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Abstract

Renewable energy has enormous welfare potential. Yet development around the world remains slow,

in part because residents protest the amenity impacts of wind and solar parks. Using fine data from

Germany and an instrumental variable strategy that exploits technology-induced changes in wind energy

suitability, I infer residents’ revealed preferences against wind turbines from observed changes in house

prices, population, and income. I embed the estimated preferences in a quantitative spatial general

equilibrium model and use it to evaluate Germany’s renewable energy policy between 2000 and 2045.

Wind energy has large local costs that can be substantially reduced if policy-makers take residents’

preferences into account. I provide an turbine allocation that saves 3 billion USD relative to a business-as-

usual scenario and estimate budget-balanced transfers that allow policy-makers to compensate residents

and incentivize turbine development.
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1 Introduction

Renewable energy is becoming increasingly cheap. As the cost of wind and solar energy

continue to fall, Arkolakis and Walsh (2023) estimate that both sources may account for

70 percent of global electricity production by 2040, reducing electricity prices by half and

increasing welfare by 4.6 percent. Relative to these benefits, the development of renewable

energy is slow. Local residents often object to the installation of wind turbines, solar parks,

and transmission lines (Economist, 2021, New York Times, 2022), and their resistance re-

mains a key obstacle to a rapid energy transition (Jarvis, 2022). Against this backdrop, it

is important to understand the costs that residents face, the welfare trade-offs involved and

their implications in the climate transition.

Quantifying the impact of renewable energy infrastructure on residents’ welfare is chal-

lenging. Anecdotally, residents are concerned about visual impacts, noise pollution, and

potential adverse health effects, but how much these concerns affect their utility is unob-

served. To overcome the challenge, I build a theory-consistent revealed preference argument

to infer residents’ welfare costs from changes in their observed behavior.

First, I develop a novel instrumental variable (IV) strategy that exploits technology-

induced changes in wind potential to predict which locations become more suitable for wind

energy over time. I use the IV and granular data from the wind energy expansion in Germany,

2000-2017, to show that wind turbine development leads to long-run decreases in house

prices and the share of college-educated residents in surrounding neighborhoods. Second,

I use a quantitative spatial location choice model to infer changes in local quality of life,

for example due to wind turbines, from changes in population, house prices, and income. I

combine the IV results and the model-implied mapping to estimate residents’ willingness-to-

pay to avoid wind turbines in their neighborhood. The model allows residents to adapt, for

example through sorting, and housing and labor markets to respond in general equilibrium.

Third, I use the model to evaluate Germany’s wind energy development policy for 2025-

2045. Specifically, I evaluate different scenarios that can achieve Germany’s climate goals,

evaluate the aggregate and redistributive welfare costs of the development plans laid out in

the Onshore Wind Act enacted in 2023, and estimate budget-balanced transfers that allow

the policymaker to achieve a low-cost transition while compensating affected residents.

Wind energy in Germany is an ideal empirical setting. First, the country is an early

adopter of wind energy which allows to study its long-run consequences. Since the early

2000s Germany has heavily subsidized wind energy, and today wind energy is Germany’s
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largest source of electricity, producing 32.2 percent of the national mix (German Federal

Statistical Office, 2023).1 Second, the context highlights the challenges that residents and

policy-makers face as wind energy becomes a prominent energy source. The country operates

a staggering 28,000 wind turbines, of which 97 percent are located within two kilometers of

residential population. Residents’ objections and local policy-makers’ attempts to restrict

turbine development close to residences are ubiquitous themes in the German energy transi-

tion, and they are likely to have contributed to the recent slowdown in turbine development.

Third, Germany has ambitious wind development goals that are threatened by residents’

concerns. The federal government plans to double wind energy capacity until 2030, which

may require the installation of an additional 25,000 wind turbines. Understanding the costs

for residents and how to mitigate them is decisive for a successful energy transition.

Throughout the empirical analysis, I draw on a unique data set that links turbine con-

struction, house prices, population, income, employment, and wage data for the universe

of German neighborhoods at 1-by-1 kilometer resolution. The information on population,

income, employment, and wages stems from restricted-access social security data hosted by

the Institute for Employment Research in Nuremberg, Germany. It is constructed from the

universe of employees covered by German social security, approximately 40 million workers

annually. To construct the local house price index, I leverage geo-located information on 35

million houses and flats offered on Germany’s largest online real estate platform. I collect

the data for the years 2000 to 2017 (except house prices which are available from 2007),

covering the key period of the German expansion in wind energy.

