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Abstract

This paper develops a model of credit market screening with heterogeneous lenders,

borrower default risk, and regulatory interest rate caps. Two lenders compete by of-

fering menus of loan contracts, and differ in their ability to enforce repayment and in

their marginal lending costs. Borrowers are heterogeneous in their repayment prob-

ability and in their valuation of credit, both of which decline with borrower risk. In

equilibrium, borrowers self-select across lenders according to type, generating endoge-

nous market segmentation. We show that interest rate caps distort optimal contract

menus, inducing bunching, flattening repayment schedules, and shifting the cutoff type

that determines which borrowers are served by each lender. The model rationalizes

two robust empirical regularities: (i) non-bank lenders concentrate at the regulatory

ceiling, while banks offer strictly lower rates, and (ii) default rates are systematically

higher among non-bank borrowers. We further characterize the welfare-maximizing

cap, highlighting the regulator’s trade-off between broader borrower coverage and sus-

taining lender participation. Our results underscore how enforcement heterogeneity

interacts with borrower risk to shape the effectiveness and unintended consequences of

interest rate regulation.

1. Introduction

Consumer credit markets are central to household finance and welfare. Access to credit

enables households to smooth consumption, absorb shocks, and invest in opportunities. Over

the past two decades, consumer credit has expanded dramatically across both advanced

and emerging economies. This expansion has been characterized by high interest rates and
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elevated default rates, raising concerns about efficiency and welfare. The growth reflects a

larger supply of credit from traditional banks and, increasingly, the rise of fintech lenders and

other non-traditional intermediaries. The coexistence of fintechs and banks has produced a

highly heterogeneous supply side, with different lender types segmenting borrowers in novel

ways. At the same time, regulators often impose interest-rate caps aimed at protecting

borrowers from predatory practices. These caps interact with lender heterogeneity in ways

that shape market segmentation, loan terms, and ultimately welfare. Understanding this

interaction is essential for designing policies that protect borrowers while sustaining lender

participation.

This paper develops a model of credit market screening with two competing lenders who

face an interest rate cap imposed by a regulator. We incorporate two key asymmetries: (i)

lenders vary in their efficiency of repayment collection and marginal cost of providing funds,

and (ii) borrowers are heterogeneous in their repayment probability and in their valuation

of credit.

Each lender offers a menu of contracts, consisting of a probability of approval and an

interest rate. Borrowers are characterized by a uni-dimensional type in the unit interval,

which represents their riskiness and jointly determines their valuation and their probability

of repayment. In particular, we assume that the repayment probability and their valuation

of a loan are decreasing in their riskiness level, introducing adverse selection. Borrowers

self-select among the menu offered by the lenders based on their type and preferences. A

regulator imposes an interest rate cap that constrains lenders’ ability to screen borrowers

efficiently. We characterize the equilibrium menus of contracts and analyze how asymmetries

in enforcement shape the allocation of borrowers across lenders.

Our analysis highlights how regulatory caps induce distortions in contract design and

lead to segmentation across lenders. In particular, we show that non-bank lenders with

weaker enforcement tend to concentrate at the cap, while banks with stronger enforcement

offer lower rates and attract safer borrowers. We derive the welfare-maximizing cap and show

that the regulator faces a fundamental trade-off: a lower cap increases borrower coverage but

discourages lender participation. These findings contribute to the ongoing debate on financial

inclusion, consumer protection, and the unintended consequences of interest rate regulation.

Our framework contributes by unifying borrower and lender heterogeneity, producing new

predictions about segmentation, default, and discouragement.

Our framework generalizes classical screening models by combining heterogeneous lenders

with repayment risk and regulatory constraints, offering a flexible foundation for evaluating

credit market interventions in settings with heterogeneous agents on both sides of the market.

This framework contributes to the literature in three ways. First, it unifies insights from

the consumption-smoothing and credit-rationing literatures by incorporating both borrower
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heterogeneity and lender diversity. Second, it generates new testable predictions about

borrower–lender matching, credit terms, default, and discouragement patterns. Third, it

provides a richer foundation for analyzing policy interventions—such as interest-rate caps,

credit bureau regulations, or fintech entry—by evaluating their effects in a segmented market

where both sides of the market interact strategically.

Related Literature. Our paper contributes to several strands of the literature in eco-

nomics and finance.

First, it builds on the classic screening models of consumer credit markets under asym-

metric information, such as Rothschild and Stiglitz [1978], Stiglitz and Weiss [1981] and

Besanko and Thakor [1987]. The classical framework of Stiglitz and Weiss [1981] estab-

lished that riskier projects promise higher expected returns but also a greater probability of

default. Under asymmetric information, lenders cannot perfectly distinguish between risk

types, so higher interest rates worsen the pool of applicants by discouraging safer borrowers

and attracting riskier ones. This adverse selection mechanism, combined with moral hazard,

implies that credit markets may not clear through prices alone, leading to credit rationing.

While the notions of return and risk are also relevant in the context of household demand

for consumer credit, they rest on fundamentally different pillars. Our paper departs from

the investment–project framework and instead provides a rationalization of consumer credit

demand based on a simple intertemporal consumption model. In this setting, households

are represented as a continuum of borrowers with heterogeneous loan valuations, whose

credit demand arises endogenously from the trade-off between present consumption, future

repayment, and potential penalties of default. This demand side interacts with multiple types

of lenders endowed with distinct screening technologies, thereby generating segmentation in

modern consumer credit markets. Furthermore, we incorporate heterogeneity on both sides

of the market: not only are borrowers differentiated by repayment probability, but lenders

also differ in enforcement capacity and cost efficiency. This dual heterogeneity generates

novel implications for market segmentation and regulatory design.

Within the consumer-credit literature on endogenous default and information frictions,

our work is related to Chatterjee et al. [2008], who develop a finite-horizon model where re-

payment histories signal borrower risk in other markets such as insurance, rationalizing the

role of credit scores [Chatterjee et al., 2007]. Unlike their cross-market signaling channel, our

focus is on within-market screening under lender heterogeneity and regulatory caps. Their

mechanism is reputational, while ours is static and emphasizes segmentation and regula-

tion, making the two approaches complementary. Our analysis is also related to recent work

on search and approval in mortgage markets. Agarwal et al. [2024] develop a quantitative

search model where application rejection alters borrower behavior, generating endogenous
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adverse selection and strategic complementarities in bank rate setting. Risky borrowers in-

ternalize high rejection probabilities and behave as if they face high search costs, sorting

toward higher-priced lenders. While their focus is on search frictions and approval processes,

ours emphasizes screening under lender heterogeneity and rate caps. Together, these pa-

pers highlight how competition in credit markets manifests not only through prices, but

also through endogenous segmentation of borrowers shaped by enforcement, screening, and

approval institutions.

A complementary strand of work highlights how borrowers themselves may engage in

signaling. Kawai et al. [2022] study signaling in online peer-to-peer credit markets, showing

that reserve interest rates reveal borrower creditworthiness and mitigate adverse selection.

They estimate that adverse selection can destroy up to one-third of total surplus, much

of which is restored through signaling. While their mechanism operates through borrower-

side information disclosure, our focus is on lender heterogeneity and regulatory constraints.

Together, these papers underscore multiple channels that shape adverse selection and equi-

librium allocation in credit markets.

Second, our analysis relates to the literature on interest rate regulation and usury laws

[e.g., Dehejia et al., 2012]. These studies document that caps are widespread but often

controversial: while intended to protect borrowers from predatory lending, caps may reduce

credit access, especially for high-risk borrowers. Our model provides a theoretical foundation

for these trade-offs, showing precisely how caps alter contract menus and shift the borrower

composition across lenders.

Third, we connect to recent work on heterogeneous lenders and the rise of non-bank

financial intermediaries. Empirical evidence shows that banks and non-banks differ system-

atically in their cost structures, risk management technologies, and collection capabilities.

We formalize such differences as variation in enforcement efficiency and show how they inter-

act with regulatory caps to produce equilibrium patterns consistent with observed differences

in interest rates and default outcomes. A growing literature emphasizes the role of financial

technology in this evolution. Chu and Wei [2024] analyze a model where Fintech entrants

compete with banks using alternative screening technologies. They show that superior Fin-

tech screening may worsen allocative efficiency and even reduce welfare. In contrast, Fuster

et al. [2019] document empirically that Fintech mortgage lenders process applications faster,

respond more elastically to demand shocks, and increase refinancing efficiency, without higher

defaults. Our model complements these insights by showing how lender heterogeneity—in

enforcement as opposed to technology—interacts with regulatory caps to shape borrower

segmentation and welfare.

Our work is also related to the macro–finance literature on consumer credit and default.

In particular, Chatterjee et al. [2007] develop a dynamic model of unsecured credit with
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endogenous default, showing how heterogeneity in borrower risk and income shocks shapes

equilibrium loan terms. Subsequent work, such as Chatterjee and Eyigungor [2012], incor-

porates limited commitment and richer credit contract environments to analyze the design

of credit markets and bankruptcy institutions. These papers emphasize the dynamic inter-

action between household risk, default, and contract structure, whereas our focus is on static

screening with lender heterogeneity and regulatory caps. In this sense, our model comple-

ments theirs by isolating how enforcement asymmetries and price regulation affect borrower

sorting and market segmentation in equilibrium.

Finally, our work is related to the literature on screening in vertical oligopolies, such as

Chade and Swinkels [2021], who analyze how competing principals design contracts in the

presence of private information on the agent side. In a similar spirit, we study how competi-

tion between heterogeneous lenders leads to segmentation and cutoff rules in equilibrium, but

extend the analysis by incorporating repayment enforcement heterogeneity and regulatory

price constraints. Lester et al. [2019] develop a search-theoretic model that embeds adverse

selection and nonlinear screening into a frictional market with imperfect competition. Their

framework emphasizes how search frictions and market power jointly determine equilibrium

menus, allocations, and welfare, and shows that more competition need not be welfare im-

proving. By contrast, our analysis abstracts from search frictions and instead highlights how

lender heterogeneity and regulatory caps shape contract design and borrower sorting. More

broadly, our paper complements the literature on consumer protection and welfare in finan-

cial markets. While much of this work emphasizes behavioral biases and disclosure policies

[e.g., Campbell, 2016], our focus is on the equilibrium consequences of price regulation in

the presence of adverse selection and enforcement asymmetries. We show that a uniform cap

may exacerbate risk concentration among non-bank lenders, highlighting the need for policy

instruments that take into account the structural heterogeneity of credit markets.

The remainder of the paper is organized as follows: Section 2 introduces the model.

