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1. Introduction
In financial markets, news play a pivotal role in shaping stock prices. Every day, market participants respond to

a broad spectrum of news ranging from firm-specific announcements, such as earnings releases, to macroeconomic
events, such as central bank interest rate announcements, or geopolitical developments, like international trade
conflicts or political elections. The Efficient Market Hypothesis (EMH), formalized by [1] Fama (1970), posits
that markets efficiently incorporate new information almost instantaneously. Both theoretical perspectives and
empirical observations indicate that markets do not always exhibit such efficiency, particularly when the information
is complex or ambiguous. This discrepancy between theory and reality suggests significant room for improvement
in understanding how news is processed by market participants and how it influences asset prices. A substantial
body of literature has tried to predict market reactions to news, yet some important gaps persist. Our review of
the literature reveals three critical limitations in current approaches to analyzing financial news: a lack of economic
focus in textual analysis methodology, insufficient attention to firm-specific effects, and over-reliance on headlines.

First, we examine the lack of economic focus in current methodological approaches to analyzing financial news.
This limitation is evident across three main streams of literature.

Sentiment Analysis. Traditional approaches frequently rely on sentiment analysis, reducing the rich-
ness of news content to binary classifications of positive or negative sentiment. The seminal work of [2]
Tetlock (2007) demonstrated the predictive power of media sentiment in financial markets, showing that
negative media coverage leads to downward pressure on market prices, followed by a reversion to funda-
mentals. This finding sparked significant interest in sentiment-based approaches, with [3] Tetlock et al.
(2008) extending the analysis to firm-specific news and revealing that negative word content not only
forecasts poor firm earnings but also indicates a temporary underreaction in stock prices. Despite these
early successes, the methodology of sentiment analysis has faced important challenges. [4] Loughran
and McDonald (2011) highlighted a fundamental issue: general-purpose dictionaries often misclassify
words in financial contexts, leading them to develop specialized financial word lists. Building on this
insight, [5] Jegadeesh and Wu (2013) demonstrated that the weighting scheme applied to these words
is as crucial as the word lists themselves, introducing a more nuanced approach to content analysis.
The emergence of social media and machine learning has driven further methodological innovations in
sentiment analysis. [6] Bollen et al. (2011) leveraged Twitter data to predict DJIA movements, while
[7] Garcia (2013) revealed that sentiment’s predictive power is particularly pronounced during reces-
sions, suggesting time-varying importance of news sentiment. Recent advances in machine learning have
pushed the boundaries further, with [8] Ke et al. (2019) developing a sophisticated supervised learning
framework specifically designed for return prediction. The advent of transformer-based models has en-
abled even more sophisticated approaches, with [9] Lee et al. (2020) and [10] Wei and Nguyen (2020)
applying BERT-based architectures to financial sentiment analysis. However, despite their widespread
adoption and continued methodological refinements, sentiment analysis approaches remain fundamen-
tally limited. They often miss the intricacy inherent in news by focusing on linguistic patterns rather
than economically relevant considerations.

Topic modeling. Beyond sentiment analysis, researchers have also explored topic modeling as an
alternative approach to categorize text into broader themes. The pioneering work of [11] Antweiler and
Frank (2006) demonstrated that computational linguistics methods could reveal important patterns in
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market reactions to news, finding that stock prices do not immediately and consistently reflect news,
with effects varying significantly across different types of stories and market conditions. Topic modeling
approaches have since been applied across financial research domains. [12] Hansen et al. (2018) used
these techniques to analyze Federal Reserve communications, while [13] Bybee et al. (2021) developed
a topic model analyzing over 800,000 Wall Street Journal articles to track news attention to different
economic themes. [14] Bybee et al. (2023) further integrated topic modeling with asset pricing models
to derive systematic risk factors from news. However, these models are limited in adapting to new and
evolving information and lack the specificity needed to assess the precise impact of news on individual
firms or sectors. While topic models can identify broad themes, they struggle to capture the changing
context of financial news, particularly when new narratives emerge, such as unexpected geopolitical
events or technological disruptions.

Vector-based models. Vector-based models have emerged as an alternative approach to address the
limitations of both sentiment analysis and topic modeling. The foundational models in this domain,
Word2Vec and GloVe, established the paradigm of mapping words to continuous vector spaces based
on their co-occurrence patterns, enabling mathematical operations on words and capturing semantic
relationships. [15] Hoberg and Phillips (2016) pioneered their application in finance by developing
time-varying measures of product similarity from firms’ 10-K descriptions, demonstrating how vector
representations could capture nuanced competitive relationships that traditional industry classifications
miss. The advent of transformer architectures marked a significant advancement, leading to more so-
phisticated models such as BERT, RoBERTa, or GPT. These models process text through multiple
attention layers, generating context-aware embeddings by considering relationships between all words
simultaneously. [16] Chen (2021) demonstrated their superior performance in predicting stock move-
ments following financial news events, while [17] Benincasa et al. (2022) leveraged BERT to develop
a novel measure of bond “greenness”, revealing how subtle textual differences in bond documentation
translate into measurable price effects. Recent applications have further expanded the scope of these
methods. [18] Jha et al. (2024) analyzed finance sentiment across multiple countries and centuries,
while [19] Zhang (2023) integrated sentiment analysis from GPT and BERT into traditional asset pric-
ing models. [20] Gabaix et al. (2023) introduced “asset embeddings”, showing how these techniques can
uncover latent firm characteristics from investors’ holdings data. However, even when fine-tuned with
domain-specific training data (e.g: FinBERT), these methods cannot inherently incorporate economic
structure, which limits their ability to comprehend the economic implications of news articles.

Having examined the limitations of current methodological approaches, we now turn to a second critical gap in
the literature: there is an insufficient focus on firm-specific analysis in existing research. Many studies examine the
impact of news on broader market indices such as the S&P500 or DJIA, rather than on individual firms. For example,
[21] Cutler et al. (1988) and [22] Mitchell and Mulherin (1994) analyzed comprehensive news coverage to understand
aggregate market movements, while more recent work has leveraged increasingly sophisticated data sources. [6]
Bollen et al. (2011) developed novel mood tracking tools for Twitter messages to predict DJIA movements, and
[7] Garcia (2013) examined a century of New York Times financial columns to study market-wide returns during
recessions. [23], [24] Baker et al. (2016, 2021) and [25] Manela and Moreira (2017) constructed innovative news-
based indices that have enhanced our understanding of market-wide uncertainty and volatility. While these and
other similar studies provide valuable insights into market-wide reactions, they fall short in elucidating how specific

2



firms are affected by news events. Firm-specific impacts are often masked when aggregated at the index level,
leading to a loss of critical information about how particular entities are influenced by specific news. For example,
during the COVID-19 pandemic, market indices masked substantial heterogeneity in firm-level responses with some
sectors like technology and healthcare experiencing positive returns, while others, such as hospitality, travel, and
retail, experiencing significant negative impacts due to widespread lockdowns and reduced consumer spending. Such
differences are often obscured when focusing solely on market indices. Tools like Named Entity Recognition (NER),
which could help identify firms impacted by particular events, remain underutilized in financial research, further
contributing to the lack of firm-level granularity.

The third and final critical issue is the over-reliance on headlines as the basis for news analysis. Headlines are
often used due to their availability and the simplicity of extracting sentiment from them, making them convenient but
insufficient for comprehensive analysis. [26] Chan (2003) provided early evidence of this limitation, showing distinct
market reactions to headline news versus no-news events, particularly in terms of drift after bad news and reversals
after extreme price movements. As natural language processing techniques evolved, researchers continued to focus
primarily on headlines: [27] Oncharoen and Vateekul (2018) and [10] Wei and Nguyen (2020) applied increasingly
sophisticated deep learning and BERT models to headline analysis, while recent work by [28] Lopez-Lira and Tang
(2023) and [29] Chen et al. (2022) has extended this approach using large language models to extract contextualized
representations from news headlines. While these studies have advanced our understanding of market reactions to
news, headlines are designed to capture attention rather than provide comprehensive information. Consequently,
relying solely on headlines can lead to overly simplistic analyses that fail to capture critical contextual details
necessary for accurately predicting market reactions.

This paper seeks to address these three limitations by leveraging Large Language Models (LLMs) to facilitate
an economically-structured, granular and firm-specific analysis of complete news articles. LLMs are particularly
suited for economic interpretation due to their extensive training on human-generated text, including financial and
economic discourse. This exposure enables them to “understand” economic concepts, cause-and-effect relationships,
and market mechanisms in ways that mirror human economic reasoning. Unlike purely statistical approaches, LLMs
can recognize economic patterns and implications that would be evident to market participants, making them pow-
erful tools for financial analysis. For example, LLMs could simulate human analysis of news articles, understanding
the economic shocks that a news article describes upon a specific firm –such as supply chain disruptions affect-
ing manufacturing, shifts in consumer demand impacting retail, or policy changes influencing energy sectors– and
quantifying both the magnitude and direction of these impacts on specific firms. In this study, we leverage LLMs
to parse a dataset of Spanish business news articles from DowJones Newswires, spanning June 2020 to September
2021, a particularly unstable period marked by economic disruptions due to the COVID-19 pandemic. This period
was purposefully chosen for its inherent complexity and market instability. Testing our methodology during such
a challenging period allows us to rigorously evaluate its robustness and effectiveness. While many methodolo-
gies can perform adequately during stable market conditions, their true capabilities are revealed when faced with
unprecedented market dynamics and rapid economic changes.

Our methodology consists of defining a schema with which we guide an LLM to detect firm-specific shocks
from business news and to further classify them by their type (demand, supply, technological, policy, financial),
magnitude (minor, major) and direction (positive, negative). Through their ability to categorize and comprehend
the economic implications of news, LLMs generate insights that surpass traditional methodologies, revealing the
underlying mechanisms driving market behavior. This allows for a more detailed assessment of how specific pieces

3



of information influence particular firms, providing a richer and more precise picture of market dynamics. As our
benchmark, we employ a vector-based approach that represents each news article as a high-dimensional embedding
vector using a sentence transformer. This benchmark choice serves two key purposes. First, it offers greater
granularity and sophistication compared to traditional methods like sentiment analysis and topic modeling. Second,
it provides theoretical consistency with our LLM-based approach, as vector embeddings constitute the first layer
of an LLM’s architecture. This parallel allows us to effectively compare the predictive power of the LLM’s initial
representation (vector embeddings) with its final output (economically structured news classification). Through
this comparison, we can assess whether incorporating economic structure in the LLM processing step enhances our
ability to predict market reactions to news.

To evaluate the timing ability of our proposed methodology, we develop a trading strategy that builds on the
traditional portfolio sorting approach. While conventional strategies sort stocks based on firm characteristics, we
instead sort based on news clusters. For the benchmark (vector embeddings), we employ KMeans clustering, while
our LLM methodology clusters articles by shock categories. We identify the best and worst-performing clusters
by analyzing the stock price responses of affected firms, then construct a long-short portfolio strategy that takes
long positions in the best-performing clusters and short positions in the worst-performing ones. The profitability of
this strategy serves as a measure of each clustering methodology’s ability to identify economically meaningful news
patterns that translate into improved market timing abilities. Our findings reveal that while the vector-based model
successfully identifies firm- and industry-specific clusters, its trading signals lack persistence. The model’s reliance
on historical firm and industry performance patterns generates ephemeral signals that do not translate well to future
market conditions. In contrast, our LLM-based methodology produces clusters based on economically meaningful
shock classifications, resulting in more persistent trading signals. The superior out-of-sample performance of our
LLM-based trading strategy demonstrates its enhanced capability to capture and interpret market reactions to
news, underscoring the advantages of incorporating economic structure into news analysis.

The objective of this paper is not to parse the largest dataset available or to develop a realistic trading strategy
with commercial application. Rather, it aims to introduce a novel methodology for analyzing news articles in a
granular and firm-specific manner, demonstrating its utility through a reduced dataset. By focusing on a smaller,
high-quality dataset, the study emphasizes methodological rigor and interpretability. The findings are intended
to contribute to a more nuanced understanding of how market participants process news, using a simple trading
strategy to illustrate the potential of this approach in capturing the complexities of information processing in
financial markets. This methodological contribution lays the groundwork for future research that could extend
these techniques to larger datasets and more complex trading applications, ultimately enhancing our ability to
understand and predict market behavior in response to news.

The remainder of this paper is organized as follows: Section 2 presents the dataset and preprocessing steps.
Section 3 provides a mathematical framework for analyzing news articles. In Section 4, we focus on clustering
news articles – first presenting the benchmark framework using KMeans clustering of vector embeddings, followed
by our novel LLM-based methodology. Section 5 details the construction of a simple trading strategy, including
market-beta-neutral positions for each firm-article pair, extraction of cluster-average Sharpe Ratios, and selection
of optimal clusters based on two proposed algorithms. In Section 6, we perform robustness checks by examining the
sensitivity of our results to hyperparameter variations. Finally, Section 7 concludes and discusses the implications
of our findings
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2. Data
This paper employs a dataset of Spanish business news articles sourced from Dow Jones Newswires, covering the

period from June 24, 2020, to September 30, 2021. The selection of this timeframe is deliberate, driven by two key
considerations. First, given the substantial computational demands of LLM-based analysis, we strategically focus on
a smaller, carefully curated dataset. This deliberate scope reduction allows us to thoroughly demonstrate our novel
methodology’s effectiveness in decoding market-news relationships while keeping computational costs manageable.
Second, we specifically chose the Covid-19 era to test our methodology’s extrapolative capabilities during periods
of significant market instability and volatility. While existing textual algorithms typically perform well in stable
market conditions, they often struggle to generalize effectively during periods of heightened uncertainty. By focusing
on this volatile period, we can better assess our methodology’s robustness and its ability to maintain predictive
power under challenging market conditions.

The dataset consists of high-quality articles that have been filtered to include only those mentioning Spanish
publicly traded firms listed on the IBEX-35 index. These 35 companies represent the largest firms in Spain by market
capitalization and are typically the most liquid and actively traded Spanish stocks. Moreover, these companies tend
to receive the most consistent media coverage, making them ideal for the scope of our analysis.

The use of Dow Jones Newswires as our news source is also intentional. Dow Jones has a standard practice
of including the stock market ticker of firms directly affected by the article in parentheses, while excluding firms
mentioned for secondary purposes from ticker specification. This feature significantly facilitates the extraction of
named entities (i.e., Named Entity Recognition, or NER). The tickers used by Dow Jones align with those from
Yahoo Finance, enabling seamless integration between our NER algorithm and subsequent firm-specific trading
operations via the Yahoo Finance API. We employ a pattern recognition algorithm through the regex library in
Python to identify specific mentions of publicly traded companies in the Spanish stock exchange. The algorithm
searches for patterns of the form “(<WORD>.MC)” for any <WORD>. For instance, consider the following example
article (translated into English for convenience):

Example 1: An article about ACS and Acciona (translated into English)

ACS and Acciona Secure Contracts for New Australian Airport
A consortium of Actividades de Construcción y Servicios SA (ACS.MC) and Acciona SA
(ANA.MC) has won a contract to build the operations area of the Western Sydney Interna-
tional Airport (Nancy-Bird Walton) and carry out paving works, amounting to AUD265 million
(EUR164 million) for the Australian subsidiary CIMIC Group Ltd (CIM.AU). CIMIC will carry
out the work through its subsidiary CPB Contractors, as stated in a press release. This is the
third project awarded by Western Sydney Airport to the joint venture after being selected to carry
out earthworks. Construction will take two years, and the Western Sydney airport is expected to
open in 2026.