In the first part of the paper, I provide systematic evidence that wind turbine development

decreases house prices and the share of high-skilled residents in surrounding neighborhoods.

I develop a novel IV strategy that exploits how changes in technology interact with local

wind conditions, making some neighborhoods more attractive for wind energy over time than

others. Specifically, wind turbines have become taller over time, from 71 meters in 2000 to

127 meters in 2017. Wind conditions are better high above the ground, though how much

a neighborhood benefits depends on the topography around it. High terrain ruggedness

upwind of the neighborhood, for example due to hills, blocks wind speeds closer to the

ground, leading to a larger vertical dispersion of wind speeds, see Figure 4 for an illustration.

In these neighborhoods, turbine development becomes disproportionally more attractive as

wind turbine heights increase. I show that the implied changes in wind energy suitability

1In the first quarter of 2023, wind energy contributed 32.2 percent of electricity, ahead of coal (30 percent),
natural gas (14.6 percent), biogas (5.5 percent), solar (4.9 percent), and nuclear energy (4.3 percent). In
2021 and 2022, two years with weaker wind conditions, coal was the largest source, in 2020 wind was ahead.
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strongly predict turbine development. Comparing neighborhoods that are relatively close

and have similar geography, I use the IV strategy to estimate the long-run effect of turbine

development on surrounding neighborhoods.

Wind turbine development has important local costs. I find that the construction of an

additional wind turbine within three kilometers of a neighborhood reduces house prices by

2.1 percent. As neighborhoods become less attractive, high-skilled residents with college-

education move away. For each additional wind turbine, the share of high-skilled residents

decreases by 0.6 percentage points.

In the second part of the paper, I use a revealed preference argument to quantify the first-

order impact of wind turbines on residents’ welfare. I build on the formulation of residents’

location choice in the standard quantitative urban model (Ahlfeldt et al., 2015). I show that

the models imply a mapping between changes in local quality of life, for example due to wind

turbines, and changes in population, house prices, and income. Intuitively, if real income

increases, for example due to lower house prices, and yet residents move away, by revealed

preference the neighborhood must have become less attractive. Combining the mapping and

my IV strategy, I show that high-skilled and low-skilled residents would be willing to pay 0.9

and 0.6 percent of their income, respectively, if they could avoid an additional wind turbine

within three kilometers of their residence. Then, I embed the preferences in a quantitative

spatial general equilibrium model. In the model, wind turbines decrease local quality of

life, henceforth referred to as amenities. Residents choose where to live and where to work

given amenities, house prices, wages, and commuting costs (as in Ahlfeldt et al., 2015).

To capture residential sorting, I model residents as either high- or low-skilled (similar to

Tsivanidis, 2023). Labor demand flexibly allows for substitution and productivity spillovers

across skill types (following Diamond, 2016), and housing supply is inelastic with a supply

elasticity that depends on local land constraints (following Saiz, 2010).

I estimate the model for 133,339 neighborhoods at 1-by-1 kilometer resolution. To make

the estimation computationally feasible, I allow individuals to choose any neighborhood as

their residence, but restrict that they can only commute to workplaces in the neighborhood’s

labor market, which allows me to invert and solve the model as a series of smaller block

matrices. I calibrate the key parameter, residents’ preference against wind turbines, from

the willingness-to-pay estimated using the model-consistent amenity mapping and the IV

strategy.

To understand the trade-offs involved in allocating renewable energy infrastructure, I un-
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dertake three main counterfactuals. In the first, I counterfactually remove all wind turbines,

solve for the distribution of population and prices in absence of wind turbines and compare

them to the equilibrium observed in the data. I find that the local costs of wind turbines are

large, about 0.45 percent of welfare, and locally dispersed with the biggest impacts in the

North and North-West of the country. While adaptation through residential sorting brings

down the cost from 0.56 to 0.45, the majority of residents remains in their neighborhoods,

highlighting the importance of the placement of wind turbines relative to the population

distribution.

In the second counterfactual, I therefore study how much alternative allocations of wind

turbines can reduce welfare costs. I distribute wind turbines in order to minimize the (first or-

der) costs for residents conditional on the aggregate electricity production target, local avail-

ability of land and wind energy potential, and interstate electricity transmission constraints.