Section 3 characterizes the optimal menu of financial products for lenders in the absence

of regulation. Section 4 derives the optimal menu when a regulator is able to impose an

interest rate cap. Section 5 derives the welfare optimal interest rate cap. Section 6 discusses

the policy implications of the model. Section 7 discusses some extensions. Lastly, Section 8

concludes.

2. Model

We consider a market with two competing lenders and a continuum of heterogeneous borrow-

ers. Lenders differ in cost and collection efficiency. Each lender i ∈ {A,B} has a repayment

collection efficiency ρi ∈ (0, 1] and a per-type operating cost function Ci : [0, 1] → R+ that
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is twice-continuously differentiable and strictly convex. Without loss of generality, assume

that lender A has higher repayment collection efficiency, ρA > ρB. Assume that there is a

regulator who imposes an upper bound r̄ on the interest rate that any lender can charge.

Each lender offers a menu of contracts {(qi(θ), ri(θ))}θ∈[0,1], where qi : [0, 1] → [0, 1]

represents the probability of the credit approval whereas ri : [0, 1] → R+ denotes the interest

rate associated to such credit. Assume that all credits are for the same amount and borrowers

have the same initial endowment. The lender’s objective is to maximize its expect profits

subject to standard participation and incentive compatibility constraints.1 Furthermore, for

all q ∈ [0, 1], the higher-enforcement lender A has weakly lower marginal cost per unit of

enforcement than B:

C ′
A(q)

ρA
≤ C ′

B(q)

ρB
, with ρA > ρB, Ci ∈ C2, C ′′

i > 0.

Borrowers are privately informed about their types, which determine both their valu-

ation and their probability of repayment. Borrowers are indexed by their type θ ∈ [0, 1],

distributed according to the CDF F on [0, 1] with density f with full support. Borrowers’

valuation is determined by a decreasing and concave function v(θ). The repayment proba-

bility p(θ) is decreasing in θ with p(θ) > 0, capturing the notion that riskier borrowers are

less creditworthy. Assume that f , p and v are continuously differentiable on [0, 1].

Payoffs. The utility a borrower of type θ obtains from a contract (qi(θ̂), ri(θ̂)) offered by

lender i is given by:

Ui(θ, θ̂) = qi(θ̂)
[
v(θ)− ri(θ̂)

]
.

The participation constraint of borrower of type θ requires that Ui(θ, θ) := Ui(θ) ≥ 0.

The incentive compatibility constraint requires that Ui(θ) ≥ Ui(θ, θ̂)) for all θ, θ̂. Standard

single-crossing assumptions and the envelope condition implies that U ′
i(θ) = v′(θ)qi(θ) a.e..

Lender i’s expected repayment from a type-θ borrower is ρip(θ)ri(θ), so that expected

profit per borrower is

πi(θ) = ρip(θ)ri(θ)qi(θ)− Ci(qi(θ)).

Lender’s problem. Using the indirect utility representation, it follows that:

ri(θ) = v(θ)− Ui(θ)

qi(θ)
,

1Higher qi may also reflect better customer service, reputational advantages, or more favorable loan terms
beyond the interest rate.
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whenever qi(θ) > 0. Substituting into the profit function:

πi(θ) = ρip(θ)

(
v(θ)− Ui(θ)

qi(θ)

)
qi(θ)− Ci(qi(θ))

= ρip(θ) (v(θ)qi(θ)− Ui(θ))− Ci(qi(θ)).

Under standard assumptions guaranteeing incentive compatibility, the utility function is

differentiable and:

v′(θ)qi(θ) = U ′
i(θ),

so that:

πi(θ) = ρip(θ)

(
v(θ)

v′(θ)
U ′
i(θ)− Ui(θ)

)
− Ci

(
U ′
i(θ)

v′(θ)

)
.

Using this transformation of the problem, and letting Θi denote the subset of borrowers

who buy from lender i, each lender chooses an incentive-compatible utility schedule Ui(·) to
maximize expected profits:

max
Ui(·)

∫
Θi

[
ρip(θ)

(
v(θ)

v′(θ)
U ′
i(θ)− Ui(θ)

)
− Ci

(
U ′
i(θ)

v′(θ)

)]
f(θ) dθ,

subject to:

IC: U ′
i(θ) ≤ 0,

IR: Ui(θ) ≥ 0,

Cap: ri(θ) = v(θ)− v′(θ)Ui(θ)

U ′
i(θ)

≤ r̄.

Market Segmentation. Let ΘA ⊂ [0, 1] denote the set of borrower types who strictly

prefer lender A, and let ΘB ⊂ [0, 1] denote the set of borrower types who strictly prefer

lender B and let θi be the smallest type in Θi.

Regulator’s problem. Assume that there is a regulator who imposes an upper bound r̄

on the interest rate that any lender can charge. The regulator chooses the interest rate cap r̄

to maximize welfare, subject to the equilibrium constraints that determine contract menus,

borrower sorting, and participation. In this context, total welfare is:

W (r̄) =
∑

i∈{A,B}

∫
θ∈Θi

[Ui(θ) + πi(θ)] dθ.
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The regulator’s problem is then:

max
r̄

W (r̄) subject to all equilibrium constraints.

This framework captures the interaction between asymmetric lender characteristics, bor-

rower heterogeneity in both willingness to pay and default risk, and regulatory constraints on

pricing. The interest rate cap introduces nontrivial distortions to both the structure of the

menus and the selection patterns across lenders. We show how changes in r̄ affect screening

incentives, cross-subsidization, and the allocation of borrowers, highlighting the trade-offs

between protection and efficiency in regulated credit markets.

Binding constraints. We first identify the binding constraints.

Lemma 1 (Binding Participation Constraint) In any equilibrium, the participation con-

straint binds for the highest type served by each lender. That is,

Ui(θi) = 0 ∀ i ∈ {A,B}.

2.1 Rationalizing the Valuation Function

A central assumption in our framework is that the gross valuation function v(θ) is decreasing

in borrower type θ. This property can be rationalized by linking it to the to the certainty-

equivalent and the standard Euler equation governing intertemporal consumption under

uncertainty and default. Intuitively, with prudence, higher-risk borrowers face both a lower

repayment probability and greater consumption risk, which jointly reduce their certainty-

equivalent willingness to pay for credit.

Formally, consider a two-period consumer who maximizes expected utility u(c0)+βE[u(c1)],
with u′ > 0, u′′ < 0, and prudence u′′′ > 0. Borrower type θ parameterizes risk, with higher

θ associated with a lower probability of repayment and greater dispersion in future consump-

tion.

Suppose that the borrower receives a marginal loan of size ε > 0 at date 0 and faces

uncertainty about repayment at date 1. If repayment occurs, which happens with probability

p(θ), future consumption becomes

crep1 = c01 − (1 + r)ε.

If default occurs, which happens with probability 1− p(θ), future consumption is

cdef1 = c01 − κε,
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where κ ∈ [0, 1 + r) is a constant utility-equivalent penalty. Expected utility is then

E[u(c1) | θ] = p(θ)u(crep1 ) + (1− p(θ))u(cdef1 ).

The ex-ante marginal utility impact of the loan can be written exactly as

β E
[
u′(c1)

(
(1 + r)1rep + κ1def

) ∣∣∣ θ] = β
[
(1+r)p(θ)E

[
u′(c1) | rep, θ

]
+κ
(
1−p(θ)

)
E
[
u′(c1) | def, θ

]]
,

where rep and def denote the repayment and default events at date 1, respectively.

Under the standard “small-loan” first-order approximation,

E
[
u′(c1) | rep, θ

]
≈ E

[
u′(c1) | def, θ

]
≈ E[u′(c1) | θ],

and linearity of expectation then yields

β E[u′(c1) | θ]
[
(1 + r)p(θ) + κ

(
1− p(θ)

)]
.

Using this, the marginal change in ex-ante utility from a loan of size ε is approximately

∆U(ε; θ)

ε
≈ u′(c0)− βE[u′(c1) | θ]

[
(1 + r) p(θ) + κ

(
1− p(θ)

)]
.

We define the gross valuation function v(θ) as the certainty-equivalent marginal willing-

ness to pay for loan access. Formally,

v(θ) :=
1

u′(c0)

∂

∂ε

{
u(c0 + ε) + β

[
p(θ)u(c01 − (1 + r)ε) + (1− p(θ))u(c01 − κε)

]}∣∣∣∣
ε=0

.

We then obtain

u′(c0) v(θ) ≈ u′(c0) − β E[u′(c1) | θ]
[
(1 + r) p(θ) + κ

(
1− p(θ)

)]
or

v(θ) ≈ 1− β
E[u′(c1) | θ]

u′(c0)

[
(1 + r) p(θ) + κ

(
1− p(θ)

)]
.

This expression highlights why v(θ) naturally declines with borrower risk. First, with

prudence, higher θ increases the dispersion of future consumption, raising E[u′(c1)]. Second,

because p′(θ) < 0, the effective repayment burden (1+r)p(θ)+κ(1−p(θ)) is weakly increasing

in θ. Taken together, these effects imply that the certainty-equivalent willingness to pay for

loan access decreases with borrower type. Hence, the assumption v′(θ) < 0 is consistent
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with standard intertemporal choice theory under risk and default, and provides a natural

behavioral foundation for declining valuations in our screening model.

Note that if instead the penalty κ depends on θ, then the risk-adjusted repayment burden

becomes R̃(θ) = (1 + r)p(θ) + κ(θ)(1− p(θ)). In that case, v(θ) will fall even more sharply

whenever κ′(θ) ≥ 0, since both a lower repayment probability and a harsher default penalty

reinforce the decline. Conversely, if κ(θ) decreases in θ, the risk-adjusted obligation could

flatten or partly offset the prudence effect. Nonetheless, v(θ) remains decreasing under mild

and natural conditions. Specifically, differentiating the expression above gives

v′(θ) ≈ −β

[
∂θE[u′(c1) | θ]

u′(c0)
R̃(θ) +

E[u′(c1) | θ]
u′(c0)

R̃′(θ)

]
.

Thus, a sufficient condition for v′(θ) < 0 is

∂θE[u′(c1) | θ]
E[u′(c1) | θ]

R̃(θ) + R̃′(θ) > 0.

This inequality states that the precautionary effect (an increase in expected marginal utility

with θ due to prudence) is large enough to outweigh any decline in the risk-adjusted repay-

ment burden R̃(θ). Under these mild conditions—which require only prudence and that risk

increases with type—the assumption v′(θ) < 0 is robust even when default penalties vary

with borrower type.