Our NER algorithm applied to Example 1 successfully identifies the Spanish firms ACS.MC (Actividades de
Construcción y Servicios SA) and ANA.MC (Acciona SA) while disregarding the Australian CIM.AU (CIMIC Groups
Ltd). To further ensure the reliability of firm identification, we validate the extracted entities using a Large Language
Model (LLM). In particular, we feed the articles to the LLM, which parses them according to a predefined schema.
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As we will see later, the first task in this schema is to identify the listed Spanish firms directly affected by the events
described in the article. Finally, the identified firms are filtered against a dynamic list of IBEX-35 members. Due
to the high quality of the dataset, the correlation between entities identified by the LLM and those extracted via
pattern recognition is almost exact.

For subsequent analysis, we partition the dataset into three splits: Train, Validation, and Test. Each split serves
a distinct purpose that will be explained in detail as we progress through the paper. Summary statistics for each
data split are provided in Table 1.

[Insert Table 1 about here]

The most frequently used words in the whole dataset are depicted in Figure 1 by means of a WordCloud.
As shown, the most prominent words include “empresa” (firm), “compañía” (company), and “españa” (Spain),
reinforcing that the dataset primarily comprises Spanish business news, with a prevalence of technical terms such
as “beneficio neto” (net profit), “precio objetivo” (target price), “proyecto” (project), and “operación” (operation).

[Insert Figure 1 about here]

The distribution of the number of articles published per day is illustrated in Figure 2a, showing that the most
frequent publication rate is between 5 and 10 articles per day, though some days exhibit unusually high publication
counts. Figure 2b shows the distribution of the number of words per article, with the majority of articles containing
between 70 and 280 words. This indicates that the articles are relatively succinct, providing direct information.
However, the long right tail points to instances of more comprehensive coverage.

[Insert Figure 2 about here]

The time series of the number of articles published per day throughout the sample period is shown in Figure 3.
The series exhibits considerable variability, with frequent fluctuations from fewer than 5 articles per day to sudden
spikes exceeding 20 articles. The 30-day moving average smooths the series, confirming the previous observation
that, on average, between 5 and 10 articles are published daily.

[Insert Figure 3 about here]

Data Availability. The dataset used in this study contains confidential information provided under agreements
with the Bank of Spain and Dow Jones Newswires, and cannot be shared publicly or with third parties. Interested
readers may access the same data from Dow Jones Newswires for a fee.

3. Mathematical Treatment of News Articles
Our dataset consists of N = 2, 613 Spanish business news articles sourced from DowJones and spanning the

period from 2020/06/24 to 2021/09/30. We denote as D the set of all articles in our sample. These articles have
been specifically filtered to reference firms listed on the IBEX-35. Let FIBEX35 denote the universe of such firms.
Each article i ∈ D is a textual document detailing an event that directly pertains to a subset of firms F i ⊆ FIBEX35.
The publication date and time of each article are represented as Yi

0 = 〈di
0, ti

0〉, where di
0 captures the date (YYYY-

MM-DD) and ti
0 captures the time (HH:MM) of publication. Therefore we observe the moment at which F i receives

the “treatment” of public news dissemination.
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Data Splitting
For robust model development and evaluation, the dataset is partitioned into three sequential subsets: training,

validation, and test: D := Dtr ∪Dval ∪Dtest. Define Nsplit := |Dsplit| for split ∈ {tr, val, test}, where |·| denotes the
cardinality of a set. The training and validation sets collectively comprise 80% of the total dataset ( Ntr+Nval

N = 0.8)
and are instrumental in constructing and fine-tuning the trading strategy. The remaining 20% ( Ntest

N = 0.2) is
reserved for out-of-sample testing to assess the performance and generalizability of the strategy under unseen
conditions.

Effective treatment day
We are interested in examining the impact of each news article i ∈ D on the stock price of the firms that are

affected directly (i.e.: all j ∈ F i). Since the publication datetime is not necessarily a trading datetime, we cannot
directly gauge such an effect by looking at Yi

0. For this reason, we need to work through some definitions. Let T
denote the set of all datetimes in the sample timeline and let 󰁨T ⊂ T be the subset of Spanish trading datetimes
associated to our sample.

󰁨T :=
󰀋

〈d, t〉 | d ∈ d̃ ∧ t ∈ t̃
󰀌

,

where d̃ := {d̃[1], d̃[2], . . . d̃[n]} is the ordered set of week and non-festive days according to the Spanish calendar in
our data timeline, and t̃ := {t | 09:30 ≤ t ≤ 17:30} are the Spanish stock market trading hours. Note that we use
tildes to emphasize that we are considering trading dates or times.

Throughout our analysis, we will work with daily stock market closing data for each trading day. However, we
will exploit the time component of Yi

0 to assign an “effective treatment date” to each article. Namely, define d̃i
0 as

the day at which article i’s information can be incorporated into the stock market; then, d̃i
0 is the publication date

if the article was published on a trading day before the stock market was closed, and is equal to the next closest
trading day otherwise. To compute the next closest trading day to d ∈ d within d̃, we need to work with a function
Λ : d → d̃ such that Λ(d) := min{d̃ ∈ d̃ | d̃ ≥ d}. Thus, now we can define:

d̃i
0 :=

󰀫
di

0 if di
0 ∈ d̃ ∧ ti

0 < 17:30
Λ(di

0) if di
0 ∕∈ d̃ ∨ ti

0 ≥ 17:30
.

4. Clustering News Articles
In this section we present our clustering methodology based on news-implied firm-specific shock classifications

and we compare it against a benchmark based on clustering the vector embedding representations of the articles.
For ease of exposition, we will first present the benchmark model.

4.1. Benchmark: KMeans clustering of vector embeddings
4.1.1. Why this benchmark?

In evaluating our novel Large Language Model (LLM) methodology for classifying news-implied firm-specific
shocks, we selected KMeans clustering of high-dimensional vector embeddings as the benchmark over alternatives like
sentiment analysis and topic modeling. Sentiment analysis, while straightforward, lacks the necessary granularity,
offering only positive, negative, or neutral classifications, which is insufficient to compare with our granular LLM-
based economic shock classification. Additionally, sentiment analysis focuses on the emotional tone rather than the
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economic impact, it is prone to inconsistencies due to linguistic nuances and it can deliver very different outcomes
depending on the specific sentiment analysis tool employed.

On the other hand, topic modeling provides more detailed classifications than sentiment analysis but relies on
bag-of-words representations that fail to capture complex semantic relationships and contextual nuances essential
for identifying economic shocks accurately. Vector embeddings, particularly those generated by transformer-based
models, offer enhanced semantic representation by capturing context-dependent meanings and scaling efficiently with
large datasets, making them more flexible and adaptable for clustering and classification. Although embeddings
lack inherent interpretability, this issue is addressed by clustering, which allows us to infer meaningful firm-specific
or industry-specific patterns from the grouped articles.

Lastly, using embeddings as a benchmark is particularly compelling because they represent the foundational
layer of an LLM. Namely, the first step in an LLM’s processing pipeline is to transform the text that it is fed
into embeddings for further processing. By benchmarking against embeddings, we ensure a direct and relevant
comparison between the foundational representations used by LLMs and our specialized classification methodology.
This comparison highlights the added value of the LLM’s capacity to convert these semantic representations (i.e:
the vector embeddings) into economically meaningful classifications. (i.e: our news-implied firm-specific shock
classifications). Consequently, KMeans clustering of vector embeddings provides a robust, scalable, and economically
pertinent benchmark, superior to sentiment analysis and topic modeling, for assessing our LLM-based classification
of news-implied firm-specific shocks. A more detailed discussion can be found in Appendix A.7.

4.1.2. Vector embeddings: “Transforming text into high-dimensional vectors”
Any piece of text can be represented as a high-dimensional vector embedding by using a transformer. Trans-

formers are a type of deep learning architecture introduced by [30] Vaswani et al. (2017) which have revolutionized
natural language processing (NLP). The core idea behind them is the self-attention mechanism, which allows the
model to weigh the importance of different words in a sentence when generating a representation for each word.
This mechanism enables transformers to capture long-range dependencies and contextual relationships within the
text more effectively than previous models like recurrent neural networks (RNNs).

A transformer model consists of an encoder (and potentially, a decoder as well) composed of multiple layers of
self-attention and feedforward neural networks. In our context, we primarily use the encoder to convert a piece
of text into a fixed-size vector, known as an embedding. Since our articles are written in Spanish, we employ a
Multilingual Sentence Transformer, which has been trained on text from multiple languages.

For every news article i ∈ D, we obtain a representative vector embedding ei ∈ R512 that provides a numerical
representation of various aspects of the text, such as syntactic structure, semantic content, and contextual nuances.
While it is challenging to assign a specific human-readable meaning to each of the 512 components, we can interpret
the vector as a whole in various ways:

• Semantic Similarity: Similar articles will have similar embeddings. For instance, if one article discusses
a company’s quarterly earnings and another article discusses the same company’s annual earnings, their
embeddings will be close in the 512-dimensional space.

• Topic Clustering: Articles on similar topics will cluster together. For example, articles about financial markets
might cluster in one region of the embedding space, while articles about mergers and acquisitions cluster in
another.
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• Sentiment Analysis: Different regions of the embedding space can implicitly represent different sentiments.
Articles with positive news might cluster in one area, while those with negative news cluster in another.

4.1.3. Clustering embeddings with KMeans
With the numerical representation of each article in the form of embeddings {ei}i∈D, we now seek to identify

groups of similar articles. Namely, we use the KMeans algorithm, a popular clustering method that assigns a
set of vectors into k clusters GKMeans := {0, 1, ..., k − 1} to minimize the within-cluster sum of squares (WCSS).
The implementation of this clustering algorithm is methodically presented in Appendix Algorithm 1. Each cluster
g ∈ GKMeans defines a centroid cg, which is the average vector of all the members of a cluster. In the first step, we
apply the algorithm to the training data (Dtr).

min
{Dtr

g },{cg}

󰁓k
g=1

󰁓
i∈Dtr

g
󰀂ei − cg󰀂2

2

s.t.

󰁖k
g=1 Dtr

g = Dtr

Dtr
g ∩ Dtr

h = ∅ ∀g, h ∈ GKMeans : g ∕= h

.

The optimal number of clusters k∗ in this algorithm is to be set exogenously. Here, we take it to maximize the
average silhouette score in the training sample over some grid k of cluster sizes k:

k∗ := arg max
k∈k

1
|Dtr|

󰁛

i∈Dtr

sk(ei) .

The silhouette score sk(ei) ∈ [−1, 1] measures how well an embedding is clustered by comparing its similarity to
its own cluster (intra-cluster distance) with its similarity to the nearest other cluster (inter-cluster distance). A
clustering configuration with a higher average silhouette score (close to +1) is considered better because it indicates
that clusters are dense and well-separated. Formally, the silhouette score is defined as

sk(ei) :=
bk

󰀃
ei

󰀄
− ak

󰀃
ei

󰀄

max {ak (ei) , bk (ei)} ,

where, for i ∈ Dtr
g , the intra-cluster distance is defined as ak(ei) := (|Dtr

g | − 1)−1 󰁓
m∈Dtr

g ,m ∕=i 󰀂ei − em󰀂2 and it
represents the average distance from an embedding ei to all other embeddings in the same cluster, while the inter-
cluster distance is bk(ei) := minl ∕=g(|Dtr

l |)−1 󰁓
m∈Dtr

l
󰀂ei − em󰀂2 and it represents the minimum average distance

from an embedding ei to all embeddings in the nearest different cluster.
In Figure 4 we plot the average silhouette score for Dtr computed over a grid k ranging from 2 to 100. The

vertical dashed green line signals the maximizer of the grid, which corresponds to a cluster size of k∗ = 26.

[Insert Figure 4 about here]

Given the optimal number of clusters k∗, we fit the KMeans algorithm on the training embeddings {ei | i ∈ Dtr}
to obtain the centroids {ctr

1 , ctr
2 , . . . , ctr

k∗}. Following Algorithm 1. (detailed in Appendix A.1):

{ctr
1 , ctr

2 , . . . , ctr
k∗} = KMeans({e1, e2, . . . , eNtr }, k∗) .

We then find the cluster associated to each embedding ei in the validation set {ei | i ∈ Dval} according to the
centroids resulting from clustering the training data {ctr

1 , ..., ctr
k∗}. This allows us to obtain the clustering of the

news articles in the validation sample

Dval
g =

󰀝
i ∈ Dval

󰀏󰀏󰀏󰀏 g = arg min
ℓ∈G

󰀂ei − ctr
ℓ 󰀂2

2

󰀞
∀g ∈ GKMeans.
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Similarly, by assigning each embedding ei ∈ {ei | i ∈ Dtest} to the nearest centroid ctr
g , we obtain the clusters

in the test set
Dtest

g =
󰀝

i ∈ Dtest

󰀏󰀏󰀏󰀏 g = arg min
ℓ∈G

󰀂ei − ctr
ℓ 󰀂2

2

󰀞
∀g ∈ GKMeans.

[Insert Figure 5 about here]

In Figure 5 we can see that the distribution of articles in the whole sample (D) is fairly homogenous across the
26 clusters, with each cluster containing between 50 and 250 articles on average. The notable exceptions are cluster
3, which contains only 24 articles, and cluster 4, which concentrates 428 articles. However, the distribution profile
is not consistent over data splits, which indicates that this classification procedure is unstable over time.

Although not directly interpretable, by looking at the articles pooled in a certain cluster, we can provide some
intuition of what it represents. In most cases, each cluster contains articles involving a firm or set of firms in
the same sector. For example, cluster 3 pools articles about Telefónica and Cellnex (telecoms), cluster 4 contains
articles about CaixaBank, cluster 9 concentrates articles about Repsol, cluster 12 about Iberdrola, cluster 15 gathers
articles on Infrastructure (led by ACS and Acciona) and so on.

However, there are some exceptions to this general rule, for example, cluster 0 is a “miscellanous” cluster: it
covers articles about different firms with no apparent relation between them. Another example is cluster 1, which
pools articles related to the quarterly or semiannual publication of results by different firms. In Appendix Table A1
we provide a sample of 3 articles for each cluster and propose a name for each one based on the articles they pool.