I find that placing wind turbines closer to high-wind regions and away from residents, could

substantially bring down costs, by about a factor of seven. However, the distribution would

increase inequality across space, suggesting an equity-efficiency trade-off.

Finally, I evaluate Germany’s wind energy policy until 2045. I show how Germany can

achieve the targets in the Renewable Energy Act at 35 percent lower cost than under a

business-as-usual scenario and estimate budget-balanced transfers that compensate losing

regions and can help policymakers to incentivize wind energy development in the future.

The paper relates to several strands in the literature. Most directly, it connects to a large

literature that estimates the welfare costs of environmental disamenities, primarily focusing

on house prices as a revealed preference measure of decreased quality of life. Previous

papers have studied the impact of renewable energy infrastructure (Gibbons, 2015, Dröes

and Koster, 2016, Sunak and Madlener, 2016, Frondel et al., 2019, Dröes and Koster, 2021),

as well as other environmental disamenities (Chay and Greenstone, 2005, Greenstone and

Gallagher, 2008, Currie et al., 2015). I make four contributions. First, studies on wind

turbines commonly use difference-in-difference and event-study methods, and find a wide

range of house price effects between -1.6 and -14.0 percent. I develop a novel IV strategy

that exploits geographic and time variation in local suitability for wind energy, and find a

per turbine effect of -2.1 and a total effect of -6.3 percent for the median neighborhood. The

results confirm the previous results qualitatively and point to effect sizes in the lower half of

the distribution. Second, I use a location choice model to infer the implied welfare costs.2 I

2Here, I also relate to Bartik et al. (2019) and Brinkman and Lin (2022) use the same class of location
choice models to infer the amenity costs of fracking and freeway construction, respectively. Compared to

4



show that ignoring population and income responses would lead to an underestimation of the

amenity cost of wind turbines by 41.7 percent for low-skilled and by 65.5 percent for high-

skilled residents. Third, I embed the the amenity costs in a quantitative spatial model to

understand the welfare costs in general equilibrium, and to show that alternative allocations

of wind turbines may achieve the same electricity production while reducing welfare costs

by almost an order of magnitude.

Secondly, the paper connects to a growing literature that uses quantitative spatial general

equilibrium models to study the geographic implications of climate change. A large share

of the literature focuses on adaptation to climate change. Previous papers study where

individuals move in response to higher temperatures and rising sea levels (Conte, 2022;

Cruz and Rossi-Hansberg, 2022; Bilal and Rossi-Hansberg, 2023), how firms diversify their

production network in response to increasing risk of natural disasters (Castro-Vincenzi, 2022;

Balboni et al., 2023), and how countries adapt to a warming world by specializing in the

sector of their comparative advantage (Conte et al., 2021; Nath, 2022). I contribute to a

small but growing literature that focuses on climate change mitigation (Conte et al., 2022;

Arkolakis and Walsh, 2023). The implications of climate change mitigation are particularly

policy-relevant because they can inform current efforts to reduce emissions and reduce the

welfare costs that will eventually arise as individuals, firms, and countries have to adapt to

a warming world. Most closely related to me are Arkolakis and Walsh (2023) who integrate

renewable energy production into a spatial growth model to measure the welfare effects of

increasingly cheap electricity. Their paper abstracts from the negative externalities that

renewable energy infrastructure creates for residents. My paper shows that local costs are

quantitatively important for aggregate welfare and the optimal allocation of renewable energy

production. I also complement Balboni (2021) and Hsiao (2023) who study the optimal

allocation of infrastructure, roads and seawalls respectively, in response to rising sea levels.

I study optimal infrastructure allocation of renewable energy production, a policy to reduce

emissions and limit damages before they arise.