3. Optimal menu without interest rate cap

Given the results on incentive compatibility and participation, we can restrict attention

to utility functions Ui(·) that are differentiable and satisfy the envelope condition U ′
i(θ) =

v′(θ)qi(θ), with participation binding at the highest type served. Thus, the lender’s problem

can be rewritten as follows. Letting Θi = [θi, θi] ⊆ [0, 1] denote the set of types served

by lender i, the lender chooses a utility function Ui : Θi → R+ satisfying Ui(θi) = 0 and

monotone to maximize:

max
Ui(·)

∫ θi

θi

[
ρip(θ)

(
v(θ)

v′(θ)
U ′
i(θ)− Ui(θ)

)
− Ci

(
U ′
i(θ)

v′(θ)

)]
f(θ) dθ,

Proposition 1 (Optimal Menu Without Interest Rate Cap) In the absence of an in-

terest rate cap, the optimal menu offered by lender i satisfies the following properties:
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1. Repayment Schedule: The interest rate charged to type θ is:

ri(θ) = v(θ)− 1

qi(θ)

∫ θi

θ

qi(s)v
′(s)ds.

2. Optimality Condition: Let

Φi(θ) :=
1

f(θ)

∫ θ

θi

ρi p(t) f(t) dt.

The optimal approval schedule is given by

qi(θ) = 0 when C ′
i(0) ≥ ρi p(θ) v(θ) − v′(θ) Φi(θ),

qi(θ) = 1 when C ′
i(1) ≤ ρi p(θ) v(θ) − v′(θ) Φi(θ),

qi(θ) ∈ (0, 1) when C ′
i

(
qi(θ)

)
= ρi p(θ) v(θ) − v′(θ) Φi(θ).

The sketch of the proof is as follows. Incentive compatibility ensures that the utility

function is differentiable and monotone, with the approval schedule given by qi(θ)v
′(θ) =

U ′
i(θ). In the absence of regulatory constraints or bunching, strict monotonicity of qi holds

generically. Part (1) follows directly from the definition of repayment, which is determined

by the envelope condition. Part (2) derives from applying the calculus of variations to the

lender’s objective. Taking the variational derivative and integrating by parts yields the

equation that characterizes the optimal approval function qi(·).
Borrowers with higher values of θ are riskier in the sense that their probability of re-

payment is lower. In the optimal screening arrangement, incentive compatibility requires

that each borrower type strictly prefers the contract intended for it. If more favorable terms

were offered to riskier borrowers, safer borrowers would have a strict incentive to deviate

and select those contracts, thereby undermining the screening mechanism.

The single-crossing property of the payoff functions then implies a monotone allocation:

borrowers with lower θ (safer borrowers) must be offered weakly more favorable terms (that

is, either a higher approval rate qi(θ) or a lower interest rate ri(θ)) while borrowers with higher

θ (riskier borrowers) must face tighter contractual terms. Consequently, in equilibrium:

1. the approval probability qi(θ) is weakly decreasing in θ, reflecting the lender’s reduced

willingness to extend credit as repayment risk increases; and

2. the interest rate ri(θ) is weakly increasing in θ, both to compensate for the higher

expected default losses and to preserve the separation of borrower types.

Any deviation from these monotonicity patterns would violate the incentive compatibility
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constraints: for example, an increasing qi(θ) or a decreasing ri(θ) would induce safer borrow-

ers to mimic riskier ones, making the allocation infeasible. Monotonicity thus emerges as a

necessary structural property of the optimal contract, ensuring self-selection and preserving

the feasibility of the screening equilibrium. This is formalized in Corollary 1.

Corollary 1 (Monotonicity of the optimal contract) In the optimal contract, qi(θ) is

weakly decreasing on [θi, θi] whereas ri(θ) is weakly increasing on such interval.

Sorting Across Lenders. To determine how borrowers are allocated between the two

lenders in equilibrium, we first establish a single-crossing property in the difference between

their approval schedules. The logic is standard in screening environments: if the difference

qA(θ) − qB(θ) is weakly increasing in borrower type θ, then by the envelope condition the

difference in borrower utilities

∆U(θ) = UA(θ)− UB(θ)

is also single crossing in θ.

Lemma 2 (Single crossing of approval schedules) The function θ 7→ qA(θ) − qB(θ) is

weakly decreasing on the union of types served in equilibrium.

The single-crossing property implies that borrowers’ preferences over lenders can change

at most once as θ increases, giving rise to a unique cutoff type θ∗ that separates the two

market segments. Let θ∗ denote the marginal borrower who is indifferent between the two

lenders, defined by

UA(θ
∗) = UB(θ

∗) ⇔ qA(θ
∗)
[
v(θ∗)− rA(θ

∗)
]
= qB(θ

∗)
[
v(θ∗)− rB(θ

∗)
]
.

Equivalently,

v(θ∗) =
qA(θ

∗)rA(θ
∗)− qB(θ

∗)rB(θ
∗)

qA(θ∗)− qB(θ∗)
.

In equilibrium, all borrowers with θ < θ∗ are served by one lender and all borrowers with

θ ≥ θ∗ are served by the other. Accordingly, for each i ∈ {A,B}, the set Θi of types served

by lender i takes the form

Θi =
[
θi, θi

]
,

where θi ∈ {0, θ∗} and θi ∈ {θ∗, 1}.
While the single-crossing property guarantees the existence of a unique cutoff, it does

not identify which lender serves the higher-risk borrowers. To pin this down, we show that

under our maintained assumptions there is a top-type feasibility dominance: at sufficiently

low risk, lender A can profitably serve borrowers whereas lender B cannot.
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Lemma 3 (Low-type dominance) At sufficiently low risk, lender B cannot serve the type

profitably while lender A can.

This property follows from the monotonicity of p(θ): for sufficiently low types, the re-

payment probability is high enough to satisfy A’s break-even condition, while B’s fails under

the effective cost–efficiency ordering at safer types.

Proposition 2 (Sorting by enforcement) There exists a unique cutoff type θ∗ ∈ [0, 1]

such that

ΘA = [θA, θ
∗) and ΘB = [θ∗, θB].

Competition in this environment arises not from Bertrand price undercutting but from

the endogenous determination of the borrower segments that each lender serves. In the

model, both lenders offer screening menus subject to participation and incentive compati-

bility constraints. Because lender A is more efficient in enforcement, it can profitably serve

safer (low-θ) borrowers, while lender B focuses on riskier (high-θ) ones. This generates a

unique cutoff type θ∗ such that borrowers below θ∗ strictly prefer lender A and those above

θ∗ strictly prefer lender B. The cutoff emerges endogenously from the interaction of ap-

proval schedules qi(θ) and repayment rates ri(θ), and rules out multiple switching points

or overlapping service regions. Thus, market segmentation is the equilibrium manifestation

of competition: each lender optimally adjusts its contract menu given the other’s, and the

resulting partition of borrowers reflects their relative enforcement efficiencies

4. Optimal menu with interest rate cap

Consider now the case in which the regulator introduces the interest rate cap.

Proposition 3 (Characterization of the Optimal Menu) In the optimal contract of-

fered by lender i, the utility schedule Ui(θ) is convex and satisfies the following properties:

1. Interest Rate Cap and Bunching: There exists a (possibly empty) subset Bi ⊆ Θi

such that for all θ ∈ Bi, the interest rate cap binds:

v(θ)− Ui(θ)

qi(θ)
= r̄.

On this set, the optimal menu exhibits bunching: distinct types receive the same interest

rate, and the lender adjusts quality to maintain incentive compatibility.

2. Strict Screening Outside the Cap: Outside the bunching region Bi, the menu is

strictly screening and characterized by Proposition 1.
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(a) Cap doesn’t bind (b) Cap bind for B (c) Cap binds for both firms.

Figure 1: Interest rate schedules under different regulatory cap scenarios.

The result follows from standard arguments in optimal control and mechanism design.

Property (1) arises from the fact that the interest rate cap may prevent the lender from fully

separating borrower types through pricing. When the cap binds, the lender is constrained

from increasing repayment further, so all types θ ∈ Bi must be offered the same interest

rate. To preserve incentive compatibility in this region, the lender adjusts qi(θ) , resulting in

bunching. Property (2) reflects the standard screening logic in unconstrained regions: types

are fully separated, and Proposition 1 characterizes the optimal approval schedule whenever

the cap constraint is slack.

The interest rate cap r̄ may bind for one or both lenders, depending on its tightness.

If r̄ is not too restrictive, both lenders are able to offer strictly screening menus with full

separation of borrower types. However, if the cap binds for lender B, it induces bunching

among higher types: since borrowers cannot be charged higher repayment, the lender must

distort the probability of approval downward to preserve incentive compatibility. If the cap

is sufficiently tight, it may lead to pooling of types, drive one lender out of the market,

or significantly reduce total borrower surplus. In general, the cap flattens contract menus,

reduces the extent of sorting, and shifts the cutoff type θ∗ that determines which lender a

borrower selects.

Figures 1 and 2 capture the central mechanism by which interest rate caps distort the

structure of credit contracts. When the cap is slack, lenders fully separate borrower types

through smoothly increasing repayment rates and decreasing approval probabilities. Once

the cap becomes binding, however, this separation breaks down: repayment schedules flatten

at the ceiling, and lenders are forced to screen borrowers through reduced approval instead of

higher charges. These distortions compress differences across borrower types, reallocate risk

toward the less efficient lender, and shift the cutoff type that determines who borrows from

whom. In this way, the figures illustrate how regulation transforms competitive screening

into a segmented market where bunching, exclusion, and misallocation naturally emerge.
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(a) Cap doesn’t bind (b) Cap bind for B
(c) Cap binds for both
lenders.

Figure 2: Approval rate schedules under different regulatory cap scenarios.

5. Welfare optimal interest cap

We now characterize the interest rate cap r̄∗ that maximizes total welfare, accounting for

its effects on contract menus, borrower sorting, and lender participation. The regulator’s

objective is to choose the cap that optimally balances access to credit, borrower surplus, and

lender profitability, given the distortions induced by the cap on screening and selection.

Regulator’s Problem. Let θ∗(r̄) denote the marginal borrower who is indifferent between

lenders under interest cap r̄. Then, total welfare as a function of the cap is given by:

W (r̄) =

∫ θ∗(r̄)

0

[UA(θ; r̄) + πA(θ; r̄)] dθ +

∫ 1

θ∗(r̄)

[UB(θ; r̄) + πB(θ; r̄)] dθ.

The regulator chooses r̄ ∈ [0, r̄max] to maximize W (r̄), subject to all equilibrium con-

straints: that is, the incentive compatibility and participation constraints, the interest rate

cap constraint, the borrower sorting condition and the lender non-negative profit condition.

Optimal Cap. We next derive the first-order condition characterizing r̄∗.