4.2. LLM-based approach: “What if an LLM reads the news?”

One may wonder whether empowering an LLM to parse news articles according to a predefined schema that
guides it in ellucidating news-implied firm-specific shocks can deliver better insights on how markets react to new
information. In this section we will briefly introduce what Large Language Models are, how they have evolved and
then, we will dive into how we can guide them to produce an economically structured analysis of business news.

4.2.1. Large Language Models
In natural language processing (NLP), Large Language Models (LLMs) are designed to “understand” and gener-

ate human-like text. These models utilize the transformer architecture, which excels in modeling complex language
tasks by capturing long-range dependencies and contextual relationships.

At the heart of LLMs lies the concept of tokens, which serve as the elemental units of text. Tokens can be
individual words, subword units, or characters. Let x1:n := {x1, x2, . . . , xn} represent a sequence of tokens. The
goal of an LLM is to estimate the probability distribution of the next token xn+1 conditioned on the previous tokens
x1:n

P [xn+1 | {x1, x2, . . . , xn}] .

An LLM is a neural network architecture designed to learn and approximate this conditional probability dis-
tribution over sequences of tokens with a large number of parameters Θ. Namely, we can formulate an LLM as a
parameterized function fΘ that maps a sequence of tokens {x1, x2, . . . , xn} to a probability distribution over the
vocabulary, where the parameters Θ are learned from a large corpus of text training data.

fΘ : {x1, x2, . . . , xn} → P [xn+1 | {x1, x2, . . . , xn} ; Θ]
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Interacting with an LLM involves specifying a prefix sequence x1:n, termed the “prompt”, and sampling the
subsequent tokens xn+1:z, known as the “completion”. This process enables users to guide and control the generation
of text according to desired contexts and constraints.

{x1, . . . , xn}󰁿 󰁾󰁽 󰂀
prompt

−→ {xn+1, . . . , xz}󰁿 󰁾󰁽 󰂀
completion

4.2.2. Evolution of LLMs
The transformer architecture, introduced in the seminal work “Attention Is All You Need” ([30] Vaswani et

al., 2017), revolutionized LLM development due to its superior handling of long-range dependencies and efficient
parallelization of computations. Subsequent advancements include the encoder-only BERT model ([31] Devlin et al.,
2018), showcasing the power of pre-training on large datasets for fine-tuning on specific tasks.

Conversely, OpenAI’s GPT series ([32] Radford et al., 2018) demonstrated the potential of decoder-only models
for generative tasks. In particular, the release of GPT-3 marked a significant leap in LLM capabilities with its 175
billion parameters and remarkable few-shot learning abilities. This model highlighted the importance of prompt
engineering, where carefully crafted prompts can guide model outputs without extensive fine-tuning.

The trend towards open-source models like BLOOM ([33] Le Scao et al., 2023), Mixtral and Meta’s Llama series
([34] Touvron et al., 2023) emphasizes accessibility and transparency in LLM development. The latest models,
including OpenAI’s GPT-4o and GPT-o1, Google’s Gemini and Mixtral and Gemma, Anthropic’s Claude 3.5 Sonnet,
and Meta’s Llama-3 series continue to push boundaries with improved accuracy, multimodal capabilities, and larger
context windows.

4.2.3. Function Calling with Llama-3
In our endeavor we will employ Llama-3, developed by Meta AI and released on April 18, 2024 1 . This model

has been pre-trained on approximately 15 trillion tokens of text gathered from “publicly available sources” and it
comes in two sizes: 8 billion and 70 billion parameters. In this application, we will employ the 70B version, which
we will access through an API via GroqCloud.

Moreover, we will employ a function calling approach to streamline the process of interacting with the LLM.
This implies prespecifying a set of functions to the LLM that will then be passed through our dataset of news
articles to obtain a structured output in JSON format. The formal procedure is thoroughly described in Appendix
Algorithm 4.

Each article i ∈ D implies a conversation with the LLM. The structure of the conversation implies defining first
a “system message”, which provides a general context and purpose to the model. In our case:

− You are a function calling LLM that analyses business news in Spanish.
− For every article, you must identify the firms directly affected by the news. Do not include every firm
mentioned in the article, only include those that are directly affected by the shocks narrated therein.
− The identified firms must be Spanish and should be publicly listed in the Spanish exchange (their ticker
is of the form ‘TICKER.MC’). Do not include non-Spanish foreign firms. Do not include Spanish firms

1 “Introducing Meta Llama 3: The most capable openly available LLM to date” [April 18, 2024]
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that are not publicly traded.
− For each identified firm, classify the shocks that affect them (type, magnitude, category). The type of
shock can be ‘demand’, ‘supply’, ‘financial’, ‘policy’, or ‘technology’. The magnitude can be ‘minor’ or
‘major’. The direction can be ‘positive’ or ‘negative’.
− If a firm is affected neutrally by the news article, don’t include it in the analysis.

Then, a news article is fed to the LLM. For illustration purposes, we will work with Example 2:

Example 2: An article about Cellnex and Telefónica (translated into English)

Cellnex will face more competition in Europe
Telefónica’s (TEF.MC) subsidiary, Telxius Telecom, has agreed to sell its telecommunications
tower division in Europe and Latin America to American Tower (AMT), which will expand the
latter’s presence in Europe and increase competition for the Spanish wireless telecommunications
group Cellnex Telecom (CLNX.MC), according to Equita Sim. The transaction "represents the
entry of a new independent tower operator into the Spanish market and potentially more compe-
tition for future growth in the European market as well," says the brokerage firm.

Next, we define an umbrella function “firms”, which asks the LLM to identify the set F i
LLM for each i ∈ D.

Then, for each j ∈ F i
LLM we ask the LLM to categorize the type, expected magnitude, and expected direction that

the shock described in the article implies in that particular firm j.

[Insert Table 2 about here]

The function calling schema is outlined in Table 2. First, we need to prompt the LLM, and then we need to
specify the desired format of its response. The “Options” column imposes the answer format that the LLM must
follow. For example, in firms, the “array” option indicates that the answer must be an enumeration of firms,
while the “string” option in the subfunctions firm and ticker indicates that the answer must be a single name.
Finally, the shock_ subfunctions ask the LLM to choose from a predefined set of possible responses.

Note that the firms identified by the LLM are used to validate the firms identified by the pattern recognition
algorithm (those extracted with regex by exploiting the pattern <WORD>.MC). As mentioned earlier, given the high
quality of the filtered dataset (the ticker of the firms that are actively involved in the article are explicitly stated),
they are almost identical. Hence, we indistinctively use Fi to simplify notation.

The LLM provides two outputs: structured data (“Structured Output”) and a explanatory text describing its
reasoning (“Unstructured Ouptut”). The explanations help us verify if the model correctly understands how to use
the function-calling schema and follow system instructions. To assess the LLM’s understanding, we review a random
sample of these explanations and look for patterns of misinterpretation, confusion, or hallucination. If we identify
such issues, we refine the system prompts and function descriptions to provide clearer guidance. This iterative
prompt refinement continues until the LLM reliably generates correct outputs across multiple test scenarios.

1) Structured Output:
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firm ticker shock_type shock_magnitude shock_direction

Cellnex Telecom CLNX.MC supply minor negative
Telefónica TEF.MC financial minor positive

2) Unstructured Output (justification)

The news about American Tower’s expansion in Europe may increase competition for Cellnex, which is
why it’s classified as a negative supply shock. On the other hand, Telefónica benefits from the sale of its
tower division, which is why it’s classified as a positive financial shock.

This procedure is run iteratively from beginning (defining system prompt) to end (getting the output) for every
i ∈ D.2

4.2.4. Clustering with the LLM
Formally, we can define the set B := {(i, j) | i ∈ D ∧ j ∈ F i} containing all the unique pairs of articles and

identified firms. The LLM assigns each pair (i, j) ∈ B with a choice from each of the following sets:

“shock type” ST := {demand, supply, financial, technology, policy}

“shock magnitude” SM := {minor, major}

“shock direction” SD := {positive, negative}

The clustering of news articles follows naturally by taking the Cartesian product of these three sets: GLLM :=
ST × SM × SD, and the total number of clusters is now kLLM = |GLLM | = 20. Consequently, a news article to
which the LLM assigns sT ∈ ST , sM ∈ SM , sD ∈ SD will belong to cluster (sT , sM , sD) ∈ GLLM . Formally, the set
of all possible clusters is defined as:

GLLM := {(sT , sM , sD) | sT ∈ ST , sM ∈ SM , sD ∈ SD} ,

and each cluster can then be mapped to a positive integer as GLLM → {k ∈ N0 | 0 ≤ k ≤ 19}. A representative
sample of 3 articles from each cluster is provided in Appendix Table A2.

In Figure 6 we plot the distribution of news articles through clusters. As we can see, most articles are assigned
to clusters 8, 9, 10, and 11, which are the clusters referred to financial events or shocks. Such clusters are mostly
composed of articles about the publication of quarterly and semiannual results. More specifically, cluster 8 (financial,
minor, positive) concentrates around 1/3 of the sample and is associated to the publication of results that mildly
surpass the expectations of investors, hence, making this cluster a good candidate for a long trading signal.

On the other hand, other clusters such as 16 (policy, minor, positive) and 0 (demand, minor, positive) also
concentrate a big share of news. Note that no cluster has been assigned to cluster 13 (technology, minor, negative).
Compared to KMeans clustering with embeddings, the distribution of articles across these refined clusters is now
remarkably stable across different data splits. This consistency indicates that clustering based on a thorough
analysis of the shocks implied by each article for the affected firms yields a robust, time-invariant categorization.
This is an encouraging finding for subsequent research and applications.

[Insert Figure 6 about here]

2 This procedure was run on a MacBook Pro M2 with 16GB RAM, 12-core central processing units (CPU), 19-core graphics processing
units (GPU), and 16-core Neural Engine.
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5. Trading Strategy
5.1. Beta-neutral positions on every (i, j) ∈ B

Since we are interested in the individual effect of an article i ∈ D in each of the affected firms j ∈ F i, we work
with the set B :=

󰀋
(i, j) | i ∈ D ∧ j ∈ F i

󰀌
, where |B| = 3410 > |D| = 2613. We then fit a market model to each

unique pair (i, j) ∈ B on some window of time Mi ⊂ d̃ before the effective treatment day,3

rj
d = α(i,j) + β(i,j)rM

d + 󰂃
(i,j)
d ∀d ∈ Mi,

where rj
d denotes the return of firm j at trading day d in excess of the risk-free asset, which we take to be the daily

euro short-term rate (eSTR), and rM
d denotes the excess return of the market (IBEX-35). These returns are obtained

from the adjusted close price, which corrects the price evolution for corporate actions such as dividends, stock splits,
and new stock issuance.4 The notation overload in the regression coefficients (α(i,j), β(i,j)) emphasizes the fact that
α and β are specific to each pair (i, j) ∈ B since the market model is computed for each firm j ∈ FIBEX-35 on a
window of time Mi, which is particular to each article i ∈ D.

The reason why we fit a market model to each (i, j) ∈ B is to then apply a market-neutral strategy as in
[26] Chan (2003) and [35] Jiang et al. (2021). This is an investment approach designed to minimize or eliminate
exposure to overall market movements, isolating the performance of a specific firm. In particular, we employ a
beta-neutral strategy by buying one unit of firm j’s stock and shorting β(i,j) units of the market index (i.e.: an
ETF replicating the IBEX-35). This hedged position harvests the idiosyncratic returns from the market model and
it only makes sense when firm j’s returns are expected to outperform or underperform the market.5 The position
delivers abnormal returns AR

(i,j)
d at some trading day d ≥ d̃i

0 given by

rj
d − β(i,j)rM

d = α(i,j) + 󰂃
(i,j)
d =: AR

(i,j)
d .

The position is taken at the effective treatment date d̃i
0 and is maintained over a holding window Hi ⊂ d̃ consisting

of L ∈ N trading days after d̃i
0, where L is set to 4 trading days.6 The justification for this choice of L results

from the maximization of the Sharpe Ratio of the portfolio in the train and validation samples for both KMeans
and LLM-based clustering 7 After having held the beta-neutral position over the holding period Hi, we obtain a
time series of abnormal returns {AR

(i,j)
d }d∈Hi from where we can obtain the usual performance metrics. First, the

average daily log returns are obtained as

µ(i,j) = 1
L + 1

󰁛

d∈Hi

ln
󰀃
1 + AR

(i,j)
d

󰀄
,

3Mi is a window of wm = 100 days formed with a buffer of wb = 10 days before the effective treatment date d̃i
0. Formally, it is

defined as Mi := {d ∈ d̃ | I−1
d̃

(Id̃(d̃i
0) − wb − wm) ≤ d ≤ I−1

d̃
(Id̃(d̃i

0) − wb)}, where Id̃ maps an element d ∈ d̃ to its position in d̃ and I−1
d̃

does the inverse mapping.
4 The adjusted close price ensures that the returns reflect the true economic gains or losses for an investor holding the stock. Formally,

the return of firm j between two trading days d1, d2 ∈ d̃ is computed as: rj
d1:d2

= (pj,adj
d2

− pj,adj
d1

)/(pj,adj
d1

) where pj,adj
d

is the adjusted
close price of firm j at trading day d.

5 For expected underperformance of firm j, reverse the beta-neutral positions: sell one unit of firm j and buy β(i,j) units of the
market index. However, note that this will be handled later by a Trading Rule (T R).

6 The holding period of the position is defined as Hi := {d ∈ d̃ | d̃i
0 ≤ d ≤ I−1

d̃
(Id̃(d̃i

0) + L)}
7 The choice of L is justified in detail in Appendix A.2. The sensitivity of the trading strategy’s out-of-sample performance to

different values of L is examined in Section 6 (“Robustness Checks”).
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Then, the standard deviation is given by

σ(i,j) =
󰁶

1
L

󰁛

d∈Hi

[ln(1 + AR
(i,j)
d ) − µ(i,j)]2 .

And finally, the annualized Sharpe Ratio can be obtained by scaling the daily Sharpe Ratio by the square root
of 252, which are the typical number of trading days in a year according to the Spanish calendar.

SR(i,j) =
√

252 µ(i,j)

σ(i,j) .

5.2. Optimal Cluster Selection
After taking beta-neutral positions on each pair (i, j) ∈ B and holding them over some window Hi, we can

obtain a measure of how profitable the positions are on average for articles that belong to the same cluster. For
this purpose, let Bg denote the set of all article-firm pairs such that the article belongs to some cluster g ∈ G.

Bg := {(i, j) | (i, j) ∈ B ∧ i ∈ Dg}.

The average Sharpe Ratio associated to each cluster is

SRg = 1
|Bg|

󰁛

(i,j)∈Bg

SR(i,j),

and it provides a measure of the performance of the beta-neutral positions in each cluster. The distribution of
cluster-average Sharpe Ratios across the different clusters is shown in Appendix Figure A.5.