2 Background

Climate change and the rise of renewable energy. Climate change is caused by

the emission of greenhouse gases (GHGs) into the atmosphere. In the Paris Agreement in

2015 the international community declared its goal to reduce net GHG emissions to zero

them, I contribute by estimating the amenity costs separately for high- and low-skilled residents.
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Figure 1: Projection Cost of Electricity by Energy Source (in USD/MWh)

Notes: Figure 1 shows projections of the levelized cost of electricity (in USD/MWh) for coal, gas, nuclear,
hydro, solar, onshore wind, fixed offshore, and floating offshore wind energy. Source: Energy Transition
Outlook 2023 (DNV, 2023).

by 2050 in order to limit global warming relative to pre-industrial temperature levels to a

maximum of 2◦C and ideally to 1.5◦C. One of the largest contributors to emissions is heat

and electricity production from fossil fuels. Renewable sources of energy, such as wind, solar,

hydro, and geothermal energy are sustainable alternatives. Especially, wind and solar energy

are becoming increasingly prevalent as technological advances cut down their costs. Figure

1 shows the evolution of electricity costs by source. Costs are shown for the period 2010 to

2050 as estimated in the Energy Transition Outlook (DNV, 2023). The estimates report the

levelized cost of electricity (LCOE), a standard measure that calculates the net present cost

of electricity of a plant installed in a given year, taking into account the plant’s fixed and

variable cost as well as the total electricity produced over its lifetime.

The costs of wind and solar energy have fallen sharply between 2010 and 2020. Today,

both sources are cheaper than traditional sources such as coal, gas or nuclear energy. In

2022, a newly installed wind turbine produces electricity at 49 USD/MWh, while newly

installed fossil and nuclear plants produce electricity at around 75 USD/MWh (DNV, 2023).

Moreover, the price of wind energy is projected to fall to 27 USD/MWh by 2050, while the

cost of gas and nuclear stays constant, and the price of coal is projected to sharply increase.

As a result, wind and solar energy are becoming increasingly present. Figure 2 reports

the evolution of the global electricity mix between 1990 and 2050. Electricity production

from 2023 onward is based on projections in the Energy Transition Outlook (DNV, 2023).
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Figure 2: Projection Electricity Production by Energy Source (in billion MWh)

Notes: Figure 2 shows projections of global electricity production (in billion MWh) for wind, solar, other
renewables, coal and oil, gas, and nuclear energy. Source: Own calculation based on the Energy Transition
Outlook 2023 (DNV, 2023).

Between 2000 and 2010, electricity production from wind energy grew by 454 percent, and

its contribution to the global mix grew from 1.6 to 6.0 percent. By 2050, the report expects

the share of wind energy in global electricity to grow to 30 percent, and for solar and wind

energy together to account for 69 percent. Arkolakis and Walsh (2023) find that by 2040,

solar and wind energy will account for 50 to 70 percent of global electricity production.

Wind energy in Germany. Systematic wind development in Germany began in the

mid 1990s. From the early 2000s the government heavily subsidized turbine development

through feed-in-tariffs. Today, wind energy, alongside with coal, is Germany’s largest source

of electricity. In the first quarter of 2023, wind energy contributed 32.2 percent (German

Federal Statistical Office, 2023).

Wind energy can be produced by wind turbines at land (”onshore”) and at sea (”off-

shore”). In Germany, approximately 87 percent of wind energy are produced at land. In

2022, Germany operated 28,443 wind turbines at land. Due to the high population den-

sity of the country, 97 percent of turbines are located within two kilometers of residential
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population.

Impact of wind turbines on residential amenities. The two primary channels

through which wind turbines may affect residential amenities are visual and sound pollution.

Modern wind turbines are up to 200 meters high with rotor blades up to 75 meters long.

Exploiting that wind turbines are visible for some residents but not for others due to the

terrain, for example hills between residents and the turbine, Gibbons (2015) shows that a

wind turbine reduces house prices by 6.5 percent within one kilometer and between 5.5 and

6 percent within two kilometers. The results suggest that the visual impact of turbines is

important for residential amenities.

A second concern is that the rotation of wind turbines’ blades produces noise and in-

frasound that are negatively perceived by residents. The noise effects of turbines are very

localized. At a distance of 500 meters, turbines can be heard at about 45 decibel, comparable

to the noise that light car traffic generates for residents at a street. After 500 meters, the

noise level declines rapidly. This suggests that the disamenity effect of noise is relatively

low. Residents have also complained about infrasound, low frequency sound that cannot be

perceived by the human ear, claiming that it disrupts their sleep and causes stress. The

medical literature is mostly doubtful of the health effects of infrasound. However, even the

belief in adverse health effects may harm sleep quality and induce stress. Zou (2020) shows

that wind turbines decrease self-reported sleep quality and may even increase suicide rates.