Proposition 4 (Optimal Interest Rate Cap) Suppose the equilibrium menu is unique

and continuously differentiable in r̄, and that θ∗(r̄) is differentiable. Then the optimal cap

r̄∗ satisfies the first-order condition:

dW (r̄)

dr̄
= 0.

The first-order condition reflects three components:

1. The direct effect of relaxing the cap on the menus and utilities offered to borrowers

currently served by each lender.
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2. The profit effect through changes in lender margins due to loosening or tightening the

rate constraint.

3. The extensive margin effect due to re-sorting of the marginal borrower θ∗, who may

switch lenders in response to a change in the cap.

If the cap is too low, credit access is restricted and menus are distorted by bunching. If the

cap is too high, lenders serve excessively risky borrowers at high repayment rates, increasing

default and harming borrower welfare. The optimal cap r̄∗ balances these competing forces

to maximize overall surplus.

6. Discussion

This section discusses how the model rationalizes two robust empirical regularities in credit

markets with interest rate regulation and heterogeneous lenders:

1. non-bank lenders tend to charge the maximum interest rate permitted by regulation,

whereas banks typically offer lower rates; and

2. non-bank lenders exhibit systematically higher default rates than banks.

We show that both patterns naturally emerge from the model’s equilibrium, reflecting the

interaction between lender heterogeneity, borrower risk, and regulatory caps. We also address

the conditions under which non-banks remain active in equilibrium, compare the relative size

and profitability of lenders, and consider the broader policy implications of the analysis.

These regularities can be traced back to fundamental differences in lenders’ enforcement

capacity. Banks, endowed with greater repayment efficiency—through superior screening

technologies, stronger legal enforcement, or reputational advantages—are able to profitably

serve safer borrowers at lower rates. Non-banks, by contrast, face limited collection power

and consequently design flatter menus that cluster at the regulatory ceiling.

6.1 Non-bank participation and clustering at the regulatory cap

Proposition 3 shows that the interest rate cap may bind on a (possibly nonempty) set of

borrower types, depending on the lender’s characteristics and the tightness of the cap. When

the cap binds, lenders cannot fully separate borrower types through pricing. To maintain

incentive compatibility, they respond by reducing approval probabilities (bunching), which

flattens repayment rates at the regulatory ceiling and distorts contract terms over the binding

region.
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Because less efficient lenders face higher effective marginal costs of serving risky borrow-

ers, they require higher rates to break even and are therefore more likely to be constrained by

the cap. In equilibrium, the optimal contract offered by a low-efficiency lender typically fea-

tures a binding interest rate constraint over a wide range of borrower types, leading them to

set rates at the ceiling for most, if not all, clients. By contrast, high-efficiency lenders—banks

in the empirical counterpart—can profitably offer credit at lower rates to safer borrowers.

Their menus involve strictly interior rates below the cap, particularly in the region where

screening is active. Hence, the model predicts a pattern consistent with the data: non-bank

lenders cluster at the regulatory ceiling, while banks offer more dispersed and typically lower

rates.

Although non-banks are dominated in efficiency, they remain active in equilibrium be-

cause they serve a segment of the borrower population that banks optimally choose not to

cover. Banks, endowed with superior enforcement capacity, could in principle supply credit

to the entire market. However, extending credit to riskier borrowers would require raising

rates for safer clients as well, thereby eroding informational rents and reducing profitability

in their core portfolio. It is therefore optimal for banks to restrict their menus to lower-risk

borrowers, leaving the riskier segment to non-banks. As a result, non-banks specialize in

the upper tail of the risk distribution. Their lower enforcement efficiency makes them more

likely to be constrained by the regulatory cap, but their comparative advantage lies precisely

in their willingness to extend credit to borrowers that banks deliberately exclude.

6.2 Borrower Sorting and Default Rates across lenders

The model embeds adverse selection through a decreasing repayment probability function:

riskier borrowers are more likely to default, and equilibrium borrower–lender matching is

determined by endogenous sorting based on the menus offered by each lender.

Because of their limited collection efficiency, non-bank lenders must design flatter menus

that implicitly subsidize high-risk borrowers within the cap constraint. In equilibrium, this

strategy attracts a disproportionate share of borrowers from the upper tail of the risk dis-

tribution. Banks, by contrast, exploit their higher enforcement capacity to profitably serve

lower-risk borrowers while optimally excluding excessively risky types. The resulting cut-

off that separates lender portfolios is interior whenever both lenders are active, with safer

borrowers allocated to banks and riskier borrowers self-selecting into non-bank contracts.

Taken together, these equilibrium patterns generate systematic differences in borrower

composition and repayment outcomes. Non-banks concentrate at the regulatory ceiling and

serve a pool with higher default incidence, while banks offer lower and more dispersed rates

to safer clients. Since repayment probabilities decline with borrower risk, the model predicts

that non-bank portfolios will exhibit substantially higher default rates. These two empirical
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regularities—non-banks clustering at the ceiling and experiencing higher defaults—are thus

complementary manifestations of a single mechanism: banks’ incentive to preserve favorable

terms for safer borrowers leads them to exclude riskier clients, who are then absorbed by

non-banks under the binding cap.

6.3 Profits, market shares and policy implications

The analysis underscores the importance of accounting for enforcement heterogeneity when

designing interest rate regulation. A uniform cap compresses contract menus and reallo-

cates riskier borrowers toward lenders with weaker enforcement capacity. This segmentation

preserves access but simultaneously amplifies default externalities and erodes overall credit

quality.

In equilibrium, both banks and non-banks can earn positive profits, but their size and

composition differ. Banks capture the larger, safer segment of the market by offering lower

rates supported by stronger enforcement technologies, while non-banks concentrate on a

smaller, riskier pool of borrowers. Non-banks’ profitability does not stem from efficiency

advantages but from tailoring contracts to borrowers whom banks optimally exclude. Their

smaller market share reflects this specialization in serving borrowers who would otherwise

lack access to credit.

From a policy perspective, these findings highlight a fundamental trade-off. A uniform

interest rate cap sustains the coexistence of heterogeneous lenders but at the cost of concen-

trating risk among non-banks. Differentiated caps, subsidies for enforcement technologies, or

complementary regulatory instruments could mitigate these distortions by reducing adverse

sorting and improving credit quality. More broadly, the model suggests that the presence of

non-banks should not be viewed exclusively as evidence of predatory practices, but rather

as the equilibrium outcome of structural segmentation in which banks optimally relinquish

the riskiest borrowers.

7. Extensions

7.1 Fixed costs

We extend the baseline framework by allowing each lender i ∈ {A,B} to face fixed enforce-

ment costs in addition to variable costs and repayment efficiency. In particular, in addition

to the per-type operating cost function Ci(q) and repayment efficiency parameter ρi, each

lender is subject to: (i) a per-loan activation cost fi ≥ 0, incurred whenever qi(θ) > 0; and

(ii) a per-default fixed enforcement cost ρFi ≥ 0, which is paid only in default states.
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Note that the repayment efficiency parameter ρi measures the proportional fraction of

repayments that can be effectively collected, scaling revenues smoothly across all types.

By contrast, the activation cost fi and the per-default fixed cost ρFi capture nonconvex

enforcement frictions: fi arises whenever a loan is originated, while ρFi is triggered only

in default states. The activation cost fi reflects overhead expenses of initiating a loan

(screening, paperwork, monitoring), while the per-default fixed cost ρFi reflects the legal and

administrative burden of pursuing a delinquent borrower. Accordingly, ρi affects marginal

efficiency continuously, whereas (fi, ρ
F
i ) create discrete extensive-margin cutoffs and wedges

that grow in importance for high-risk borrowers.

Lender’s problem. In the presence of fixed costs, lender i’s profits per type θ can therefore

be expressed as

πi(θ) = ρip(θ)ri(θ)qi(θ)− Ci(qi(θ))− (1− p(θ))ρFi qi(θ)− fi1{qi(θ) > 0}.

As in the baseline, repayment is given by

ri(θ) = v(θ)− Ui(θ)

qi(θ)
whenever qi(θ) > 0,

and incentive compatibility implies U ′
i(θ) = v′(θ)qi(θ) with Ui(θi) = 0 at the highest type

served. We continue to define

Φi(θ) :=
1

f(θ)

∫ θ

θi

ρip(t)f(t) dt.

The characterization of the optimal menu with fixed costs is analogous to that in the

baseline model. The only change is that the optimality conditions include, for each type,

an additional constraint: expected profits (net of variable costs) must at least cover the

fixed cost of approving a loan and must also account for the contingent enforcement cost in

default.

Proposition 5 (Optimal menu with fixed costs) In any optimal menu,

qi(θ) = 0 when C ′
i(0) ≥ ρip(θ)v(θ)− v′(θ)Φi(θ),

qi(θ) = 1 when C ′
i(1) + (1− p(θ))ρFi ≤ ρip(θ)v(θ)− v′(θ)Φi(θ),

qi(θ) ∈ (0, 1), ri(θ) < r̄ when C ′
i(qi(θ)) + (1− p(θ))ρFi = ρip(θ)v(θ)− v′(θ)Φi(θ),

qi(θ) ∈ (0, 1), ri(θ) = r̄ when C ′
i(qi(θ)) + (1− p(θ))ρFi = ρip(θ)v(θ)− v′(θ)Φi(θ) + λi(θ),
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where λi(θ) ≥ 0 is the multiplier on the cap constraint. Moreover, if qi(θ) > 0, then

ρip(θ)
(
v(θ)qi(θ)− Ui(θ)

)
− Ci(qi(θ))− (1− p(θ))ρFi qi(θ) ≥ fi.

Note that the proof of Proposition 5 is analogous to the baseline case, and the addi-

tional term (1 − p(θ)) ρFi acts as a contingent marginal cost, steepening the effective cost

schedule—especially for higher-θ types. This observation has a direct implication for the

allocation under the cap. In particular, the presence of fixed costs implies that some types

may be unserved (i.e., qi(θ) = 0) even within the bunching region. Define, within the

lender’s market Θi, the cap–binding set Bi = {θ ∈ Θi : ri(θ) = r̄} and the served set

Si = {θ ∈ Θi : qi(θ) > 0}. Moreover, whenever Bi ̸= ∅ we define

θic := inf Bi,

i.e., the smallest type in Θi at which the cap binds. Note that monotonicity implies that

Bi = [θic, supΘi]. Lemma 4 shows that only sufficiently risky types are potentially excluded

in equilibrium, with the extent of exclusion determined by the fixed-cost parameters.