We then focus on developing two algorithms that optimally leverage the cluster information for our trading strat-
egy. Our approach draws parallels with traditional portfolio sorting methods, where assets are typically arranged
into deciles based on specific characteristics, and trading positions are established by going long on top deciles and
short on bottom ones. Similarly, our strategy will construct self-financing portfolios based on clusters rather than
individual assets: taking long positions in clusters expected to outperform and short positions in those expected
to underperform. To identify the optimal clusters for trading, we propose two distinct algorithmic approaches.
The first approach, which we term “greedy”, selects clusters by maximizing the Sharpe Ratio within the validation
dataset. The second approach, termed “stable”, utilizes a broader information set by incorporating both training
and validation data, aiming to identify clusters that maintain consistent performance across both splits. In both
algorithms, we impose sign restrictions to ensure that our trading positions align with the expected direction of
returns.

5.2.1. Greedy Algorithm
The greedy selection of clusters is done in the validation sample Bval := {(i, j) ∈ B | i ∈ Dval} , from where

we compute the cluster-average SR
val

g for each g ∈ G. Define Gval
SR+ := {g ∈ G | SR

val

g > 0} and Gval
SR− := {g ∈ G |

SR
val

g < 0} as the sets of clusters with positive and negative Sharpe Ratios in the validation sample. Obviously,
we will be interested in taking long positions when reading an article that is clustered in some g ∈ Gval

SR+ , and short
positions in clusters g ∈ Gval

SR+ . However, our trading strategy will not trade every cluster g ∈ G. Instead, it will
select the clusters from GSR+ and GSR− that lead the to most profitable trades. To identify such clusters, we rank
them by their average Sharpe Ratio. Define the ranking function R : G → {1, . . . , k∗} such that

Rval
g =

󰁛

h∈G
1

󰀓
SR

val

h ≥ SR
val

g

󰀔
,
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where 1(·) is the indicator function which equals 1 if the condition inside is true and 0 otherwise.

The number of traded clusters on either side (long and short) will be upper-bounded by some hyperparameter
of our choice θ ∈ N which we set proportional to the number of clusters. Namely, θ = ⌊ρk⌋ for some ρ ∈ (0, 1),
which has been set to ρ = 0.5 to maximize the Sharpe Ratio of the trading strategy in the training and validation
samples 8. The actual number of traded clusters will not be exactly θ as there is a natural bound coming from
the cardinalities of GSR+ and GSR− . Hence, the actual number of long and short-traded clusters will be θ+ :=
min(θ, |GSR+ |) and θ− := min(θ, |GSR− |). The set of traded clusters Gθ is defined as

Gθ :=
󰀋

g ∈ G | 1 ≤ Rval
g ≤ θ+ ∨ k∗ − θ− < Rval

g ≤ k∗󰀌
= G+

θ ∪ G−
θ ,

where G+
θ := {g ∈ G | 1 ≤ Rval

g ≤ θ+} is the set of long-traded clusters, G−
θ := {g ∈ G | k∗ − θ− < Rval

g ≤ k∗} is the
set of short-traded clusters and, clearly, |Gθ| = θ+ + θ−.9 In Appendix Algorithm 2., we can find the formal design
of this algorithm.

5.2.2. Stable Algorithm
In this case, we prioritize the stability of the cluster rankings by ensuring that the traded clusters minimize the

rank difference of the cluster-average Sharpe Ratios between the training and validation samples. To begin, we
compute the rank of each cluster based on the average Sharpe Ratios in both the training and validation samples.
This delivers {Rtr

g }g∈G and {Rval
g }g∈G , which provides a measure of the relative performance of the clusters within

each sample.

Next, we calculate the absolute difference in ranks between the training and validation samples for each cluster,
which allows us to measure the stability of each cluster’s performance between the two samples

δg := |Rtr
g − Rval

g | .

Clusters are then sorted based on their rank differences δg in descending order. To do this, we can simply
compute the ranking of the ranking differences as

R(δg) :=
󰁛

h∈G
1 (δg ≥ δh) .

Next, we select the top 2θ ∈ N clusters with the smallest rank differences, indicating the most stable clusters across
the training and validation samples. The selected clusters now are

Gθ = {g ∈ G | 1 ≤ R(δg) ≤ 2θ} .

Finally, we determine the sets of long and short-traded clusters based on the average Sharpe Ratios in both the
training and validation samples. In particular, the set of long-traded clusters (G+

θ ) are the ones that have positive
average Sharpe Ratios in both, training and validation samples

G+
θ = {g ∈ Gθ | SR

tr

g > 0 ∧ SR
val

g > 0},

8 The choice of θ is justified in detail in Appendix A.2. The sensitivity of the trading strategy’s out-of-sample performance to
different values of θ is examined in Section 6 (“Robustness Checks”).

9 Alternatively, we could trade the same number of clusters in the long and short side by defining a unique θ∗ :=
min (θ, |GSR+ |, |GSR− |) such that Gθ :=

󰀋
g ∈ G | 1 ≤ Rval

g ≤ θ∗ ∨ k∗ − θ∗ < Rval
g ≤ k∗

󰀌
and |Gθ| = 2θ∗.
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and by symmetry, short-traded clusters (G−
θ ) are the ones that have negative average Sharpe Ratios in both, training

and validation samples
G−

θ = {g ∈ Gθ | SR
tr

g < 0 ∧ SR
val

g < 0} .

This approach ensures that we select the most stable clusters for trading, reducing the risk associated with rank
variability between the training and validation samples, and ensuring that the direction of the signal is consistent
across the two splits. The final output consists of the sets of long-traded and short-traded clusters, which are
then used to implement the trading strategy. The implementation of the algorithm is methodically presented in
Appendix Algorithm 3.

[Insert Table 3 about here]

In Table 3 we show the 26 clusters with their proposed names (based on the articles they pool together as
shown in Appendix Table A1) and the selection of long and short-traded clusters according to each algorithm:
“greedy” and “stable”. We write “long” for those clusters g ∈ G+

θ and “short” for g ∈ G−
θ . As we can see, trading

clusters of news articles based on this procedure is quite risky, as there is a high reliance of the signal on the past
performance of a cluster. For example, clusters 21 and 22 are linked to the financial performance of Repsol and
Aena, respectively, during the training and validation samples. Evidently, the future performance of these firms can
change, but the signal provided by the algorithm will still indicate “long”. Additionally, some clusters are heavily
built on specific events of the period of time they were constructed upon. For example, cluster 17 pools articles
related to the challenges of the tourism industry in Spain in Covid times, and cluster 25 is related to the post-covid
developments of Inditex and Acerinox. Thus, a clustering approach based on embeddings is not generalizable over
time. As the world evolves, clusters become outdated and require constant recalibration to maintain their relevance
and predictive power. Hence, any trading strategy based solely on historical cluster performance is likely to produce
misguided trading signals over time

[Insert Table 4 about here]

In contrast, our LLM-based clustering methodology offers significant advantages by focusing on the fundamental
nature of economic shocks rather than historical patterns. This approach provides more robust and generalizable
signals that are less susceptible to temporal changes in market conditions. Moreover, unlike the black box nature of
vector embeddings, our methodology offers transparency and interpretability in signal generation. This is evident
in how the Greedy algorithm’s cluster selection closely aligns with the direction of economic shocks: negative shocks
typically correspond to price decreases and positive shocks to increases.

Looking at Table 4, we observe that both algorithms consistently short articles classified as policy shocks,
regardless of direction, while going long on cluster 8, which contains approximately one-third of news articles
(those categorized as undergoing financial minor and positive shocks). This consistent shorting of policy shocks
likely reflects markets’ general aversion to policy uncertainty, as policy changes –even positive ones– often create
implementation uncertainty and take time for market participants to fully price in. Interestingly, both algorithms
also exhibit seemingly counter-intuitive behavior by going long on negative major demand shocks and short on
positive major demand shocks. This pattern might suggest a “mean reversion” expectation in the algorithms,
where major demand shocks are viewed as temporary deviations that will eventually correct: negative shocks
present buying opportunities, while positive shocks signal potential overvaluation.
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5.3. Trading Rule & Portfolio Construction

For a given selection of clusters G+
θ and G−

θ , we launch trades and hold them for L ∈ N trading days over a
window Hi. Formally, the trading rule for a pair (i, j) ∈ B at trading day d ∈ d̃ is

TRL,θ〈(i, j), d〉 :=

󰀻
󰁁󰀿

󰁁󰀽

+1 if [(i, j) ∈ Bg ∧ g ∈ G+
θ ] ∧ d ∈ Hi

0 if [(i, j) ∈ Bg ∧ g ∕∈ Gθ ] ∨ d ∕∈ Hi

−1 if [(i, j) ∈ Bg ∧ g ∈ G−
θ ] ∧ d ∈ Hi

.

In this context, a portfolio is a collection of positions taken in a firm’s stocks according to TRL,θ〈(i, j), d〉. In
other words, it is the set of all 〈(i, j), d〉 for which a trade is executed.

P :=
󰀋

〈(i, j), d〉
󰀏󰀏 (i, j) ∈ B ∧ d ∈ d̃ ∧ TRL,θ〈(i, j), d〉 ∕= 0

󰀌
.

The set of open positions on a particular day d ∈ d̃ is defined as

Pd := {(i, j) ∈ B | TRL,θ〈(i, j), d〉 ∕= 0} ,

and the portfolio is rebalanced every day, so each position (i, j) ∈ Pd receives a weight that is inversely proportional
to the total amount of open positions in that day (i.e. 1/|Pd|).10 This produces an equally-weighted rolling-portfolio
similar to [36] Jegadeesh and Titman (1993) and [26] Chan (2003) . The overlapping returns of the portfolio at
d ∈ d̃ can be obtained as an average of the abnormal returns weighted by the trading rule, which determines the
direction of each position (long or short), and scaled by the number of open positions in that day,

rP
d := 1

|Pd|
󰁛

(i,j),∈Pd

TRL,θ〈(i, j), d〉 · AR
(i,j)
d .

In Figure 7 we plot the cumulative gross returns of trading strategies based on KMeans clustering (Panel A)
and LLM clustering (Panel B) across different data splits

[Insert Figure 7 about here]

KMeans. In panel A of Table 5 we show the portfolio statistics of the benchmark model. As we can see,
both algorithms work well on the data splits they were trained on: the Stable algorithm works well on both,
training and validation data, while the Greedy algorithm does a good job only on validation data as expected.
However, this doesn’t say anything about any of these algorithms, as it is easy to make profitable trades in-
sample. The generalizability of the strategy is determined out-of-sample in the test data. The empirical analysis
reveals significant challenges in the strategy’s ability to maintain consistent performance across different time
periods. During the training and validation phases, the methodology shows promising results with annualized
returns ranging from 26.6% to 47.7% and strong risk-adjusted performance metrics (Sharpe ratios between 2.0
and 3.2). However, this performance deteriorates substantially in the test period, where returns drop to modest

10 Note that the cardinality of the set of open positions at day d ∈ d̃, denoted as |Pd|, can be computed as the sum of the absolute
values of the trading rule over all pairs (i, j) ∈ B for a given trading day d ∈ d̃.

|Pd| =
󰁛

(i,j)∈B

󰀏󰀏T RL,θ〈(i, j), d〉
󰀏󰀏 .
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levels (2.9% to 4.9% annually) with significantly lower Sharpe ratios (0.2 to 0.7), suggesting that the strategy’s
alpha-generating capability does not generalize well out of sample. The distributional properties of returns in the
test period provide additional insights into the strategy’s behavior under true out-of-sample conditions. The shift
from negative to strongly positive skewness (1.85 to 2.46) coupled with high excess kurtosis (5.50 to 14.57) suggests
that the strategy’s return distribution has fundamentally changed, characterized by more frequent small losses
offset by occasional large gains. This asymmetric return pattern, while potentially appealing from a risk preference
perspective, differs markedly from the training period characteristics. The tail risk measures further illuminate
the strategy’s risk profile, with annualized 95% VaR ranging from -7.8% to -18.9% and corresponding CVaR from
-9.7% to -26.8% in the test period. These statistical properties, combined with the strong dependence on historical
cluster-specific performance, indicate that the strategy fails to identify stable and generalizable trading signals,
likely due to its reliance on firm and industry-specific clustering patterns that do not persist out of sample. As we
can see in the plot, neither algorithm is able to generate a consistent profile of earnings, and the statistics confirm
that profits are negligible, and would likely be eaten away by exogenous market frictions (e.g. trading costs).

[Insert Table 5 about here]

LLM. Panel B of Table 5 presents the performance metrics for our LLM-based approach. As before, both
algorithms perform really well on “seen” data. However, different from before, the Greedy algorithm works well
also on the Training Split (which it was not trained on). More importantly, both algorithms do a great job in the
test data. As we can see, both are able to achieve a consistent profile of earnings through the split. The portfolio
statistics reveal notable consistency in the strategy’s performance across different time periods. During the training
and validation phases, the methodology demonstrates solid performance with annualized returns ranging from 16.0%
to 28.3% and Sharpe ratios between 1.4 and 2.9. This performance strengthens in the test period, where returns
increase to 30.8%-37.2% annually with Sharpe ratios of 4.3-4.4, indicating that the strategy’s alpha-generating
capability successfully generalizes to out-of-sample conditions. The distributional properties of returns provide
evidence for the strategy’s robustness. The test period maintains positive skewness (0.84 to 1.49) and moderate to
high excess kurtosis (1.95 to 8.30), indicating an asymmetric return pattern with more frequent small losses offset
by larger gains. This return distribution is complemented by contained maximum drawdowns (1.1% to 1.5%) and
strong Calmar ratios (21.0 to 34.5) in the test period. The tail risk measures further support the strategy’s risk
management properties, with annualized 95% VaR ranging from -6.9% to -9.5%, and CVaR ranging from -9.9% to
-11.3% in the test period. Taken together, the strategy’s ability to sustain consistent out-of-sample performance
metrics demonstrates that the LLM-based clustering approach identifies enduring trading signals that transcend
specific market regimes.

While our primary focus has been on developing a methodology to anticipate market reactions to news (i.e.,
identifying winners and losers to assess the predictive power of our LLM-based approach), we also analyze the
trading intensity and implementation costs of the resulting strategies. The detailed examination in Appendix A.8
reveals that, under conservative transaction costs of 30 basis points per trade, the LLM-based approach maintains
its superior performance relative to KMeans, though with attenuated profitability. Specifically, while KMeans
strategies generate significant losses out-of-sample (-20.0% to -23.6% annually), our LLM-based approach achieves
near-neutral to slightly positive net returns (-1.5% to +3.1%) in the test period, with notably lower risk metrics.
These results underscore that while our methodology successfully captures predictable market reactions to news,
practitioners implementing such strategies would benefit from incorporating transaction costs into their optimization
framework.
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6. Robustness Checks
In our applications we have worked with a holding period of L = 4 trading days and an upper bound on traded

clusters of θ = ⌊0.5k⌋. As shown in Appendix A.2, such choices result from the maximization of the Sharpe Ratios
in the train and validation samples. All that is left is to check whether our out-of-sample results are sensitive to
the choice of hyperparameters (L, θ). For this purpose, we evaluate the variability of the Sharpe Ratios of the test
portfolio (SRPtest) to changes in L and θ.

