. Since this is true for any other category, a

popular consistent estimation method for multinomial logit models obtains 3; from K —1
such binary logit models, in what is effectively a composite likelihood approach (see Lindsay
(1988)). This yields computational gains at the cost of asymptotic efficiency. Nevertheless,
the results in Proposition 1 apply to each of those conditional binary logit models as well,
with the number of degrees of freedom becoming L(L + 1)/2. For that reason, in Section

3 we study these binary IM tests too.

2The number of degrees of freedom might need to be adjusted in very special circumstances. For
example, in a binary logit model with a constant and a single continuous explanatory variable, the IM test
statistic will generally be distributed as a x? when the slope coefficient is actually 0.
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Unfortunately, the relationship between the IM test for the full model and the K — 1
IM tests for the binary models is not straightforward because they are based on different
subsets of observations. However, they all maintain not only the same distribution for the
underlying choice shocks but also the independence of irrelevant alternatives assumption,

which is precisely what guarantees the validity of the binary models.

3. Monte Carlo simulations

The asymptotic distribution of the IM test might not be very reliable in small sam-
ples. For that reason, we study its size and power properties in simulated samples of length
N =125, N = 500 and N = 2,000. To estimate the parameters for binary and multino-
mial logit models, we make use of the MATLAB toolbox available at https://www.spatial-

econometrics.com/ (see LeSage and Pace (2009)).

3.1. Size properties

When assessing size, we generate 10, 000 samples under the null for each data gen-
erating process (DGP) we describe below. We then compare two asymptotically equivalent
versions of the infeasible IM test statistic in (7): the Outer-Product-of-the Score version
proposed by Chesher (1983) and Lancaster (1984) (OPS), and one that replaces the true
parameter values 3, with their MLEs B ~ in the theoretical expressions of the conditional
variances and covariances in Proposition 2 (CM). In all cases, we consider not only asymp-
totic critical values but also a parametric bootstrap procedure in which we simulate B = 99
samples from the model estimated under the null, as proposed by Horowitz (1994).3

We simulate multinomial logit models with K = 3 and K = 5 categories, always
including a constant and one or two continuous regressors. Details on the specific designs
can be found in Supplemental Appendix C.1. Table 1 contains the rejection rates of the
multinomial IM tests at the 1%, 5% and 10% significance levels. Panels A and B refer to
models with three categories, with two and three explanatory variables, respectively, while
Panels C and D to models with five categories.

The rejection rates using asymptotic critical values in the left subpanels of Table 1
confirm the need for finite sample size adjustments, especially for the OPS version of the

IM test.* Still, the quality of the asymptotic approximation is much better when we use the

3Horowitz (1994) found that increasing the number of bootstrap samples beyond 99 had little effect on
the results of his experiments.

4Given the number of replications, the 95% asymptotic confidence intervals for the Monte Carlo rejection
probabilities under the null are (0.80,1.20), (4.57,5.43) and (9.41,10.59) at the 1%, 5% and 10% levels.



theoretical expressions for the weighting matrix even in samples of size N = 500, although
there is still a systematic overrejection of the null at the 1% level.

In contrast, the bootstrap-based rejection rates in the right subpanels of Table 1 give a
completely different picture: sizes are very accurate and almost all Monte Carlo rejection
rates fall within the relevant 95% confidence set, with the exceptions of the OPS version for
N =125 and N = 500, and the CM version when N = 125 in models with five categories
(Panels C and D).

In Table A1l in the supplementary material we report the same figures but for the
conditional binary logits mentioned at the end of section 2.> Not surprisingly, there is still
massive overrejection of the OPS version of the tests that rely on asymptotic critical values.
Interestingly, though, the overrejections of the CM test at the 1% level are more moderate,
probably due to the smaller number of degrees of freedom of their asymptotic distribution.
In any event, the parametric bootstrap corrects the size distortions for all the sample sizes

we consider.

3.2. Power properties

We consider three types of alternatives, with Chesher’s (1984) neglected heterogene-
ity interpretation of the IM test providing the motivation for the first two ones. Specifically,
we consider a model in which the coefficients for one of the 2’s take different values in two
equally sized subgroups of the population, while remaining homogeneous within subgroups.
In addition, we consider another model in which the coefficients for one of the z’s are ran-
domly distributed as a multivariate Gaussian vector across individuals. Finally, we generate
data from an nested logit model as an example of misspecification of the functional form
F. Again, Supplemental Appendix C.1 contains the details of the specific designs.

We simulate 2,500 samples for each of these alternatives. Given our results in the
previous subsection, we take an accept/reject decision by systematically relying on the
bootstrap CM version of the IM test statistic, thereby ensuring that we carry out a feasible
size adjustment.

In Panels A to C of Table 2 we report the results for DGP a to DGP ¢. As expected,
power increases with the sample size V. In contrast, no clear pattern arises when increasing
the number of explanatory variables. In particular, power seems to increase only for DGP
a. The same comment applies when we move from three to five categories.

Finally, Table A2 in Supplemental Appendix C.2 reports the same figures for the three

>The corresponding results for models with five categories are available upon request.



binary logits implied by the models with three categories. As expected, the same pattern is
obtained. More importantly, the IM test of the multinomial model is more powerful than

the binary ones.

4. Conclusions and extensions

The IM test is a very simple diagnostic that empirical researchers estimating multi-
nomial logit models should routinely report. In this respect, our main contributions are:
(i) a simple interpretation of the influence functions underlying the test in relation to the
conditional variances of the generalised residuals, (ii) simple to compute expressions for the
asymptotic covariance matrices, (iii) Monte Carlo evidence showing that when the model is
correctly specified these expressions substantially reduce size distortions, which are practi-
cally eliminated when combined with the parametric bootstrap, and that such size-adjusted
tests have good power against several empirically relevant alternatives.

Our theoretical expressions can be used for related models. Specifically, in Supplemental
Appendix B we exploit the fact that the conditional multinomial model mentioned in the
introduction can be written as a multinomial logit model to explain how to derive the
corresponding IM test.

The specification tests in this paper can also be extended in at least three empirically
relevant directions. First, we could consider discrete Markov chains in which each column of
the K x K transition matrix is a multinomial logit function of the explanatory variables z.
Given that a Markov chain is a collection of K separate multinomial logit models indexed
by the value taken by the preceding multinomial variable & with coefficients which are
variation-free, the IM influence functions will be the collection of IM influence functions for
each of those K multinomial models. Second, we could study mixture models and switching
regression models in which the probabilities of the mixture components or regimes are
determined by another multinomial logit model. Given that the multinomial variable &
becomes latent in those circumstances, as in Amengual, Fiorentini and Sentana (2024a),
we would need to compute the conditional expected values of the outer product of the
generalised residuals given the observable variables to obtain the IM test. Finally, we could
combine the previous two extensions in a Markov switching regime model a la in Hamilton
(1989), which would force us to rely on a smoother rather than a filter, as in Almuzara,
Amengual and Sentana (2019). In Amengual, Fiorentini and Sentana (2024b,c,d) we are

currently pursuing these three interesting research avenues.
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