Lemma 4 (Terminal exclusion in the cap region) If Bi ̸= ∅, then there exists θ̃i ∈ Bi

such that Si ∩Bi = [θic, θ̃i) and qi(θ) = 0 for all θ > θ̃i.

Figure 3 illustrates how fixed costs affect the optimal menus, illustrating how sufficiently

risky types may be excluded from the market. The top panels plot ri(θ) and show that the

schedule rises with type until it reaches the cap and then remains flat at r̄ for all higher

served types. The bottom panels plot qi(θ) and show a weakly decreasing approval schedule

that, with fixed costs, may hit zero once at a cutoff inside Bi, beyond which the lender does

not lend. Types outside Θi are shaded to emphasize market segmentation. Hence, the right

column illustrates exclusion for lender B, while the left column shows the no-exclusion case

for lender A.

No exclusion. To identify conditions under which exclusion does not arise, define for

θ ∈ Bi the capped linear coefficient

αi(θ) := ρip(θ) r̄ − (1− p(θ)) ρFi .

Inside Bi the cap fixes ri(θ) = r̄ for all served types, so the per–type net margin at approval

level q equals αi(θ)q − Ci(q) and must cover the cost fi. Let αi := infθ∈Bi
αi(θ). A simple

uniform requirement then rules out exclusion: if

max
q∈[0,1]

{αiq − Ci(q)} ≥ fi,
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(a) Lender A is constrained by the cap.
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(b) Lender B is also constrained by the cap.
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(c) Lender A serves all types below θ∗.
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(d) Lender B excludes sufficiently risky types.

Figure 3: Each panel is restricted to the lender’s own Θi and shades types outside it. Darker
bands mark Bi = {θ ∈ Θi : ri(θ) = r̄}.
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there exists q⋆ > 0 with αiq
⋆−Ci(q

⋆) ≥ fi, and since αi(θ) ≥ αi for all θ ∈ Bi it follows that

αi(θ)q
⋆ − Ci(q

⋆) ≥ fi pointwise on Bi, implying qi(θ) > 0 throughout Bi.

Lemma 5 (Sufficient condition for no exclusion) If maxq∈[0,1]{αiq−Ci(q)} ≥ fi, then

qi(θ) > 0 for all θ ∈ Bi.

Formally, within the cap-binding set the interest rate is fixed at the regulatory cap, so

prices cannot adjust and all screening occurs through quantities. For any borrower type in

this set, approving an additional unit yields a cap-adjusted marginal revenue: the lender’s

collection efficiency multiplied by the probability of repayment and by the cap, minus the

probability of default multiplied by the fixed enforcement cost per default. Net surplus at a

given approval level equals this cap-adjusted marginal revenue times the approved quantity,

minus variable operating costs, and it must cover the per-loan activation cost. No exclusion

obtains if a uniform activation test is satisfied: there exists a single approval level—strictly

between zero and full approval—such that, even for the worst type in the cap-binding set

(the type with the lowest cap-adjusted marginal revenue), the resulting net surplus is at

least as large as the activation cost. When this condition holds, the same approval level

is profitable for every other type in the cap-binding set (since their cap-adjusted marginal

revenue is no lower), and the lender therefore approves a positive amount for all such types.

In particular, no borrower type in the cap-binding set is excluded.

Comparative statics. Because the fixed–cost parameters determine which borrowers are

excluded, we study how the exclusion boundary responds to changes in these parameters.

Within the cap–binding set Bi the interest rate is fixed at r̄, so screening operates entirely

through quantities. For θ ∈ Bi, the default–contingent term (1− p(θ)) ρFi lowers αi(θ) more

for riskier types, while the per–loan cost fi imposes a uniform threshold: at any approval

level q, the capped margin αi(θ)q−Ci(q) must cover fi. As θ rises (so p(θ) falls), both forces

depress qi(θ); once qi(θ) reaches zero at a cutoff θ̃i ∈ Bi, incentive–compatibility implies

a monotone qi(·), so approval cannot resume at higher types and exclusion beyond θ̃i is

terminal.

Lemma 6 (Comparative statics of terminal exclusion) The terminal cutoff θ̃i is weakly

decreasing in ρFi and in fi. Equivalently, the terminal exclusion region weakly expands as

either parameter increases.

A formal intuition for Lemma 6 is as follows. Inside Bi the price is fixed at the cap,

so the lender’s choice for each type reduces to a one–dimensional quantity problem with

an activation constraint: approve q ∈ [0, 1] only if the cap–adjusted surplus at that type

exceeds the per–loan cost, and otherwise do not lend. Increasing the per–default fixed cost
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ρFi lowers the cap–adjusted surplus pointwise for every type, and it does so more sharply

at higher risk levels because the probability of default is larger there. This contraction in

surplus tightens the activation constraint exactly where approval is already most difficult,

thereby removing the highest–risk served types and shifting the terminal boundary θ̃i toward

lower types. Increasing the activation cost fi raises the threshold uniformly across types;

holding everything else fixed, fewer types now clear the activation test, so the served set

inside Bi shrinks from the top for the same reason. Because incentive compatibility implies

that the set of served types within Bi is a connected lower interval, any reduction in the set of

types satisfying the activation constraint can only move the upper endpoint of that interval

downward. Hence θ̃i is weakly decreasing in both ρFi and fi, and the terminal exclusion

region weakly expands as either parameter increases.

Welfare. In the presence of fixed costs, total welfare is given by

W (r̄) =
∑

i∈{A,B}

∫
Θi

[
v(θ) qi(θ)− Ci

(
qi(θ)

)
− (1− p(θ)) ρFi qi(θ)− fi 1{qi(θ) > 0}

]
f(θ) dθ.

The welfare optimal interest cap with this cost structure is characterized in Proposition

6.

Proposition 6 (Optimal interest-rate cap with fixed costs) Suppose the equilibrium

menu is differentiable in r̄ on each Θi, the type distribution places no atoms on Bi, and the

sorting cutoff θ∗ and the terminal cutoffs θ̃i vary smoothly with r̄. Let λi(θ) ≥ 0 denote the

multiplier on ri(θ) ≤ r̄, and define

wi(θ; r̄) := v(θ)qi(θ)− Ci(qi(θ))− (1− p(θ))ρFi qi(θ)− fi 1{qi(θ) > 0}.

Then

dW (r̄)

dr̄
=

∑
i

∫
Bi∩Si

λi(θ) f(θ) dθ︸ ︷︷ ︸
direct effect of relaxing the binding cap

+
∑
i

wi(θ̃
−
i ; r̄) f(θ̃i)

dθ̃i
dr̄︸ ︷︷ ︸

effect of moving the terminal approval boundary

+ ∆sort(r̄)︸ ︷︷ ︸
effect of shifting the market cutoff θ∗

.

In particular, any interior optimum r̄⋆ satisfies dW (r̄⋆)
dr̄

= 0 together with the usual regularity

and second–order conditions; otherwise the optimum lies at a boundary of the feasible cap.

The three terms have a clear interpretation. The first term aggregates, over types who

are both served and constrained by the cap, the gain from a marginal relaxation of the cap;

because λi(θ) ≥ 0, this contribution is nonnegative. The second term reflects how a change
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in r̄ alters the size of the served set within the cap-binding region: a higher cap raises the cap-

adjusted margin (since ∂αi(θ)/∂r̄ = ρip(θ) > 0), shifts the terminal cutoff θ̃i weakly outward,

and changes welfare at a rate equal to the welfare density at that boundary times the rate

at which the boundary moves; this term is weakly nonnegative whenever wi(θ̃
−
i ; r̄) ≥ 0. The

third term captures reallocation at the market cutoff, with a local representation

∆sort(r̄) =
[
wB(θ

∗; r̄)− wA(θ
∗; r̄)

]
f(θ∗)

dθ∗

dr̄
,

so its sign depends on which lender delivers higher welfare at the margin and on whether

the cutoff moves toward that lender as the cap changes.

These elements imply the following policy guidance. If, over the range where the cap

binds, welfare at the terminal boundary is nonnegative for each lender and the reallocation

effect is favorable (i.e., ∆sort(r̄) ≥ 0 on a set of positive measure), then dW (r̄)
dr̄

> 0 and welfare

rises as the cap is relaxed until the constraint ceases to bind; the optimal cap is therefore the

least restrictive (nonbinding) one. If boundary welfare is nonpositive and the reallocation

effect is unfavorable, then dW (r̄)
dr̄

< 0 on the binding range and the most restrictive feasible

cap is optimal. In intermediate cases the three forces offset each other, and the welfare-

maximizing cap is interior and determined by the first-order condition in Proposition 6; its

level depends on the shadow values λi(θ), the boundary welfare wi(θ̃
−
i ; r̄), the responsiveness

of the terminal cutoffs dθ̃i/dr̄, and the product
[
wB(θ

∗; r̄)−wA(θ
∗; r̄)

]
(dθ∗/dr̄) at the market

margin.

7.2 Interest Rate-Dependent Repayment Probabilities

We now extend the framework by allowing the repayment probability to depend not only

on borrower type but also on the contractual interest rate. Formally, let p(θ, r) denote the

repayment probability of a borrower of type θ ∈ [0, 1] facing an interest rate r. We assume

that p is continuously differentiable, strictly decreasing in θ, and weakly decreasing in r.

This modification reflects the idea that riskier borrowers are less likely to repay and that

higher repayment burdens increase the incidence of default.

The borrower’s problem remains unchanged. Given a contract (qi(θ̂), ri(θ̂)), a borrower

of type θ obtains

Ui(θ, θ̂) = qi(θ̂)
[
v(θ)− ri(θ̂)

]
.

As in the baseline model, incentive compatibility implies the envelope condition

U ′
i(θ) = v′(θ)qi(θ),

with participation binding at the highest type served. Hence, approval rates remain weakly
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decreasing in type and repayment rates weakly increasing. The modification arises on the

supply side: lender i’s expected profit from serving type θ now takes the form

πi(θ) = ρi p(θ, ri(θ)) ri(θ) qi(θ)− Ci(qi(θ)),

where ρi denotes enforcement efficiency. Substituting the utility representation, profits can

be expressed as

πi(θ) = ρi p(θ, ri(θ))
( v(θ)
v′(θ)

U ′
i(θ)− Ui(θ)

)
− Ci

(U ′
i(θ)

v′(θ)

)
,

with ri(θ) = v(θ) − Ui(θ)v
′(θ)/U ′

i(θ). The lender maximizes the expected value of this

expression over the set of types it serves, subject to monotonicity.

The next result characterizes the structure of optimal contracts in this extended setting

without an interest rate cap.