First, we focus on the holding period length of the beta-neutral strategy (L). For this purpose, we fix θ = ⌊0.5k⌋
and, for each clustering method, obtain the series of Sharpe Ratios over a grid L (which ranges from 1 to 20 trading
periods). This delivers the series {SRPtest(L)}L∈L, which we then plot in two formats. On the left side of Figure 8
we plot the distribution of Sharpe Ratios in the grid, and in the right side, we show the mapping L 󰀁→ SRPtest(L)
over L.

[Insert Figure 8 about here]

From Figure 8a it follows that KMeans clustering produces a distribution that is clearly left-skewed, while
the distribution of SRPtest for LLM clustering is clearly right-skewed (Figure 8c). This confirms the fact that
LLM clustering generates Sharpe Ratios that are statistically higher than those generated by KMeans. The plots
in the right-hand-side substantiate this observation: KMeans is only able to produce positive SRPtest for really
short holding window lengths (Figure 8b), while LLM clustering, although not always stable, is, in general, able to
produce positive Sharpe Ratios more consistently over the grid (Figure 8d).

We then turn to analyze the sensitivity of SRPtest to different values for the upper bound on the number of
traded clusters (θ). Now we fix L = 4 and define a grid θ, from where we can obtain {SRPtest(θ)}θ∈θ.

[Insert Figure 9 about here]

The results of this exercise are shown in Figure 9. As we can see, in Figure 9a the results are mixed for the
case of KMeans clustering. Namely, the Stable algorithm is able to generate positive Sharpe Ratios but the Greedy
algorithm struggles to do so. In Figure 9b we see what is happening: Stable works well with for low values of θ,
while Greedy only works for high values of θ. This high reliance of the algorithms on specific values of θ points to
the instability of the trading strategy when employing KMeans clustering.

On the other hand, Figure 9c shows a clear pattern for the case of LLM clustering. Namely, the mass accumulates
at high and positive Sharpe Ratios. This observation is further substantiated by Figure 9b, which shows that leaving
aside the fact that the greedy algorithm does bad for really low values of θ (i.e.: θ ≤ 3), in general, the trading
strategy is now able to produce high, positive and stable Sharpe Ratios across different values of θ.

All in all, our results are robust to hyperparameter variability, showing that LLM clustering consistently beats
a strategy based on clustering embeddings with KMeans.

7. Conclusion
This paper investigates how information from business news affects stock market prices. We analyze a dataset

of Spanish business articles during a particularly volatile period-the COVID-19 pandemic-and examine firm-specific
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stock market reactions to news. We show that transforming text into vector embeddings and clustering them using
KMeans yields clusters that are firm-specific and industry-specific. However, the distribution of articles across
clusters is unstable over sequential data splits, indicating temporal instability. When we implement a cluster-
based trading strategy-similar to portfolio sorts-on the KMeans clusters, we observe an over-reliance on the past
performance of a cluster. That is, signals are short-lived due to temporal instability. Consequently, the out-of-
sample profitability of the trading strategy is negligible, evidencing the method’s poor temporal generalizability.
Therefore, a model based on embeddings is superficial and is not able to anticipate market trends.

As an alternative, we develop a novel approach by guiding a Large Language Model (LLM) through a struc-
tured news-parsing schema, enabling it to analyze news-implied firm-specific economic shocks. The schema involves
identifying the firms affected by the articles and classifying the implied shocks on such firms by their type, magni-
tude, and direction. This LLM-based methodology demonstrates several advantages over the traditional clustering
approach. Even in a volatile period, it produces stable distributions of articles across clusters in sequential splits,
demonstrating robust temporal stability. Moreover, the resulting trading signals are both long-lasting and economi-
cally relevant, as they are based on fundamental economic shocks rather than statistical patterns. The results show
that the LLM-based trading strategy effectively identifies winners and losers, illustrating the parser’s ability to
anticipate market trends by comprehending the economic implications of firm-specific shocks. This approach gener-
ates a consistent profile of earnings in the test set, with results robust to the choice of hyperparameters-the holding
period length of the trading strategy and the number of selected clusters for trading. Our findings demonstrate a
promising avenue: LLMs, when guided by appropriate economic frameworks, can help predict market reactions to
news through systematic classification of economic shocks embedded in financial narratives.
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Table 1: Summary Statistics of Articles by Data Split

Data Split Time Period # Articles # Words Vocabulary Size
Train 24/06/2020 − 12/02/2021 1254 327413 26762
Validation 12/02/2021 − 21/06/2021 836 232912 22265
Test 21/06/2021 − 30/09/2021 523 140495 16474
All 24/06/2020 − 30/09/2021 2613 700820 42603

Note: Summary statistics by data splits and for the whole sample. We provide the period spanned by each data split, the
number of articles, the number of words, and the vocabulary size. Articles have been preprocessed following standard NLP
practices.
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Table 2: Function calling schema

Function Prompt Options

1. firms “List all the firms affected by the events
narrated in the article” array

1.1. firm “Iterate over each firm in firms” string
1.2. ticker “State the stock market ticker of firm ” string

1.3. shock_type “What type of shock does this article imply
on firm ?”

{demand, supply, financial,
technology, policy}

1.4. shock_magnitude “How much impact is this shock expected to
have on firm?” {minor, major}

1.5. shock_direction “In what direction is this shock expected to
impact firm?” {positive, negative}

This table outlines the structure of the function calling schema we designed to guide the LLM through the analysis of news-
implied firm-specific economic shocks. The “Function” column specifices the name of the tool passed to the LLM. We can
understand the umbrella function firms as running a loop over each of its arguments, with the indented subfunctions being
referred to the specific argument passed to them. The “Prompt” column provides an example of the simplified instructions
given to the LLM (the actual prompts are longer as the LLM needs clear and detailed instructions, with useful examples for
context). Finally, the “Options” column imposes the answer format that the LLM must follow. For example, in firms, the
“array” option indicates that the answer must be an enumeration of firms, while the “string” option in the subfunctions
firm and ticker indicates that the answer must be a single string. Finally, the shock_ subfunctions ask the LLM to choose
from a predefined set of possible responses.
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Table 3: Mapping of embeddings-based KMeans clusters to Trading Signals

Cluster Greedy Stable

0 Miscellaneous (Colonial, Acciona, Amadeus, Grifols, Endesa, IAG,
Bankinter...) short

1 Quarterly & Semi-Annual Earnings Reports short
2 BBVA & Sabadell: Financial Performance & Strategic Movements short
3 Telefónica & Cellnex: Telecommunications Tower Sales & Market Dynamics long long
4 CaixaBank: Mergers and Strategic Moves in the Banking Sector
5 Telefónica, Indra, & MásMóvil: Regulatory and Strategic Moves in Telecom long

6 Siemens Gamesa: Supply Agreements, Profitability Targets in Renewable
Energy short

7 Cellnex: Strategic Acquisitions and Financial Moves in Telecom Infrastructure long

8 Acciona, Endesa, Enagás & Naturgy: Strategic Moves & Regulatory
Developments in the Energy Sector long

9 Repsol: Strategic Moves and Challenges in the Energy Sector long

10 Ferrovial, Acciona: Strategic Expansions and Financial Maneuvers in
Infrastructure short short

11 Solaria: Strategic Moves and Market Challenges in Renewable Energy long long
12 Iberdrola: Strategic Collaborations and Renewable Energy Developments short
13 IAG: Financial Performance long
14 Santander & CaixaBank: Financial Moves and Sustainability Initiatives short
15 ACS & Acciona: Strategic Movements and Infrastructure Projects short short
16 Telefónica: Financial Performance and Strategic Moves long
17 Meliá and Spanish Tourism Sector: Challenges Amidst the Pandemic short
18 Takeover Bids for Naturgy and MásMóvil short
19 Naturgy: Financial Performance short short

20 PharmaMar, Grifols: Regulatory Approvals and Market Moves in the
Pharmaceutical Sector long long

21 Repsol: Financial Performance long long
22 Aena: Financial Performance long long

23 Enagás, Endesa, Iberdrola, Red Eléctrica: Regulatory and Market Challenges
in the Energy Sector short

24 BBVA, CaixaBank, Banco Sabadell: Layoffs and Restructuring long long

25 Inditex, Acerinox: Market Performance and Strategic Developments in the
Post-Covid Context short short

Note: Mapping of embeddings-based KMeans clusters to their Trading Signal (long/short) for the two proposed cluster-
selection algorithms (Greedy and Stable). The Greedy algorithm longs (shorts) clusters that maximize (minimize) the cluster-
average-SR in the validation sample subject to a positivity (negativity) constraint, while the Stable algorithm longs (shorts)
clusters that minimize the rank difference between the training and validation rankings of the cluster-average-SR’s subject to
a positivity (negativity) constraint, which is now imposed on both sample splits. In both algorithms, the cardinality of each
leg is upper-bounded by a hyperparameter θ. Cluster labels are proposed based on the articles they pool.
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Table 4: Mapping of LLM-based clusters to Trading Signals

Cluster Greedy Stable
0 (demand, minor, positive)
1 (demand, minor, negative) short
2 (demand, major, positive) short short
3 (demand, major, negative) long long
4 (supply, minor, positive) long
5 (supply, minor, negative) short
6 (supply, major, positive) long
7 (supply, major, negative) short
8 (financial, minor, positive) long long
9 (financial, minor, negative) short
10 (financial, major, positive) long
11 (financial, major, negative) short
12 (technology, minor, positive) long
13 (technology, minor, negative)
14 (technology, major, positive) short
15 (technology, major, negative)
16 (policy, minor, positive) short short
17 (policy, minor, negative) short short
18 (policy, major, positive) short short
19 (policy, major, negative) short short

Note: Mapping of LLM-based clusters to their Trading Signal (long/short) for the two proposed cluster-selection algorithms
(Greedy and Stable). The Greedy algorithm longs (shorts) clusters that maximize (minimize) the cluster-average-SR in the
validation sample subject to a positivity (negativity) constraint, while the Stable algorithm longs (shorts) clusters that minimize
the rank difference between the training and validation rankings of the cluster-average-SR’s subject to a positivity (negativity)
constraint, which is now imposed on both sample splits. In both algorithms, the cardinality of each leg is upper-bounded by a
hyperparameter θ. Each cluster corresponds to a type of news-implied firm-specific shock identified by our LLM according to
the function calling schema.
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Table 5: Portfolio Statistics Comparison: KMeans vs LLM Clustering

(a) Panel A: Statistics of PKMeans

Split Algo. Cum.
Ret.

Avg.
Ret.

St.
Dev.

Sharpe
Ratio

Sortino
Ratio

Max.
DD

Calmar
Ratio

Skew. Exc.
Kurt.

VaR
95%

CVaR
95%

All Greedy 1.070 5.3 9.7 0.5 0.6 -6.9 0.8 -0.45 4.04 -13.7 -22.9
Stable 1.489 35.8 16.8 1.8 2.2 -7.6 4.7 0.19 5.08 -22.6 -36.1

Train Greedy 0.959 -6.2 11.7 -0.5 -0.5 -6.9 -0.9 -0.52 2.72 -18.3 -28.5
Stable 1.250 40.4 19.6 1.7 2.0 -7.6 5.3 -0.22 3.24 -29.3 -43.1

Validation Greedy 1.088 26.8 7.3 3.3 3.7 -3.5 7.8 -0.47 1.17 -9.5 -15.9
Stable 1.149 47.6 13.3 2.9 3.5 -3.6 13.1 -0.19 1.76 -18.3 -28.1

Test Greedy 1.014 4.9 6.9 0.7 1.0 -3.6 1.4 1.85 5.50 -7.8 -9.7
Stable 1.008 2.9 14.3 0.2 0.3 -4.6 0.6 2.46 14.57 -18.9 -26.8

(b) Panel B: Statistics of PLLM

Split Algo. Cum.
Ret.

Avg.
Ret.

St.
Dev.

Sharpe
Ratio

Sortino
Ratio

Max.
DD

Calmar
Ratio

Skew. Exc.
Kurt.

VaR
95%

CVaR
95%

All Greedy 1.310 23.1 9.6 2.2 2.9 -6.3 3.7 1.47 9.93 -13.6 -18.9
Stable 1.365 27.0 8.6 2.8 3.4 -5.9 4.6 0.28 2.24 -11.9 -16.9

Train Greedy 1.112 17.6 11.4 1.4 1.9 -6.3 2.8 1.65 9.00 -15.7 -21.0
Stable 1.177 28.3 9.9 2.5 3.0 -5.9 4.8 0.16 1.71 -13.5 -19.6

Validation Greedy 1.091 28.0 8.2 3.0 4.0 -3.1 9.1 0.14 1.37 -10.6 -16.8
Stable 1.048 14.2 7.0 1.9 2.1 -1.9 7.4 0.25 1.37 -11.1 -14.7

Test Greedy 1.084 30.8 6.2 4.3 6.0 -1.5 21.0 1.49 8.30 -6.9 -9.9
Stable 1.100 37.2 7.1 4.4 7.2 -1.1 34.5 0.84 1.95 -9.5 -11.3

Note: Portfolio statistics of trading strategies based on clusters obtained from KMeans (Panel A) and LLM (Panel B)
approaches. The statistics provided include performance metrics (Cumulative Return, Average Return (%)), risk measures
(Standard Deviation (%), Maximum Drawdown (%), Value at Risk (%), Conditional Value at Risk (%)), risk-adjusted
performance ratios (Sharpe Ratio, Sortino Ratio, Calmar Ratio), and return distribution characteristics (Skewness, Excess
Kurtosis). These statistics are provided for both cluster-selection algorithms: Greedy and Stable. Except for the Cumulative
Return, all returns are annualized. The Sharpe Ratio is computed using the daily returns, assuming 252 trading days in
a year. The Sortino Ratio is calculated using the daily downside returns. The Maximum Drawdown is the maximum loss
from a peak to a trough. The Calmar Ratio is the ratio of the annualized return to the maximum drawdown. Skewness
measures the asymmetry of the return distribution, while Kurtosis quantifies the tails’ thickness. The Value at Risk (VaR)
and Conditional Value at Risk (CVaR) are calculated at a 95% confidence level. The Greedy algorithm longs (shorts) clusters
that maximize (minimize) the cluster-average-SR in the validation sample subject to a positivity (negativity) constraint, while
the Stable algorithm longs (shorts) clusters that minimize the rank difference between the training and validation rankings
of the cluster-average-SR’s subject to a positivity (negativity) constraint, which is now imposed on both sample splits. In
both algorithms, the cardinality of each leg is upper-bounded by a hyperparameter θ. The holding period of the beta-neutral
positions is set to L = 4 trading days for both approaches. The number of traded clusters is θ = 0.5k = 13 for KMeans
(k∗ = 26 clusters) and θ = 0.5k = 10 for LLM (k∗ = 20 clusters). The selection criteria for these hyperparameters (L, θ) is
based on maximizing the Sharpe Ratios of the train and validation samples.
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Figure 1: Word Cloud of all the dataset