Development plans until 2030. Germany has ambitious goals for the further devel-

opment of wind energy. With the 2021 Climate Act Germany is bound to reduce its GHG

emissions by 65 percent until 2030 (relative to 1990 emission levels) and to achieve climate

neutrality by 2045. As part of the legislation, the government plans to provide 80 percent of

gross electricity consumption in 2030 from renewable sources. Figure A.1 in the Appendix

shows the explicit capacity development goal that the government has given out for wind

and solar energy as well as the evolution of the electricity mix in the past.

For wind energy at land, the law requires that capacity grows approximately 98 percent

from 58 GW in 2022 to 115 GW in 2030. Despite the expected growth in turbine efficiency,

the capacity goal requires an enormous speed-up in the number of wind turbines constructed

per year. Figure A.2 in the Appendix shows the net number of wind turbines installed each

year as well as the turbines required to reach the 2030 goal.3 On average, Germany would

3The Climate Act specifies only the wind energy capacity in 2030, not the number of wind turbines. To
translate capacity into the number of turbines needed, I assume that capacity per turbine grows linear (as
it did between 2000 and 2022) and that Germany adds an equal number of wind turbines each year.
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have to add about 2200 wind turbines per year, more than were installed in any year in the

past two decades.

The ambitious goals are in stark contrast to the recent slowdown in turbine develop-

ment. Between 2017 and 2022 the number of active wind turbines decreased from 28,675 to

28,443 turbines. Because today’s turbines are more efficient than the older models that are

deinstalled, total capacity is still growing but more slowly than ever before.

The central reason for the slowdown in turbine construction is that there is not enough

area for new constructions (Wind, 2023). Since 2017 various states have enacted minimum

distance rules that forbid turbine construction close to residential population. Minimum

distance rules vary across states, ranging from 500 to 1500 meters. Conservation, for example

to protect birds, and construction regulation at the local level further amplify the problem.

3 Data

This section describes the main data used in the analysis. Details on the construction of

variables and further information on auxiliary data can be found in Appendix B.

In brief, I divide Germany into 133,339 populated 1-by-1 kilometer cells and collect

information on wind turbines, house prices, residential and workplace population and wages

at this level. With the exception of house prices (which are available from 2007), I collect

all data between 2000 and 2017. I add cross-sectional information on wind conditions and

other geographic variables.

Geographic unit of analysis. As the unit of analysis, I choose the 1-by-1 kilometer

grid cell level. The cells are delineated using the European cartography standard INSPIRE.

Compared to administrative units such as municipalities, the grid cells are considerably finer

and have consistent shape and size. For the analysis this is important because wind turbines

are likely to have local effects and may lead to substantial within-municipality residential

sorting across neighborhoods that an analysis at a coarser level would mask.

Sample. The base sample consists of 133,339 grid cells in contiguous Germany that have

positive residential or workplace population.4 92 percent of cells have positive population,

4Residential and workplace population are measured from the Integrated Employment Biographies. The
data includes the universe of all employees in Germany, excluding civil servants and self-employed. To
preserve anonymity of the population in smaller cells, the base sample only includes cells with at least ten
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Figure 3: Wind Turbines

(a) 2000 (b) 2017

Notes: Figure 3 shows the distribution of wind turbines installed in 2000 and 2017, respectively. For
reference, the wind power density (in kg/s3) at 100 meters above ground is shown in blue. Wind power
density is grouped into quintiles. Dark blue indicates strong winds, light blue indicates weak winds. Source:
Own calculation using data on wind turbines from The Wind Power and data on wind power density from
the Global Wind Atlas.

49 percent have positive employment, and 45 percent have both positive population and

employment. I refer to all cells as neighborhoods.