Proposition 7 (Optimal Menu with Rate-Dependent Repayment) In the absence of

an interest rate cap, the optimal contract offered by lender i satisfies:

1. For any type θ in the support of Θi, repayment is given by

ri(θ) = v(θ)− 1

qi(θ)

∫ θi

θ

qi(s)v
′(s) ds.

2. Defining

Φi(θ) =
1

f(θ)

∫ θ

θi

ρip(t, ri(t))f(t) dt.

the approval schedule qi(θ) is characterized by
qi(θ) = 0 if C ′

i(0) ≥ ρi

(
p(θ, ri(θ))v(θ)− v′(θ)Φi(θ) + Ξi(θ)

)
,

qi(θ) = 1 if C ′
i(1) ≤ ρi

(
p(θ, ri(θ))v(θ)− v′(θ)Φi(θ) + Ξi(θ)

)
,

C ′
i(qi(θ)) = ρi

(
p(θ, ri(θ))v(θ)− v′(θ)Φi(θ) + Ξi(θ)

)
if qi(θ) ∈ (0, 1),

where

Ξi(θ) =
v(θ)

v′(θ)

d

dθ

(
ri(θ)pr(θ, ri(θ))

v′(θ)

)
is a correction term reflecting the sensitivity of repayment to the interest rate.

This proposition confirms that the structure of the optimal menu remains as in the

baseline model. Repayment schedules continue to be determined by the envelope condition,
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while approval rates are pinned down by a pointwise first-order condition. The only change

is the presence of the correction term Ξi(θ), which captures the fact that interest rates affect

repayment probabilities as well as revenues. In equilibrium, lenders must balance the benefit

of charging a higher rate against the associated decline in repayment likelihood.

Corollary 2 (Monotonicity) In the optimal contract, the approval schedule qi(θ) is weakly

decreasing in type, while the repayment schedule ri(θ) is weakly increasing.

Thus the ordering of contract terms across types is preserved: safer borrowers are granted

greater access to credit at lower repayment rates, while riskier borrowers face reduced ap-

proval probabilities and higher repayment burdens. Allowing repayment probabilities to

depend on interest rates does not alter this fundamental property.

Proposition 8 (Sorting with Rate-Dependent Repayment) There exists a unique cut-

off type θ∗ such that

ΘA = [θA, θ
∗), ΘB = [θ∗, θB].

The more efficient lender serves the safer borrowers, while the less efficient lender serves the

riskier borrowers.

This result demonstrates that the central sorting logic of the model is robust to al-

lowing repayment to depend on the interest rate. The more efficient lender specializes in

safer borrowers, and the less efficient lender specializes in riskier borrowers, ensuring market

segmentation along a unique cutoff. Taken together, the extension shows that the main

qualitative results of the baseline model continue to hold. Borrower incentives and the en-

velope condition remain unchanged, so monotonicity is preserved; lenders continue to sort

borrowers according to efficiency; and the only substantive difference is that the kernel of

the first-order condition includes the adjustment term Ξi(θ), reflecting the trade-off between

higher interest revenues and lower repayment probabilities. This modification enriches the

quantitative characterization of optimal menus without altering the qualitative structure of

equilibrium.

Having characterized the structure of optimal menus, we now turn to the welfare implica-

tions of allowing repayment probabilities to depend on both borrower type and contractual

interest rates. The key question is whether the dependence of p(θ, r) on r alters the evalua-

tion of aggregate borrower surplus, lender profits, and the effects of regulatory interventions

such as interest rate caps. Because higher rates raise revenues but lower repayment probabil-

ities, they create an internal distortion relative to the benchmark where repayment depends

only on borrower type. Nonetheless, the envelope structure of borrower utility ensures that

borrower surplus is unaffected in form: higher rates reduce utility directly, while incentive

compatibility continues to determine approval through the slope of the utility schedule.
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We now analyze the effect of imposing an exogenous cap r̄ on repayment rates. As in

the baseline case, if the cap is not binding, the equilibrium menu remains unchanged. If the

cap binds, then repayment is evaluated at the capped level p(θ, r̄) for all borrowers in the

bunching set.

Proposition 9 (Interest Rate Caps with Rate-Dependent Repayment) Suppose a cap

r̄ binds for some set Bi ⊆ Θi. Then for all θ ∈ Bi,

ri(θ) = r̄, p(θ, ri(θ)) = p(θ, r̄).

In this region, approval probabilities adjust downward, repayment schedules are flat, and

bunching occurs exactly as in the baseline model.

The introduction of rate-dependent repayment therefore leaves the qualitative effects

of caps unchanged. When the cap is slack, it is irrelevant. When binding, it creates flat

repayment schedules and downward distortions in approval. The only difference is that

repayment probabilities are evaluated at p(θ, r̄), rather than at the type-dependent baseline

p(θ).

From a welfare perspective, the presence of p(θ, r) modifies the trade-off associated with

caps. On the one hand, lower capped rates reduce borrower repayment obligations, which

directly increases borrower surplus. On the other hand, they also increase repayment prob-

abilities, which raises expected revenues for lenders and reduces the enforcement costs as-

sociated with defaults. These effects reinforce each other, so that the welfare gain from a

binding cap is generally larger when repayment depends on the interest rate than when it

does not. However, as in the baseline case, the cap reduces lender flexibility in screening

borrowers and therefore distorts approval downward in the bunching set.

Corollary 3 (Welfare under Binding Caps) If a cap r̄ binds on a non-empty set of

types, then total welfare relative to the uncapped optimum is determined by the balance

between (i) increased repayment probabilities, which raise lender revenues and reduce en-

forcement costs, and (ii) reduced screening efficiency, which lowers the allocation of credit.

The presence of pr(θ, r) < 0 amplifies the first effect and leaves the second effect unchanged.

This corollary highlights that the welfare implications of caps are strengthened in the ex-

tended model: because repayment probabilities now rise when interest rates are constrained,

caps have an additional beneficial effect relative to the baseline. At the same time, the effi-

ciency costs of bunching remain present, so the overall welfare consequences of caps remain

ambiguous in general.

In summary, allowing repayment probabilities to depend on both borrower type and the

contractual interest rate preserves the main qualitative results of the baseline model while
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enriching its quantitative structure. Borrower utility and incentive compatibility remain gov-

erned by the envelope condition, ensuring that approval probabilities are weakly decreasing

and repayment rates weakly increasing in type. Sorting across lenders is unaffected: there

continues to exist a unique cutoff type such that the more efficient lender serves the safer

borrowers and the less efficient lender serves the riskier borrowers.

The central difference lies in the lender]s optimality condition. Whereas in the baseline

case the kernel of the first-order condition depends only on type, here it also includes an

adjustment term that reflects the sensitivity of repayment to the interest rate. This term

formalizes the trade-off faced by lenders: raising the interest rate increases revenues per

successful repayment but simultaneously lowers the probability of repayment. The correction

term captures the net effect of this trade-off on the optimal approval schedule.

Finally, the analysis of regulation through interest rate caps carries over directly. When

the cap is slack, it is irrelevant; when binding, it generates flat repayment schedules and

bunching exactly as in the baseline model. The only modification is that repayment prob-

abilities are evaluated at p(θ, r̄). From a welfare perspective, this feature strengthens the

positive effects of caps, since lower rates increase repayment probabilities as well as borrower

surplus. The efficiency cost of bunching, however, remains unchanged. In sum, the extension

confirms that the qualitative predictions of the baseline model are robust, while introducing

an additional and realistic channel through which contract terms affect repayment behavior.

8. Conclusion

This paper develops a screening model of credit markets with heterogeneous lenders, borrower

default risk, and an interest rate cap imposed by a regulator. We show how differences in

enforcement capacity shape contract design, borrower sorting, and market segmentation.

In equilibrium, lenders with weaker enforcement are more likely to be constrained by the

cap, which pushes them to offer flat menus at the regulatory ceiling and to attract riskier

borrowers. By contrast, lenders with stronger enforcement offer more flexible menus at lower

rates and attract safer borrowers.

Our welfare analysis identifies the central trade-off faced by regulators: tighter caps

expand borrower coverage but reduce lender participation and distort screening, while looser

caps maintain participation but shift riskier borrowers into the market at high repayment

burdens. The welfare-maximizing cap balances these opposing forces, ensuring both access

and sustainability.

The model rationalizes two key empirical regularities—non-bank lenders charging at the

cap and experiencing higher default rates than banks—and provides a unified framework for

analyzing the consequences of interest rate regulation. More broadly, our results highlight
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that uniform caps are a blunt instrument: by ignoring lender heterogeneity, they can induce

inefficient borrower sorting and amplify default risk.

Future research could extend the framework along several dimensions: by incorporating

dynamic interactions where default today affects future credit access; by analyzing alter-

native regulatory tools such as differentiated caps, collateral requirements, or subsidies for

enforcement technology; and by calibrating the model with empirical data to quantify the

welfare consequences of alternative policies. These extensions would further inform the de-

sign of regulation in credit markets where both lenders and borrowers are heterogeneous.
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A. Appendix: Proofs

Proof. Lemma 1. Each borrower type θ accepts a contract only if her utility is non-

negative, i.e., Ui(θ) ≥ 0 for all θ ∈ [0, 1]. Consider lender i ∈ {A,B}, who serves types in

[θi, θi]. Suppose by contradiction that Ui(θi) > 0. Lender i could strictly reduce utility for

type θi by increasing the interest rate or lowering the probability of approval (while main-

taining incentive compatibility), thereby increasing profits without violating participation or

incentive compatibility. This contradicts optimality. Hence, Ui(θi) = 0 for all i ∈ {A,B}.
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Proof. Proposition 1. We solve the relaxed version of the lender’s problem without an

interest rate cap. Incentive compatibility implies that qi(θ)v
′(θ) = U ′

i(θ), and the repayment

function is given by:

ri(θ) = v(θ)− Ui(θ)

qi(θ)
.

Lender i’s expected profit in terms of qi(θ) can be written as:

∫ θi

θi

[
ρip(θ)

(
v(θ)qi(θ)−

∫ θi

θ

qi(s)v
′(s) ds

)
− Ci(qi(θ))

]
f(θ)dθ.

Define

Φi(θ) :=
1

f(θ)

∫ θ

θi

ρi p(t) f(t) dt.

Then any interior solution qi(θ) ∈ (0, 1) satisfies the pointwise first-order condition

C ′
i

(
qi(θ)

)
= ρi p(θ) v(θ) − v′(θ) Φi(θ).

Therefore, the optimal approval schedule is given by

qi(θ) = 0 when C ′
i(0) ≥ ρi p(θ) v(θ) − v′(θ) Φi(θ),

qi(θ) = 1 when C ′
i(1) ≤ ρi p(θ) v(θ) − v′(θ) Φi(θ),

qi(θ) ∈ (0, 1) when C ′
i

(
qi(θ)

)
= ρi p(θ) v(θ) − v′(θ) Φi(θ).