Note: This Word Cloud visualizes the most frequent words in our dataset of Spanish business news articles. Larger words
correspond to higher frequencies. The color of the words is purely for visual differentiation and holds no additional meaning.
The most prominent words include “empresa” (firm), “compañía” (company), and “españa” (Spain), reinforcing that the
dataset primarily comprises Spanish business news, with a prevalence of technical terms such as “beneficio neto” (net profit),
“precio objetivo” (target price), “proyecto” (project), and “operación” (operation).
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Figure 2: Histogram of # News Articles per Day and # Words per Article
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(a) Number of News Articles per Day
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(b) Number of Words per Article

Note: Panel (a) displays the distribution of the number of news articles published per day, with most days having between 5
and 10 articles. Panel (b) shows the distribution of the number of words per article, where the majority are between 70 and
280 words, suggesting concise reporting. However, the long right tail indicates instances of more comprehensive coverage.
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Figure 3: Time Series of Number of Articles per Day and 30-Period Moving Average
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Note: The time series shows the daily number of news articles published, characterized by significant variability with occasional
sharp spikes. The 30-day moving average smooths these fluctuations, revealing an average publication rate of 5 to 10 articles
per day.
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Figure 4: Average Silhouette Scores in the Training data
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Note: The plot presents the average silhouette scores calculated on the training data Dtr for various cluster sizes k ranging
from 2 to 100. The silhouette score measures how well data points fit within their assigned cluster by comparing intra-cluster
cohesion with inter-cluster separation. A higher silhouette score (closer to +1) indicates better-defined clusters. The optimal
number of clusters, k∗ = 26, which maximizes the average silhouette score, is marked by a vertical dashed green line.
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Figure 5: Distribution of articles through KMeans clusters
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(b) Training data (Dtr)
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(c) Validation data (Dval)
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(d) Test data (Dtest)
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Note: This figure presents the distribution of articles across the k∗ = 26 clusters, where the centroids were determined by
applying the KMeans algorithm to the article embeddings from the training data. Panel (a) shows the distribution for the
entire dataset (D), while Panels (b), (c), and (d) illustrate the distributions for the training (Dtr), validation (Dval), and test
(Dtest) datasets, respectively. The differences in distribution across splits suggest some temporal instability in the clustering
results.
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Figure 6: Distribution of articles through LLM clusters
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(b) Training data (Dtr)
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(c) Validation data (Dval)
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(d) Test data (Dtest)
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Note: This figure presents the distribution of news articles across clusters derived using an LLM-based approach. The upper
plot shows the distribution for the entire dataset (D), while the lower plots display the distributions for the training (Dtr),
validation (Dval), and test (Dtest) datasets. Clusters 8, 9, 10, and 11, which capture financial events or shocks, dominate
the distribution, with cluster 8 (financial, minor, positive) representing approximately one-third of the dataset. This cluster
includes articles related to financial reports with mildly positive outcomes, potentially offering insight for long trading signals.
Unlike KMeans clustering with embeddings, this LLM-based clustering shows stable distributions across data splits, highlighting
the robustness of this method over time.
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Figure 7: Comparison of Cumulative Gross Returns across Clustering Approaches
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(b) Panel B: Cumulative Gross Returns of PLLM
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Note: This figure presents the cumulative gross returns of trading strategies based on KMeans clustering (Panel A) and LLM clustering
(Panel B) across different data splits. For both approaches, the holding period of the beta-neutral strategies is set to L = 4 trading
days. The number of traded clusters differs between approaches: θ = ⌊0.5k⌋ = 13 for KMeans (k∗ = 26 clusters) and θ = ⌊0.5k⌋ = 10
for LLM (k = 20 clusters). The selection criteria for these parameters is based on maximizing the Sharpe Ratios of the train and
validation samples. The Test split is higlhighted with a yellow background.
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Figure 8: Sensitivity of SRPtest

to the holding window length (L)
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(a) KMeans: Distribution of SRPtest
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(b) KMeans: Series of SRPtest
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(c) LLM: Distribution of SRPtest
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(d) LLM: Series of SRPtest
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Note: This figure examines the sensitivity of the Sharpe Ratios (SRPtest

) of the test portfolio to changes in the holding window
length (L), with θ fixed at ⌊0.5k⌋. Panels (a) and (b) display the distribution and time series of SRPtest

(L) for KMeans
clustering, respectively, while Panels (c) and (d) present the same for the LLM-based clustering. The left-hand panels show
the skewness of the distributions: KMeans clustering results in a left-skewed distribution of Sharpe Ratios, whereas the LLM-
based approach yields a right-skewed distribution, indicating higher profitability. The right-hand panels highlight that KMeans
clustering only produces positive Sharpe Ratios for very short holding periods, whereas the LLM-based clustering shows more
consistent positive performance across a wider range of L values, though with some variability.
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Figure 9: Sensitivity of SRPtest

to the upper bound on the number of traded clusters on each side (θ)
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(a) KMeans: Distribution of SRPtest
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(b) KMeans: Series of SRPtest
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(c) LLM: Distribution of SRPtest
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(d) LLM: Series of SRPtest
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Note: This figure displays the sensitivity of the Sharpe Ratios (SRPtest

) to variations in the upper bound on the number
of traded clusters (θ), with L fixed at 4. Panels (a) and (b) show the distribution and series of SRPtest

(θ) for KMeans
clustering, respectively, while Panels (c) and (d) illustrate the same for LLM-based clustering. For KMeans, the results
are mixed: the Stable algorithm generates positive Sharpe Ratios for low θ values, whereas the Greedy algorithm performs
better with high θ values, indicating sensitivity and instability. In contrast, the LLM-based clustering shows a more consistent
pattern, with a concentration of positive Sharpe Ratios across a broader range of θ values, suggesting greater robustness and
stability in the trading strategy.
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Appendix A. Appendix
Appendix A.1. KMeans Algorithm

Algorithm 1. KMeans Clustering Algorithm
1: Input: Embedding vectors {e1, e2, . . . , eN }, number of clusters k
2: Output: Cluster assignments {D1, D2, . . . , Dk}, centroids {c1, c2, . . . , ck}
3: Initialize centroids {c1, c2, . . . , ck} randomly
4: repeat
5: Assignment Step:
6: for each vector ei do
7: Assign ei to the nearest centroid:

g = arg min
ℓ∈{1,...,k}

󰀂ei − cℓ󰀂2
2

8: Update cluster assignments: Dg ← Dg ∪ {i}
9: end for

10: Update Step:
11: for each cluster Dg do
12: Recalculate centroid cg:

cg = 1
|Dg|

󰁛

i∈Dg

ei

13: end for
14: until cluster assignments no longer change
15: Return cluster assignments {D1, D2, . . . , Dk} and centroids {c1, c2, . . . , ck}
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Appendix A.2. Hyperparameter Choice Justification

Our hyperparameters are L and θ. Recall that L denotes the number of trading days over which we hold the
positions in the beta-neutral strategy, while θ represents the upper bound on each side (long and short) for the
amount of clusters we select for the trading strategy. The specific choice of hyperparameters we made for the results
presented in the paper were:

L = 4

θ = ⌊0.5k⌋

where k represents the number of clusters (26 for KMeans clustering, and 20 for LLM clustering). This choice is
not arbitrary nor opportunistic. Instead, it results from the maximization of the Sharpe Ratio of the portfolio in
the train and validation samples for both KMeans and LLM clustering. This choice procedure is completely based
on in-sample criteria and it prevents lookahead bias. The justification for such choices is made below.

Appendix A.2.1. KMeans Clustering
In Figure A.1 we can see that a choice of L = 4 in the training and validation splits generates the most stable

Sharpe Ratio. Namely, In the train set (Figure A.1a), it makes more sense to choose low values of L (less than 4)
to maximize the SR. However, in the validation set (Figure A.1b), it makes more sense to choose higher values
of L. The choice of L = 4 represents a balanced compromise, providing a stable Sharpe Ratio profile across both
splits, ensuring consistent in-sample performance.

[Insert Figure A.1 about here]

On the other hand, the choice of θ = ⌊0.5 · 26⌋ = 13 is a choice that pursues stability in the Sharpe Ratio of the
train and validation portfolios. As we can see from Figure A.2, the Sharpe Ratios tend to converge to the highest
and most stable value when we choose the highest possible value of θ.

[Insert Figure A.2 about here]

Appendix A.2.2. LLM Clustering
Following a similar logic as below, the choice of L = 4 sets a consensus between the maximization of SRPtr

and SRPval . That is, maximizing SRPtr requires lower holding period lengths (the maximizer is L = 4), while
maximizing SRPval requires increasing the window length. Among this contradiction, from Figure A.3 it follows
that L = 4 stands as a perfect choice to balance the maximization requirements in both samples, generating a stable
choice for the holding period window length.

[Insert Figure A.3 about here]

Finally, the same conclusion as in KMeans applies here. By selecting θ = ⌊0.5 · 20⌋ = 10, we get a stable
Sharpe Ratio. Even though we observe that SRPtr (L) falls momentarily at θ = 10 for the Greedy algorithm, it still
constitutes a good choice. Conversely, at θ = 10 the greedy algorithm sees a jump in SRPval(L) (see Figure A.4).
All in all, we can easily conclude that θ = ⌊0.5k⌋ arises as a good hyperpamrameter choice also for LLM clustering.

[Insert Figure A.4 about here]
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Appendix A.3. Cluster-Average Sharpe Ratios

The distribution of cluster-average Sharpe Ratios across different clusters reveals distinct patterns between
KMeans and LLM-based clustering approaches, as illustrated in Figure A.5

Panel A presents the results for KMeans clustering, where we observe remarkably consistent distributional
patterns across all three data splits. The distributions are approximately symmetric around zero, with the majority
of Sharpe ratios falling within the [−5, 5] range. The training set exhibits the highest density peak (approximately
0.17), followed closely by the test set, while the validation set shows a slightly lower peak density of about 0.125.
Notable in the validation set are small secondary peaks at the tails (around ±15), suggesting the presence of a
few clusters with extreme performance characteristics. This consistency across splits suggests that the KMeans
clustering approach produces stable performance groupings.

Panel B displays the results for LLM-based clustering, revealing more heterogeneous distributions across the
splits. The validation set demonstrates a pronounced peak near zero with a maximum density of 0.2, indicating
strong concentration of performance in this region. In contrast, the training set exhibits a markedly different
pattern, with a flatter, more dispersed distribution extending from −20 to +20, suggesting greater performance
variability across clusters. The test set presents an intermediate case, with moderate concentration around zero
but maintaining significant mass in the positive region. This heterogeneity across splits might indicate that the
LLM-based clustering captures more nuanced and potentially time-varying patterns in the underlying data.

The contrasting patterns between the two clustering approaches suggest different strengths: KMeans provides
more stable and consistent performance groupings, while LLM-based clustering potentially captures more complex
relationships, albeit with greater variability across different data splits.

[Insert Figure A.5 about here]
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Appendix A.4. Optimal Cluster Selection Algorithms

Algorithm 2. Greedy Selection | Top average Sharpe Ratio in Validation Set

1: Input: Set of clusters G = {1, 2, . . . , k∗}, Sharpe Ratios in the validation sample {SR
(i,j)
L }(i,j)∈Bval , maximum

number of traded clusters θ ∈ N (usually, θ ∝ k∗)

2: Output: Set of long-traded clusters G+
θ and set of short-traded clusters G−

θ

Step #1: Compute Cluster Average Sharpe Ratios in Validation Set
3: for each g ∈ G do
4: Compute average Sharpe Ratio SR

val

g ← 1
|Bval

g |
󰁓

(i,j)∈Bval
g

SR
(i,j)
L

5: end for

Step #2: Identify Positive and Negative Sharpe Ratio Clusters
6: Define Gval

SR+ ← {g ∈ G | SR
val

g > 0}
7: Define Gval

SR− ← {g ∈ G | SR
val

g < 0}

Step #3: Rank Clusters by Average Sharpe Ratio in the Validation Set
8: for each g ∈ G do
9: Rank the average Sharpe Ratio Rval

g ←
󰁓

h∈G 1
󰀓

SR
val

h ≥ SR
val

g

󰀔

10: end for

Step #4: Select Top θ Clusters
11: Define θ+ ← min(θ, |Gval

SR+ |) ; G+
θ ← {g ∈ G | 1 ≤ Rval

g ≤ θ+}
12: Define θ− ← min(θ, |Gval

SR− |) ; G−
θ ← {g ∈ G | k∗ − θ− < Rval

g ≤ k∗}

13: Return Long-traded clusters G+
θ , Short-traded clusters G−

θ

42



Algorithm 3. Rank Stability | Minimal Rank Difference between Train & Validation Sets

1: Input: Set of clusters G = {1, 2, . . . , k∗}, Sharpe Ratios in the training and validation sample {SR
(i,j)
L }(i,j)∈Btr

and {SR
(i,j)
L }(i,j)∈Bval , maximum number of traded clusters θ

2: Output: Set of long-traded clusters G+
θ and set of short-traded clusters G−

θ

Step #1: Compute Cluster Average Sharpe Ratios in Training & Validation Set
3: for each g ∈ G do
4: Compute average Sharpe Ratio in Btr : SR

tr

g ← 1
|Btr

g |
󰁓

(i,j)∈Btr
g

SR
(i,j)
L

5: Compute average Sharpe Ratio in Bval : SR
val

g ← 1
|Bval

g |
󰁓

(i,j)∈Bval
g

SR
(i,j)
L

6: end for

Step #2: Rank Clusters
7: for each g ∈ G do
8: Rank the average Sharpe Ratios in Btr : Rtr

g ←
󰁓

h∈G 1
󰀓

SR
tr

h ≥ SR
tr

g

󰀔

9: Rank the average Sharpe Ratios in Bval : Rval
g ←

󰁓
h∈G 1

󰀓
SR

val

h ≥ SR
val

g

󰀔

10: end for

Step #3: Calculate Rank Differences
11: for each g ∈ G do
12: Calculate rank difference δg ← |Rtr

g − Rval
g |

13: end for

Step #4: Select Top θ Clusters with Smallest Rank Differences
14: for each g ∈ G do
15: Rank the rank difference : R(δg) ←

󰁓
h∈G 1 (δg ≥ δh)

16: end for
17: Select top 2θ clusters with smallest δg: Gθ = {g ∈ G | 1 ≤ R(δg) ≤ 2θ}

# Step 5: Determine Long and Short Positions
18: Define G+

θ = {g ∈ Gθ | SR
tr

g > 0 and SR
val

g > 0}
19: Define G−

θ = {g ∈ Gθ | SR
tr

g < 0 and SR
val

g < 0}

20: Return Long-traded clusters G+
θ , Short-traded clusters G−

θ

Appendix A.5. Sample of articles for each cluster
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Appendix A.6. Function Calling with Llama-3

Algorithm 4. Function Calling Workflow for Llama-3
Require: D: Dataset of news articles
Ensure: Structured JSON output for each article

1: Initialize Llama-3 model via GroqCloud API
2: for each article i ∈ D do ⊲ Iterate over each article in the dataset
3: Message: System ⊲ Define the role and task for the LLM

“You are a function calling LLM that analyzes business news in Spanish. For every article, identify
the firms that are directly affected by the news and classify the shocks in type, magnitude and direction”

4: Message: User ⊲ User provides the article text as input
Content: prompt Pi containing the text of article i

5: Tool: news_parser ⊲ Define the news_parser function

Parameters: {firms: array of objects}, where each object contains:
• firm: string (“each one firm in firms ”)
• ticker: string (“stock market ticker”)
• shock_type: enum {demand, supply, financial, policy, technology}
• shock_magnitude: enum {minor, major}
• shock_direction: enum {positive, negative}

6: Send initial messages and tools to Llama-3 ⊲ Initiate interaction with the LLM
7: Retrieve response from Llama-3 ⊲ Get the initial response from the LLM
8: if Function call is requested by Llama-3 then ⊲ Check if the LLM needs to call a function
9: Execute news_parser function with provided arguments ⊲ Run the function

10: Append function response to the conversation ⊲ Include function output in the dialogue
11: Send updated messages to Llama-3 ⊲ Continue the conversation with new information
12: Retrieve final response from Llama-3 ⊲ Get the final output from the LLM
13: end if
14: Extract and store structured JSON output ⊲ Save the processed data
15: end for

Appendix A.7. Why not using a different benchmark?

In evaluating our novel Large Language Model (LLM) methodology for classifying news-implied firm-specific
shocks, it is imperative to establish a robust and relevant benchmark. Our chosen benchmark involves transforming
news articles into high-dimensional vector embeddings followed by clustering these embeddings using the KMeans
algorithm. This section delineates the rationale behind selecting KMeans clustering of vector embeddings over other
potential benchmarks such as sentiment analysis and topic modeling.

Why not Sentiment Analysis as a benchmark?
Sentiment analysis is a widely recognized technique in natural language processing that aims to determine the

emotional tone conveyed in a text, typically categorizing content as positive, negative, or neutral. While sentiment
analysis provides a straightforward approach to gauging the general tone of news articles, it falls short in several
critical aspects when juxtaposed with our objectives.

First, sentiment analysis is not sufficiently granular. Our LLM methodology classifies news articles into 20
distinct categories of economic shocks while sentiment analysis classifies articles in a coarse manner, typically into
positive, negative, or neutral categories, which is inadequate for benchmarking a detailed classification model.
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Second, sentiment analysis predominantly focuses on the linguistic and emotional aspects of the text, which
do not necessarily correlate with the economic impact on firms. For instance, a neutral-toned article could de-
scribe a significant economic event, while a positive sentiment might not always translate to favorable economic
outcomes. Consequently, the sentiment does not provide direct insights into the economic consequences, making it
an economically irrelevant benchmark for our purposes.

Third, sentiment analysis algorithms are often sensitive to linguistic subtleties, leading to inconsistent results
across different languages and contexts. For example, sarcasm or idiomatic expressions can distort sentiment
scores, undermining the reliability of sentiment analysis as a benchmark. This variability poses a challenge for
standardization, especially in a multilingual context. For instance, the sentiment derived from analyzing the text
in English may significantly differ from the sentiment in Spanish.

Fourth, sentiment analysis is not robust in the sense that different sentiment analysis tools yield divergent
assessments of the same text. As shown below, we observe considerable differences in the identified sentiment
when applying multiple sentiment analysis providers to a specific article. This lack of consistency undermines the
reliability of sentiment analysis as a benchmark, making it unsuitable for our purposes.

Sentiment analysis is highly sensitive to the specific tool or model employed. Here, we demonstrate
this by analyzing a piece of business news using various popular sentiment analysis tools: TextBlob,
text2data, VADER, and FinBERT. The methods vary significantly in both their approach to sentiment
determination and the output they provide, as illustrated below.11

Example 3: A news article about Telefónica and Cellnex | Sentiment: TextBlob

Cellnex will face more competition in Europe Score: 0.50
Telefónica’s (TEF.MC) subsidiary, Telxius Telecom, has agreed to sell its telecommunications
tower division in Europe and Latin America to American Tower (AMT), which will expand the
latter’s presence in Europe and increase competition for the Spanish wireless telecommunications
group Cellnex Telecom (CLNX.MC), according to Equita Sim. Score: 0.00 The transaction
"represents the entry of a new independent tower operator into the Spanish market and potentially
more competition for future growth in the European market as well," says the brokerage firm.

Score: 0.06

Overall Score: 0.085

Note: TextBlob is a general-purpose sentiment analysis tool that relies on a pre-built lexicon to assess
the polarity of the text. It computes a sentiment score ranging from -1 to 1, where -1 signifies a negative
sentiment, 1 indicates a positive sentiment, and 0 represents a neutral sentiment. The methodology
behind TextBlob focuses on tokenizing the input into words and phrases, which are compared against its
built-in polarity dictionary.

11Note that applying Loughran-Macdonald is not recommended in for short texts as it yields sparse results. For example, in the
example we are considering, it outputs a category distribution that only loads on “Strong Modal”, which is not a really useful analysis.

LM_Scores = {’Negative’: 0, ’Positive’: 0, ’Uncertainty’: 0, ’Litigious’: 0, ’Strong_Modal’: 2, ’Weak_Modal’:
0, ’Constraining’: 0, ’Complexity’: 0}
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Example 4: A news article about Telefónica and Cellnex | Sentiment: text2data

Cellnex will face more competition in Europe Score: 0.145
Telefónica’s (TEF.MC) subsidiary, Telxius Telecom, has agreed to sell its telecommunications
tower division in Europe and Latin America to American Tower (AMT), which will expand the
latter’s presence in Europe and increase competition for the Spanish wireless telecommunications
group Cellnex Telecom (CLNX.MC), according to Equita Sim. Score: -0.512 The trans-
action "represents the entry of a new independent tower operator into the Spanish market and
potentially more competition for future growth in the European market as well," says the brokerage
firm. Score: -0.560

Overall Score: -0.61

Note: text2data employs scientific deep learning NLP methods to analyze sentiment. Every sentence is
split into smaller chunks and represented as a tree structure, capturing the syntactic relationships between
words and phrases. To determine the final sentiment score, text2data uses probabilistic methods based
on a pre-trained data model, providing an output score between -1 and 1, where -1 is negative and 1 is
positive.

Example 5: A news article about Telefónica and Cellnex | Sentiment: VADER

Cellnex will face more competition in Europe Score: 0.00
Telefónica’s (TEF.MC) subsidiary, Telxius Telecom, has agreed to sell its telecommunications
tower division in Europe and Latin America to American Tower (AMT), which will expand the
latter’s presence in Europe and increase competition for the Spanish wireless telecommunications
group Cellnex Telecom (CLNX.MC), according to Equita Sim. Score: 0.69 The transaction
"represents the entry of a new independent tower operator into the Spanish market and potentially
more competition for future growth in the European market as well," says the brokerage firm.

Score: 0.57

Overall Score: 0.81

Note: VADER (Valence Aware Dictionary and sEntiment Reasoner) is a lexicon and rule-based sentiment
analysis tool uses a combination of lexical features (i.e., words) that are generally classified as having
positive, negative, or neutral valence. VADER produces four sentiment metrics: positive, negative, neutral,
and a compound score. The compound score is a normalized, weighted composite score that ranges from
-1 to 1, indicating the overall sentiment of the text. In this example, we provide the compound measure
sentence by sentence and for the whole text.
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Example 6: A news article about Telefónica and Cellnex | Sentiment: FinBERT

Cellnex will face more competition in Europe Negative, 0.75
Telefónica’s (TEF.MC) subsidiary, Telxius Telecom, has agreed to sell its telecommunications
tower division in Europe and Latin America to American Tower (AMT), which will expand the
latter’s presence in Europe and increase competition for the Spanish wireless telecommunications
group Cellnex Telecom (CLNX.MC), according to Equita Sim. Neutral, 0.98 The trans-
action "represents the entry of a new independent tower operator into the Spanish market and
potentially more competition for future growth in the European market as well," says the brokerage
firm. Negative, 0.81

Overall Negative, 0.94

Note: FinBERT is a domain-specific transformer-based model trained on financial texts. Unlike the
previous models, FinBERT provides both a sentiment classification (Positive, Negative, Neutral) and a
confidence score ranging from 0 to 1, representing the model’s certainty about the sentiment classification.

Why not Topic Modeling as a benchmark?
Topic modeling, particularly techniques like Latent Dirichlet Allocation (LDA), decomposes text into a set of

latent topics based on word co-occurrences. Topic modelling offer a more granular approach compared to sentiment
analysis and could potentially offer a valid benchmark for our purpose. However, we argue that transforming news
articles into vector embeddings and subsequently clustering them using KMeans offers a more balanced approach
than topic modeling.

Topic models rely on bag-of-words representations, which disregard the order and context of words. This
limitation hampers the model’s ability to capture complex semantic relationships and contextual nuances essential
for accurately identifying economic shocks. Consequently, topic models may overlook subtle but economically
significant information present in the text. On the other hand, vector embeddings encapsulate rich semantic
information by capturing the relationships between words in a continuous vector space. Unlike topic models, which
are confined to word co-occurrences, embedding models, particularly transformer-based, generate context-dependent
representations, allowing for a nuanced understanding of polysemy and context. This means that the same word
can have different embeddings depending on the context of the sentence, such as “Apple” in “Apple is a leading tech
company” versus “Apple is a type of fruit”.

An important advantage of vector embeddings is that they scale efficiently with large corpora and can be
generated at various granularities, including word, sentence, or document levels. This scalability makes embeddings
highly adaptable for diverse downstream tasks such as clustering, classification, and similarity detection. In contrast,
topic models often require extensive manual tuning and become computationally expensive with larger datasets,
limiting their practicality for extensive analyses. This makes embeddings a superior choice for grouping news articles
and analyzing their economic implications, as compared to the relatively rigid and broad classifications produced
by topic models.

It is true, however, that topic models excel at grouping articles based on shared themes, offering a straightfor-
ward way to identify and interpret these themes by examining the common content of the grouped articles. This
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interpretability is a key advantage of topic models, as it allows for clear labeling of themes. In contrast, vector
embeddings lack inherent interpretability at the dimension level. The individual dimensions of an embedding do not
have an intuitive meaning, making it challenging to directly understand the relationships they capture. However,
this limitation can be mitigated by clustering the embeddings to then apply a similar interpretive process as with
topic models: analyzing the articles within each cluster to infer the common patterns. As demonstrated in our
analysis, these clusters often correspond to firm-specific or industry-specific topics, offering valuable insights into
economic relationships and forming a valuable benchmark for our LLM’s classification of firm-specific shocks.

Lastly, using embeddings as a benchmark is particularly compelling because they represent the foundational layer
of an LLM. The first step an LLM’s processing pipeline is to transform the text that it is fed into high-dimensional
embeddings for further processing. By benchmarking against embeddings, we ensure a direct and relevant com-
parison between the foundational representations used by LLMs and our specialized classification methodology.
This comparison highlights the added value of the LLM’s capacity to convert these semantic representations (i.e:
the vector embeddings) into economically meaningful classifications. (i.e: our news-implied firm-specific shock
classifications).

In summary, KMeans clustering of vector embeddings offers a robust and economically relevant benchmark for
our LLM-based methodology. It provides a rich semantic representation, context-dependent flexibility, and scalabil-
ity that surpass sentiment analysis and topic modeling. Additionally, its alignment with the underlying architecture
of LLMs ensures a meaningful comparison. As demonstrated in our analysis, the clusters derived through this ap-
proach are predominantly firm or industry-specific, thereby offering a suitable and superior benchmark against
which to measure the effectiveness of our granular classification of news-implied firm-specific shocks.

Appendix A.8. Trading Intensity

The extraordinary performance of our proposed LLM-based methodology warrants a careful examination of
its implementation costs and practical viability. While our primary objective has been to develop a framework
that better captures the economic content of news articles and their subsequent market impact, the practical
implementation of such strategies necessarily involves trading frictions that could affect their real-world efficacy. In
this section, we analyze the trading intensity patterns of both methodologies to provide a more complete assessment
of their relative merits and to understand how transaction costs might influence their comparative advantages. We
begin by examining the temporal evolution of open positions for both approaches, which provides insights into their
underlying trading dynamics and stability characteristics. This analysis is followed by detailed trading intensity
metrics and concludes with a reassessment of portfolio statistics after accounting for transaction costs.

[Insert Figure A.6 about here]

The temporal evolution of open positions, as illustrated in Figure A.6, reveals fundamental differences in the sta-
bility and reliability of trading signals generated by KMeans versus LLM-based clustering approaches. The KMeans
implementation exhibits pronounced volatility in position management, particularly evident in the Greedy algo-
rithm’s behavior, which shows extreme fluctuations ranging from 6 to 105 positions. This erratic pattern suggests
that KMeans-detected clusters are highly sensitive to market noise and potentially capture transient correlations
rather than fundamental relationships. The substantial divergence between Greedy and Stable algorithms under
KMeans further underscores the method’s instability, as even minor variations in cluster selection criteria lead
to dramatically different trading decisions. In stark contrast, the LLM-based approach demonstrates remarkably
more coherent and stable position management. Both Greedy and Stable algorithms maintain more closely aligned
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position counts, typically ranging between 20 and 75 positions, with highly correlated temporal movements. This
convergence in behavior between algorithms suggests that LLM-identified clusters capture more fundamental and
persistent market relationships. Particularly telling is the test period performance, where KMeans exhibits increased
position volatility and extreme spikes, while the LLM approach maintains consistent position patterns across both
algorithms. This stability in the out-of-sample period provides strong evidence that LLM-derived signals, grounded
in economic analysis of firm-specific shocks, generalize more effectively to unseen data.

[Insert Table A3 about here]

The trading intensity metrics, detailed in Table A3, provide quantitative validation of the structural differ-
ences between KMeans and LLM clustering approaches. Under KMeans, the dramatic disparity between Greedy
and Stable algorithms (averaging 40.1 versus 10.77 positions, with standard deviations of 18.59 and 6.41 respec-
tively) reflects the method’s fundamental instability. More concerning is the Stable algorithm’s exceptionally high
Changes/Position ratio (3.228 versus 0.798 for Greedy), indicating frequent position adjustments necessitated by
the transient nature of KMeans-identified clusters. The LLM implementation demonstrates substantially more
balanced and stable metrics across both algorithms. Average position counts converge (31.8 for Greedy, 26.61 for
Stable) with more moderate standard deviations (14.84 and 12.16), suggesting that both aggressive and conserva-
tive cluster selection approaches identify similar, fundamentally-driven trading opportunities. The more balanced
Changes/Position ratios (1.234 and 1.473) and consistent turnover rates (approximately 39% for both algorithms)
indicate that LLM-identified clusters require less frequent rebalancing, supporting the hypothesis that they capture
more persistent market relationships. These patterns become particularly pronounced in the test period, where
KMeans shows increased turnover (reaching 39.30% for Stable) and position volatility, while the LLM approach
maintains more stable trading activity (37.56% and 37.85% turnover for Greedy and Stable). This superior out-
of-sample stability provides compelling evidence that LLM’s economic approach to cluster identification produces
more robust and generalizable trading signals compared to the purely statistical approach of KMeans.