Proof. Corollary 1. The approval function qi is weakly decreasing by incentive-

compatibility. To see that the interest rate is weakly increasing in θ, define

Ii(θ) := −
∫ θi

θ

qi(s)v
′(s) ds ≥ 0.

Differentiating ri(θ) with respect to θ yields

r′i(θ) =
Ii(θ)q

′
i(θ)

qi(θ)2
.

Because Ii(θ) ≥ 0 and q′i(θ) ≤ 0 by incentive compatibility, it follows that r′i(θ) ≥ 0 for all

θ ∈ Θi with qi(θ) > 0.

Proof. Lemma 2. Fix any interval on which both lenders serve borrowers and their

approval schedules are interior and differentiable. Incentive compatibility implies

U ′
i(θ) = v′(θ)qi(θ) and Ui(θi) = 0,
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so for the utility difference ∆U(θ) := UA(θ)− UB(θ) we have

∆U ′(θ) = v′(θ)
(
qA(θ)− qB(θ)

)
.

Because v′(θ) < 0, the sign of ∆U ′(θ) is the opposite of the sign of qA(θ) − qB(θ). Hence,

to show that qA(θ) − qB(θ) is weakly decreasing, it suffices to show that ∆U ′(θ) is weakly

increasing in θ on any region where both menus are interior.

For interior types, the first–order condition gives

C ′
i

(
qi(θ)

)
= ρip(θ)v(θ)− v′(θ)Φi(θ), Φi(θ) =

1

f(θ)

∫ θ

θi

ρip(t)f(t) dt,

with C ′′
i > 0. Differentiating the FOC and using Φ′

i(θ) = ρip(θ) yields

C ′′
i

(
qi(θ)

)
q′i(θ) = ρip

′(θ)v(θ) − v′′(θ) Φi(θ).

Because ρA > ρB and ΦA(θ) ≥ ΦB(θ) for all θ (both scale with ρi), while C ′′
i > 0, we obtain(

q′A(θ)− q′B(θ)
)

≤ 0 whenever both menus are interior.

Therefore, on any such region qA(θ)− qB(θ) is weakly decreasing in θ.

On regions where one lender is at a boundary (qi ∈ {0, 1}), monotonicity of qi implies

q′i(θ) ≤ 0 in the sense of distributions, so the difference remains weakly decreasing across

the junctions. Finally, because Ui(θi) = 0 for each served set [θi, θi], the utility difference is

anchored at the upper endpoints, and the single–crossing of ∆U(θ) follows from the weak

decrease of qA − qB together with ∆U ′(θ) = v′(θ)(qA − qB). Hence θ 7→ qA(θ) − qB(θ) is

weakly decreasing on the union of types served in equilibrium.

Proof. Lemma 3. Fix a type θ in a neighborhood of the lower end of the support, with

θ close to 0 (safer borrowers). An interior approval qi(θ) ∈ (0, 1) is characterized pointwise

by

C ′
i

(
qi(θ)

)
= ρi p(θ) v(θ) − v′(θ) Φi(θ), Φi(θ) =

1

f(θ)

∫ θ

θi

ρip(t)f(t) dt.

Consider the marginal profitability at q = 0. By convexity (C ′′
i > 0), a necessary condition

for any profitable approval is that the right-hand side exceed C ′
i(0) at the candidate type:

ρi p(θ) v(θ) − v′(θ) Φi(θ)︸ ︷︷ ︸
=: Mi(θ)

> C ′
i(0).

As θ ↓ θi, we have Φi(θ) → 0 by definition, so Mi(θ) → ρi p(θ) v(θ). By continuity of p and
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v, for θ sufficiently small we can make Mi(θ) arbitrarily close to ρip(θ)v(θ).

By the maintained ordering of effective marginal costs,

C ′
A(0)

ρA
≤ C ′

B(0)

ρB
with ρA > ρB,

so there exists θ̄ > 0 such that for all θ ∈ [0, θ̄],

ρA p(θ) v(θ) − C ′
A(0) > 0 while ρB p(θ) v(θ) − C ′

B(0) ≤ 0.

Using Φi(θ) ≈ 0 near the lower endpoint, it follows that for such θ,

MA(θ)− C ′
A(0) > 0 ⇒ lender A can profitably approve a positive qA(θ),

whereas

MB(θ)− C ′
B(0) ≤ 0 ⇒ lender B cannot profitably approve any qB(θ) > 0.

Hence, for sufficiently low risk (small θ), lender A can profitably serve the type, while lender

B cannot.

Proof. Proposition 2. Let ∆U(θ) := UA(θ) − UB(θ). By incentive compatibility and

the envelope condition,

∆U ′(θ) = v′(θ)
(
qA(θ)− qB(θ)

)
.

Since θ 7→ qA(θ) − qB(θ) is weakly decreasing on the union of types served in equilibrium.

Since v′(θ) < 0, it follows that ∆U ′(θ) is weakly increasing in θ. Hence, ∆U has the single-

crossing property.

At sufficiently low risk, lender A can profitably serve borrowers while lender B cannot.

On such a neighborhood, either only A serves or, where both serve, A offers weakly higher

utility. In either case there exists θL sufficiently small such that ∆U(θL) ≥ 0.

At sufficiently high risk, feasibility and monotonicity imply that the less efficient lender

B specializes in higher-risk types whenever both lenders are active. In particular, if both

lenders serve some interval near the top of the support, B must (weakly) dominate there

in borrower utility; otherwise safer borrowers would prefer to mimic higher-risk contracts,

violating incentive compatibility and lender optimality. Thus, there exists θH close to 1 such

that ∆U(θH) ≤ 0.

By continuity of utilities in θ and the intermediate value theorem, there exists at least

one θ∗ ∈ [θL, θH ] such that ∆U(θ∗) = 0. By the single-crossing property, this cutoff is unique.

Therefore, borrowers with θ < θ∗ strictly prefer A, and those with θ > θ∗ strictly prefer B;
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at θ∗ they are indifferent. Writing the served sets with explicit endpoints,

ΘA = [θA, θ
∗) and ΘB = [θ∗, θB],

where Ui(θi) = 0.

Proof. Proposition 3. We analyze the constrained optimization problem faced by

lender i.

1. Interest Rate Cap and Bunching. Define the set Bi := {θ ∈ Θi : ri(θ) = r̄}. On

this set, the repayment constraint binds, meaning the lender is unable to raise the interest

rate to extract more surplus from the borrower. Since the interest rate is fixed across all

types in Bi, but types differ in their marginal valuation of qi, the lender must distort the

approval schedule qi(θ) to preserve incentive compatibility. In particular, higher types in Bi

must receive lower qi to deter mimicking by lower types. This implies that the optimal menu

features bunching within Bi: the repayment is flat, and the variation in contracts is solely

along the approval dimension.

2. Strict Screening Outside the Cap. Outside the region where the cap binds (i.e.,

for θ /∈ Bi), the lender is unconstrained in setting repayment, and hence solves a standard

screening problem. For any interior types θ /∈ Bi, for which the cap constraint is slack, the

optimal contract is as in Proposition 1.

Proof. Proposition 4. Let W (r̄) denote total welfare under cap r̄. Differentiating

W (r̄) with respect to r̄ yields:

dW

dr̄
=

d

dr̄

(∫ 1

θ∗(r̄)

[UB(θ) + πB(θ)] dθ +

∫ θ∗(r̄)

0

[UA(θ) + πA(θ)] dθ

)

=

∫ 1

θ∗

(
∂UB(θ)

∂r̄
+

∂πB(θ)

∂r̄

)
dθ +

∫ θ∗

0

(
∂UA(θ)

∂r̄
+

∂πA(θ)

∂r̄

)
dθ

+ [UA(θ
∗)− UB(θ

∗) + πA(θ
∗)− πB(θ

∗)] · dθ
∗

dr̄
.

At the cutoff θ∗ borrowers are indifferent, so UA(θ
∗) = UB(θ

∗); hence the boundary term

simplifies to [
πA(θ

∗)− πB(θ
∗)
] dθ∗
dr̄

.

Note that

∂Ui(θ)

∂r̄
=
(
v(θ)− ri(θ)

) ∂qi(θ)
∂r̄

− qi(θ)
∂ri(θ)

∂r̄
, (1)

∂πi(θ)

∂r̄
= ρip(θ)

[
qi(θ)

∂ri(θ)

∂r̄
+ ri(θ)

∂qi(θ)

∂r̄

]
− C ′

i

(
qi(θ)

) ∂qi(θ)
∂r̄

. (2)
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Let Bi(r̄) := {θ ∈ Θi : ri(θ; r̄) = r̄} be the (a.e.) binding set. For small changes in r̄, we

have that
∂ri(θ)

∂r̄
= 1{θ∈Bi(r̄)} a.e.,

∂qi(θ)

∂r̄
≥ 0 a.e.

Summing (1)–(2) gives the local welfare effect at type θ:

∂

∂r̄

(
Ui(θ) + πi(θ)

)
= qi(θ)

(
ρip(θ)− 1

)
1{θ∈Bi(r̄)}

+
[
(v(θ)− ri(θ)) + ρip(θ) ri(θ) − C ′

i

(
qi(θ)

)] ∂qi(θ)
∂r̄

.

Therefore,

dW

dr̄
=

∑
i∈{A,B}

∫
Θi

{
qi(θ)

(
ρip(θ)− 1

)
1{θ∈Bi(r̄)}

+
[
(v(θ)− ri(θ)) + ρip(θ) ri(θ)− C ′

i

(
qi(θ)

)] ∂qi(θ)
∂r̄

}
dθ

+
[
πA(θ

∗)− πB(θ
∗)
] dθ∗
dr̄

.

The first integral term captures the direct effect of relaxing the cap on types where it

binds: it raises posted rates (a transfer from borrowers to lenders) but destroys surplus

proportional to default risk, at rate qi(ρip− 1) ≤ 0. The second integral term captures the

induced adjustment in approval (screening distortion): relaxing the cap weakly increases qi,

and the bracketed coefficient is the marginal social surplus of approval at type θ. The last

term is the reallocation effect from the induced shift in the cutoff θ∗(r̄).

An interior optimum r̄⋆ thus satisfies the first–order condition dW/dr̄
∣∣
r̄=r̄⋆

= 0: the

marginal welfare gain from relaxing the cap on the binding region and from the induced

expansion of approval (and reallocation toward the more efficient enforcer) is exactly offset

by the marginal welfare loss due to higher prices under default risk and any additional

screening distortions.