[Insert Table A4 about here]

Finally, the introduction of trading costs significantly impacts the performance metrics of both clustering ap-
proaches (see Table A4), though with notably different implications for their practical viability. The KMeans-based
strategy exhibits substantial performance degradation, particularly evident in the test period where both algorithms
generate significant losses (Greedy: -20.0%, Stable: -23.6% average annual returns). This deterioration is accompa-
nied by elevated risk metrics, with the Stable algorithm showing particularly concerning characteristics including
high standard deviation (14.2%) and extreme kurtosis (14.59) in the test period, suggesting frequent occurrence
of extreme returns. In contrast, the LLM-based approach demonstrates superior resilience to trading costs, main-
taining more stable performance characteristics across all periods. Most notably, in the test period, the strategy
achieves near-neutral to positive performance (Greedy: -1.5%, Stable: +3.1% annual returns) with substantially
lower risk metrics (standard deviations of 6.2% and 7.0% respectively). The LLM approach’s more moderate VaR
and CVaR measures (around -8.2% to -12.4% in the test period) compared to KMeans (-8.9% to -28.5%) fur-
ther underscore its superior risk management characteristics under transaction costs. This stark contrast in net
performance can be attributed to the fundamentally different nature of the signals generated by each approach.
While KMeans’ statistically-driven clusters require frequent rebalancing that amplifies transaction costs, the LLM’s
economically-motivated clusters appear to identify more persistent price patterns that remain profitable even after
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accounting for trading frictions. However, it is worth noting that neither approach was explicitly optimized for
transaction cost efficiency, suggesting potential for further improvement through cost-aware portfolio construction.
These results highlight that while our LLM-based news parser successfully captures predictable market reactions
to news articles, practitioners implementing such strategies would benefit from incorporating transaction costs into
their optimization framework.
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Table A3: Trading Intensity Analysis: Model Comparison

(a) Panel A: KMeans

Split Algorithm # Open Positions Trading Activity (%) Trading Costs (%)

Avg. Std. Max Min Turnover Changes/Pos. Cost Active

All Greedy 40.1 18.59 105 6 32.03 0.798 0.0961 100.0
Stable 10.77 6.41 30 0 34.75 3.228 0.1042 99.1

Train Greedy 36.4 19.33 88 7 30.59 0.840 0.0918 100.0
Stable 9.89 5.93 27 0 33.73 3.412 0.1012 98.2

Validation Greedy 48.4 10.00 80 30 31.39 0.649 0.0942 100.0
Stable 12.34 6.05 30 1 33.42 2.708 0.1003 100.0

Test Greedy 38.8 21.74 105 6 35.86 0.925 0.1076 100.0
Stable 10.84 7.47 28 1 39.30 3.626 0.1179 100.0

(b) Panel B: LLM

Split Algorithm # Open Positions Trading Activity (%) Trading Costs (%)

Avg. Std. Max Min Turnover Changes/Pos. Cost Active

All Greedy 31.8 14.84 75 4 39.21 1.234 0.1176 100.0
Stable 26.61 12.16 56 3 39.18 1.473 0.1175 100.0

Train Greedy 29.9 16.34 75 4 40.42 1.351 0.1212 100.0
Stable 25.54 12.90 56 3 40.45 1.584 0.1213 100.0

Validation Greedy 37.0 7.69 58 24 38.43 1.039 0.1153 100.0
Stable 31.38 6.82 50 17 37.95 1.209 0.1138 100.0

Test Greedy 29.7 16.24 75 6 37.56 1.264 0.1127 100.0
Stable 23.43 13.71 54 3 37.85 1.615 0.1135 100.0

Note: This table presents trading intensity metrics for both Greedy and Stable algorithms across different data splits for two
different models: KMeans (Panel A) and LLM (Panel B). The metrics are computed at a daily frequency. The ‘# Open
Positions’ columns report position-related statistics: ‘Avg.’ shows the mean number of concurrent open positions per day,
‘Std.’ represents their standard deviation, while ‘Max’ and ‘Min’ indicate the maximum and minimum number of positions
held simultaneously. Under ‘Trading Activity (%)’, ‘Turnover’ is calculated as the sum of absolute changes in position sizes
divided by the total portfolio size, expressed as a percentage; formally, T urnovert = 100 × (

󰁓
i
|wi,t − wi,t−1|)/(

󰁓
i
|wi,t|),

where wi,t represents the position size in asset i at time t. ‘Changes/Pos.’ represents the average number of modifications per
position per day, computed as the daily turnover divided by the average number of positions, providing insight into how actively
individual positions are managed. The ‘Trading Costs (%)’ section reports ‘Cost’ as the average daily implementation shortfall
(computed as the product of daily turnover and a conservative transaction cost parameter of 30 basis points, representing both
direct and indirect trading costs) expressed in percentage terms, while ‘Active’ shows the percentage of trading days with at
least one open position. All metrics are first computed daily and then averaged over their respective periods, except for Max
and Min positions which represent the absolute extremes over each period.
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Table A4: Portfolio Statistics Comparison: KMeans vs LLM Clustering (net of Trading Costs)

(a) Panel A: Statistics of PKMeans

Split Algo. Cum.
Ret.

Avg.
Ret.

St.
Dev.

Sharpe
Ratio

Sortino
Ratio

Max.
DD

Calmar
Ratio

Skew. Exc.
Kurt.

VaR
95%

CVaR
95%

All Greedy 0.780 -17.3 9.6 -2.0 -1.7 -24.7 -0.7 -0.48 3.90 -14.0 -24.2
Stable 1.058 4.4 17.0 0.3 0.3 -14.2 0.3 0.15 5.01 -24.5 -38.3

Train Greedy 0.823 -25.6 11.6 -2.5 -2.0 -18.2 -1.4 -0.51 2.71 -19.4 -29.9
Stable 1.057 8.7 19.9 0.4 0.4 -14.2 0.6 -0.25 3.21 -31.9 -46.0

Validation Greedy 1.000 -0.0 7.5 -0.0 -0.0 -5.8 -0.0 -0.50 0.95 -12.1 -17.9
Stable 1.050 14.7 13.4 1.0 1.0 -5.3 2.8 -0.27 1.99 -20.6 -30.9

Test Greedy 0.937 -20.0 6.6 -3.4 -3.5 -9.1 -2.2 1.55 4.31 -8.9 -12.0
Stable 0.924 -23.6 14.2 -1.9 -2.0 -10.0 -2.4 2.48 14.59 -20.6 -28.5

(b) Panel B: Statistics of PLLM

Split Algo. Cum.
Ret.

Avg.
Ret.

St.
Dev.

Sharpe
Ratio

Sortino
Ratio

Max.
DD

Calmar
Ratio

Skew. Exc.
Kurt.

VaR
95%

CVaR
95%

All Greedy 0.891 -8.5 9.7 -0.9 -1.0 -12.3 -0.7 1.44 9.81 -15.7 -21.2
Stable 0.928 -5.6 8.6 -0.7 -0.7 -11.7 -0.5 0.31 2.18 -12.9 -18.7

Train Greedy 0.910 -13.4 11.5 -1.2 -1.3 -12.3 -1.1 1.63 8.83 -19.4 -23.2
Stable 0.964 -5.5 10.0 -0.6 -0.6 -9.7 -0.6 0.21 1.60 -14.8 -21.6

Validation Greedy 0.985 -4.3 8.1 -0.5 -0.6 -4.3 -1.0 0.19 1.17 -11.6 -18.0
Stable 0.947 -14.3 7.0 -2.2 -2.0 -6.1 -2.4 0.17 1.17 -13.0 -16.5

Test Greedy 0.995 -1.5 6.2 -0.2 -0.3 -1.9 -0.8 1.02 6.91 -8.2 -12.1
Stable 1.009 3.1 7.0 0.4 0.5 -1.8 1.7 0.91 1.98 -10.8 -12.4

Note: Portfolio statistics of trading strategies based on clusters obtained from KMeans (Panel A) and LLM (Panel B)
approaches. The statistics provided include performance metrics (Cumulative Return, Average Return (%)), risk measures
(Standard Deviation (%), Maximum Drawdown (%), Value at Risk (%), Conditional Value at Risk (%)), risk-adjusted
performance ratios (Sharpe Ratio, Sortino Ratio, Calmar Ratio), and return distribution characteristics (Skewness, Excess
Kurtosis). These statistics are provided for both cluster-selection algorithms: Greedy and Stable. Except for the Cumulative
Return, all returns are annualized. The Sharpe Ratio is computed using the daily returns, assuming 252 trading days in a
year. The Sortino Ratio is calculated using the daily downside returns. The Maximum Drawdown is the maximum loss from a
peak to a trough. The Calmar Ratio is the ratio of the annualized return to the maximum drawdown. Skewness measures the
asymmetry of the return distribution, while Kurtosis quantifies the tails’ thickness. The Value at Risk (VaR) and Conditional
Value at Risk (CVaR) are calculated at a 95% confidence level. All returns are calculated net of transaction costs. We
implement a conservative transaction cost estimate of 30 basis points (0.30%) per trade, which accounts for both direct costs
(commissions, fees) and indirect costs (bid-ask spreads, market impact). The Greedy algorithm longs (shorts) clusters that
maximize (minimize) the cluster-average-SR in the validation sample subject to a positivity (negativity) constraint, while
the Stable algorithm longs (shorts) clusters that minimize the rank difference between the training and validation rankings
of the cluster-average-SR’s subject to a positivity (negativity) constraint, which is now imposed on both sample splits. In
both algorithms, the cardinality of each leg is upper-bounded by a hyperparameter θ. The holding period of the beta-neutral
positions is set to L = 4 trading days for both approaches. The number of traded clusters is θ = 0.5k = 13 for KMeans
(k∗ = 26 clusters) and θ = 0.5k = 10 for LLM (k∗ = 20 clusters). The selection criteria for these hyperparameters (L, θ) is
based on maximizing the Sharpe Ratios of the train and validation samples.
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Figure A.1: Sharpe Ratios in the train and validation splits as a function of L (KMeans)
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Note: This figure shows the Sharpe Ratios (SR) as a function of the holding period length (L) for the KMeans clustering
method in the training (Panel a) and validation (Panel b) splits. In Panel (a), the Sharpe Ratios in the training set indicate
that lower values of L (less than 4) maximize performance. Conversely, in Panel (b), the validation set shows higher Sharpe
Ratios for longer holding periods. The choice of L = 4 represents a balanced compromise, providing a stable Sharpe Ratio
profile across both splits, ensuring consistent in-sample performance without introducing lookahead bias.
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Figure A.2: Sharpe Ratios in the train and validation splits as a function of θ (KMeans)
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Note: This figure illustrates the Sharpe Ratios (SR) as a function of θ, the upper bound on the number of traded clusters, for
the KMeans clustering method in the training (Panel a) and validation (Panel b) splits. In Panel (a), the Sharpe Ratios in
the training set show a trend of increasing stability and maximizing performance as θ approaches its upper limit. Similarly,
Panel (b) displays a consistent pattern in the validation set, where higher values of θ lead to convergence at the highest and
most stable Sharpe Ratios. The choice of θ = 13 (i.e: ⌊0.5 · 26⌋) reflects this observed stability and optimization, providing a
balanced and robust selection for the portfolio strategy.
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Figure A.3: Sharpe Ratios in the train and validation splits as a function of hyperparameters (LLM)
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Note: This figure shows the Sharpe Ratios (SR) as a function of the holding period length (L) for the LLM clustering method,
across the training (Panel a) and validation (Panel b) splits. In Panel (a), the Sharpe Ratios in the training set reach their
maximum at L = 4, suggesting shorter holding periods are more effective for maximizing performance. Conversely, Panel
(b) illustrates that longer holding periods yield higher Sharpe Ratios in the validation set. The choice of L = 4 serves as
a compromise, balancing the trade-off between maximizing SR in both splits and providing a stable and consistent holding
period length for the strategy.
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Figure A.4: Sharpe Ratios in the train and validation splits as a function of θ (LLM)
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Note: This figure illustrates the Sharpe Ratios (SR) as a function of θ, the upper bound on the number of traded clusters,
for the LLM clustering method in the training (Panel a) and validation (Panel b) splits. In Panel (a), the Sharpe Ratios for
the training set indicate a temporary dip at θ = 10 for the Greedy algorithm, yet this value still provides a relatively stable
outcome. In contrast, Panel (b) shows that θ = 10 leads to a noticeable increase in Sharpe Ratios for the validation set,
particularly benefiting the Greedy algorithm. The choice of θ = ⌊0.5k⌋ = 10 strikes a balance, confirming it as an effective
hyperparameter selection for achieving stability in both the training and validation splits with LLM clustering.
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Figure A.5: Distribution of Cluster-Average Sharpe Ratios (SRg) by Split

(a) Panel A: KMeans Clustering
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(b) Panel B: LLM Clustering
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Note: This figure presents the distribution of cluster-average Sharpe Ratios (SRg) across training, validation, and test data splits
for both KMeans clustering (Panel A) and LLM clustering (Panel B). Each Sharpe Ratio is computed as the average of beta-neutral
positions associated with articles in a given cluster. The KMeans approach (Panel A) shows distributions centered around 0 in the
validation set, with some outliers exhibiting unusually high or low Sharpe Ratios. The training and test set distributions are slightly
right-skewed, suggesting better performance in certain clusters, with no significant outliers. In contrast, the LLM clustering (Panel B)
exhibits left-skewed distributions across all splits, indicating a higher frequency of lower Sharpe Ratios. The training data shows fat
tails, suggesting extreme values, while the validation data has lighter tails. The test data distribution is more bell-shaped, with Sharpe
Ratios concentrated between 5 and 15, indicating stronger performance in some clusters.
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Figure A.6: Evolution of Open Positions: KMeans vs LLM Clustering

(a) Panel A: KMeans Clustering
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(b) Panel B: LLM Clustering
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Note: This figure shows the daily evolution of the number of open positions for both Greedy (blue) and Stable (green) algorithms
across different data splits (Train, Validation, Test) using KMeans clustering (Panel A) and LLM clustering (Panel B). The time
period spans from July 2020 to September 2021. Vertical dashed lines separate the different data splits. The Greedy algorithm selects
clusters that maximize (minimize) the cluster-average-SR for long (short) positions, while the Stable algorithm minimizes the rank
difference between training and validation rankings. The number of traded clusters is θ = 0.5k = 13 for KMeans (k∗ = 26 clusters)
and θ = 0.5k = 10 for LLM (k∗ = 20 clusters). 62