Proof. Proposition 5. The proof is analogous to the one from Proposition 3.

Proof. Lemma 4. Since qi(θ) is weakly decreasing, Si ∩ Bi = {θ ∈ Bi : qi(θ) > 0} is a

lower interval. Otherwise, there would exist θ1 < θ2 < θ3 in Bi with qi(θ1) > 0, qi(θ2) = 0,

qi(θ3) > 0, contradicting monotonicity. Let θ̃i be the upper endpoint; then (θ̃i, θi]∩Bi is the

(possibly empty) exclusion region.

Proof. Lemma 5.By definition of Bi, the interest rate is fixed at r̄ on Bi, so for any

θ ∈ Bi and any q ∈ [0, 1] the per–type net surplus at approval level q equals

αi(θ) q − Ci(q), where αi(θ) = ρip(θ) r̄ − (1− p(θ)) ρFi .
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Let αi := infθ∈Bi
αi(θ). If

max
q∈[0,1]

{αiq − Ci(q)} ≥ fi,

then there exists q⋆ ∈ (0, 1] such that αiq
⋆ −Ci(q

⋆) ≥ fi. Since αi(θ) ≥ αi for all θ ∈ Bi, we

have

αi(θ) q
⋆ − Ci(q

⋆) ≥ αiq
⋆ − Ci(q

⋆) ≥ fi for every θ ∈ Bi.

Therefore, approving q⋆ > 0 is profitable for every θ ∈ Bi, which implies qi(θ) > 0 throughout

Bi. Hence there is no exclusion in the cap–binding region, as claimed.

Proof. Lemma 6. Inside the cap–binding set Bi we have ri(θ) = r̄, so screening operates

only through quantities. For θ ∈ Bi and any q ∈ [0, 1], define the cap–adjusted per–type

margin

αi(θ) := ρip(θ) r̄ − (1− p(θ)) ρFi ,

so that the net surplus at approval level q equals αi(θ) q−Ci(q) and lending is optimal only

if this surplus covers the activation cost fi. Equivalently, define

Γi(θ; ρ
F
i , fi) := max

q∈[0,1]
{αi(θ) q − Ci(q)} − fi.

Then, within Bi, the served set is Si ∩Bi = {θ ∈ Bi : Γi(θ; ρ
F
i , fi) ≥ 0}. By monotonicity of

qi(·), this set is a connected lower interval [θci , θ̃i), where θ̃i is the terminal cutoff characterized

by Γi(θ̃i; ρ
F
i , fi) = 0 when the exclusion region is nonempty.

We claim that Γi is (i) weakly decreasing in θ, (ii) strictly decreasing in ρFi , and (iii)

strictly decreasing in fi. Indeed, since p′(θ) < 0 on Bi, we have

∂αi(θ)

∂θ
= ρip

′(θ) r̄ − (−p′(θ)) ρFi = p′(θ)
(
ρir̄ + ρFi

)
≤ 0,

so αi(θ) is weakly decreasing in θ; as the pointwise supremum of affine functions in αi(θ),

maxq{αi(θ)q−Ci(q)} is weakly decreasing in θ, hence Γi is weakly decreasing in θ. Moreover,

∂αi(θ)

∂ρFi
= −(1− p(θ)) ≤ 0,

∂Γi

∂fi
= −1 < 0,

so Γi is strictly decreasing in each parameter ρFi and fi.

Because Γi(·; ρFi , fi) is weakly decreasing in θ and continuous (by continuity of p and Ci),

the terminal cutoff θ̃i is the unique solution of Γi(θ; ρ
F
i , fi) = 0 when it exists. An increase

in either ρFi or fi shifts Γi(θ; ·, ·) downward pointwise, so the zero–crossing moves (weakly)
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to a lower θ. Formally, by the monotone comparative statics of threshold crossings,

∂θ̃i
∂ρFi

≤ 0 and
∂θ̃i
∂fi

≤ 0,

with weak inequalities allowing for corners where the exclusion region is empty or touches

the boundary.

Hence the terminal exclusion region (θ̃i, θi]∩Bi weakly expands as either ρ
F
i or fi increases,

i.e., θ̃i is weakly decreasing in each parameter.

Proof. Proposition 6. Fix r̄ and let {qi(·), ri(·)}i∈{A,B} be an optimal menu. For each

lender i, write the contribution to welfare as

Wi(r̄) =

∫
Θi

wi(θ; r̄) f(θ) dθ, wi(θ; r̄) := v(θ)qi(θ)−Ci(qi(θ))−(1−p(θ))ρFi qi(θ)−fi 1{qi(θ) > 0}.

Consider the Lagrangian for lender i’s problem aggregated over types in Θi, placing the

multiplier λi(θ) ≥ 0 on the cap constraint ri(θ) ≤ r̄ in the form r̄ − ri(θ) ≥ 0, and let

the (type-by-type) multipliers on the remaining constraints be collected in Γi(θ). Under the

stated differentiability and no-atom assumptions, the Milgrom–Segal envelope theorem and

dominated convergence give

dWi(r̄)

dr̄
=

∫
Θi

λi(θ) f(θ) dθ + boundary terms from moving cutoffs.

Complementary slackness implies λi(θ) = 0 whenever the cap does not bind (ri(θ) < r̄) or

the type is not served (qi(θ) = 0). Hence the interior (envelope) contribution is∫
Bi∩Si

λi(θ) f(θ) dθ.

We now identify the boundary terms. First, within Bi there is a terminal approval cutoff

θ̃i (possibly absent) at which qi drops to zero. At this point wi(· ; r̄) has a jump from wi(θ̃
−
i ; r̄)

to 0. By the Leibniz rule for integrals with moving discontinuities,

d

dr̄

∫
Θi

wi(θ; r̄) f(θ) dθ =

∫
Θi

∂wi(θ; r̄)

∂r̄
f(θ) dθ + wi(θ̃

−
i ; r̄) f(θ̃i)

dθ̃i
dr̄

,

where the first term on the right is exactly the envelope term already computed. This delivers

the second component in the statement:

wi(θ̃
−
i ; r̄) f(θ̃i)

dθ̃i
dr̄

.
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Second, the lenders’ integration domains are split by the sorting cutoff θ∗(r̄). Differenti-

ating

WA(r̄) =

∫ θ∗(r̄)

θA

wA(θ; r̄) f(θ) dθ, WB(r̄) =

∫ θB

θ∗(r̄)

wB(θ; r̄) f(θ) dθ,

and using the Leibniz rule with a moving limit yields the re-sorting term

[
wB(θ

∗; r̄)− wA(θ
∗; r̄)

]
f(θ∗)

dθ∗

dr̄
= ∆sort(r̄).

Summing the three contributions across lenders gives

dW (r̄)

dr̄
=
∑
i

∫
Bi∩Si

λi(θ) f(θ) dθ +
∑
i

wi(θ̃
−
i ; r̄) f(θ̃i)

dθ̃i
dr̄

+ ∆sort(r̄),

as claimed. The final statement about interior optima follows immediately: at any interior

maximizer r̄⋆, the one-sided derivative is zero and the usual regularity and second-order

conditions apply; otherwise the maximizer lies at a boundary of the feasible set for r̄.

Proof. Proposition 7. The result follows by applying the Euler–Lagrange condition

to the variational problem

max
Ui(·)

∫
Θi

{
ρi p(θ, ri(θ))

(
v(θ)
v′(θ)

U ′
i(θ)− Ui(θ)

)
− Ci

(
U ′
i(θ)

v′(θ)

)}
f(θ) dθ.

Letting

L(θ, U, U ′) = ρi p(θ, r(U,U
′))
(

v(θ)
v′(θ)

U ′ − U
)
− Ci

(
U ′

v′

)
,

the Euler–Lagrange equation requires

∂(Lf)

∂U
− d

dθ

∂(Lf)

∂U ′ = 0.

Differentiating yields

∂L

∂U
= ρi

[
pr(θ, r)

(
− v′

U ′

)(
v
v′
U ′ − U

)
− p(θ, r)

]
,

∂L

∂U ′ = ρi

[
pr(θ, r)

(
Uv′

(U ′)2

)(
v
v′
U ′ − U

)
+ p(θ, r) v

v′

]
− 1

v′
C ′

i

(
U ′

v′

)
.

Substituting these expressions into the Euler–Lagrange equation and simplifying gives the

stated condition. The repayment schedule follows from the envelope condition and the

definition of borrower utility.

Proof. Corollary 2. By incentive compatibility, U ′
i(θ) = v′(θ)qi(θ) with v′(θ) < 0 and

qi(θ) ≥ 0, so Ui is weakly decreasing in θ and qi is weakly monotone by standard single-

39



crossing (as in the baseline). Where qi is interior, the first-order condition from Proposition 7

gives

C ′
i

(
qi(θ)

)
= ρi(p(θ, ri(θ))v(θ)− v′(θ)Φi(θ) + Ξi(θ)) , Φi(θ) =

1

f(θ)

∫ θ

θi

ρip
(
t, ri(t)

)
f(t) dt,

with C ′′
i > 0. Differentiating both sides and using C ′′

i > 0 implies q′i(θ) ≤ 0 on interior re-

gions; at boundaries qi ∈ {0, 1}, monotonicity is preserved, so overall qi is weakly decreasing.

For ri, Proposition 7 (part 1) and the normalization Ui(θi) = 0 yield

ri(θ) = v(θ)− 1

qi(θ)

∫ θi

θ

qi(s)v
′(s) ds, Ii(θ) := −

∫ θi

θ

qi(s)v
′(s) ds ≥ 0.

Differentiating where qi(θ) > 0,

r′i(θ) =
Ii(θ) q

′
i(θ)

qi(θ)2
.

Since Ii(θ) ≥ 0 and q′i(θ) ≤ 0, it follows that r′i(θ) ≥ 0 wherever qi(θ) > 0. This proves the

claim.

Proof. Proposition 8. The argument is analogous to the baseline case. Given

enforcement-cost dominance, the more efficient lender can profitably serve low-risk types

at lower rates, while the less efficient lender caters to high-risk types. Since the difference in

approval probabilities is decreasing in type, the existence of a unique cutoff follows.

Proof. Proposition 9. If the cap binds, lenders cannot raise ri(θ) above r̄. Hence the

repayment probability is evaluated at the capped rate, p(θ, r̄). Since repayment cannot vary

with type in the bunching set, incentive compatibility requires that the schedule ri(θ) be

constant there. The only margin of adjustment is approval, which responds to the modified

marginal revenue condition with repayment fixed at p(θ, r̄). Thus the structure of bunching

is identical to the baseline case.
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