Wind Turbines. The data on onshore wind turbines stems from Eichhorn et al. (2019)

who collect and systematize the information from the authorities of the federal states in

Germany. Most importantly, the data comes with the coordinates and the construction year

of each turbine. Since the data only includes wind turbines built until 2015, for the years

2016 and 2017 I complement the data with information from the wind energy intelligence

company The Wind Power. Figure 3 shows the distribution of wind turbines in Germany

in 2000, the start of my sample period, and in 2017, the end of the sample period.

residents or ten employees in all years between 2000 and 2017. Nevertheless, in 2017 the base sample captures
98.4 percent of total residential population and 97.8 percent of total workplace population.
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House prices. I construct a quality-adjusted house price index using object level data

from Germany’s largest online real estate platform ImmobilienScout24. The data has been

previously used in Economics research; a detailed description can be found in Schaffner

(2020). Due to the website’s start year, the data is only available from 2007. Over the

sample period, the website listed more than 35 million houses and flats. Each listing comes

with information on the asking price, the date of the ad, the object’s location, and a rich

set of object characteristics. To obtain the quality-adjusted house price index, I residualize

the rental price per square meter on a flexible function of these characteristics, and calculate

the average residual house price in the neighborhood. Since the number of listings each year

varies especially for smaller neighborhoods, I take a three year rolling window average.

Residents, workers, and wages. The data on the residential and workplace population

as well as workers’ wages in each neighborhood stems from the GridAB data provided by the

Institute for Employment Research (IAB). The GridAB draws on the Integrated Employment

Biographies (IEB), individual level social security data that cover close to the universe of

the German workforce, including approximately 40 million individuals every year.5

A neighborhood’s residential population is measured as the number of individuals in the

IEB that have their residential address in the neighborhood. Conversely, the workplace

population is measured as the number of individuals whose job address is located in the

neighborhood. Finally, I calculate wages as the average wage among all full-time workers

(not residents) in a neighborhood. To measure residential sorting, I obtain all variables

separately for college-educated residents and workers and those without college education.

Following the literature on residential sorting (for example Diamond, 2016), I refer to college-

educated as high-skilled and to individuals without college education as low-skilled.

Instrument data. To construct the instrument, I collect information on wind power

density at 50, 100, and 150 meters above ground from the Global Wind Atlas. I also obtain

information on the average turbine height for a wind turbine installed in a given year from

the company The Wind Power. Moreover, I collect geographic information on land use from

the German Environment Agency and on natural reserves from the German Federal Agency

for Nature Conservation.

5The data includes regular (full- or parttime) employees whose jobs are subject to social security con-
tributions, marginal employees whose jobs are not subject to social security contributions, individuals who
report seeking employment or who receive unemployment benefits. It excludes civil servants, self-employed,
and individuals outside of the labor force.
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4 Quasi-Experimental Evidence

4.1 Empirical Strategy

The goal of this section is to estimate the impact of wind turbine development on housing

prices and the residential composition of the surrounding neighborhood. Since households

may face short-term migration frictions that prevent them from reacting immediately to

the change in residential amenities, I focus on the long-term effects of turbine development.

Due to data availability, I use changes between 2007 and 2017 for house prices, and changes

between 2000 and 2017 for residential sorting and all other outcomes. Specifically, I am

interested in a causal estimate of β in the following specification.

∆yn = β ·∆Tn + εn (1)

Where ∆yn are long-run changes in the outcome variable, for example in house prices, in

neighborhood n and ∆Tn is the number of wind turbines constructed over the same period.

Following previous studies that suggest that the cost of wind turbines, as measured by house

price changes, drops sharply at two to three kilometers (Gibbons, 2015, Dröes and Koster,

2016, Sunak and Madlener, 2016), throughout the paper ∆Tn measures turbine construction

within three kilometers of neighborhood n.

The identification challenge in Equation (1) is that wind turbine development may be cor-

related with unobserved trends in the outcome variable εn. On the demand side, politicians

may preferentially allow wind turbine development in regions where they expect electricity

demand to grow. On the supply side, wind turbine developers may avoid regions in which

they expect strong resistance from residents. To overcome the identification challenge, I

develop an instrumental variable (IV) strategy that exploits technology-induced changes in

wind turbine development that are arguably unrelated to confounding demand and supply

factors.

Instrumental variable strategy. The electricity production of a wind turbine depends

on local wind conditions, specifically the local wind power density. Local wind conditions

do not vary decisively over the years, and in my data they are cross-sectionally fixed. How-

ever, the effective wind power density that turbines reap has changed considerably due to

technology-induced increases in wind turbine height. Between 2000 and 2017, the average
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height of wind turbines has increased from 71 to 127 meters. Wind conditions are better

high above the ground, and for the average neighborhood in Germany, a typical6 turbine

installed in 2017 would reap a wind power density that is 59 percent higher than a wind

turbine installed in 2000, simply due to the height increase.

I exploit that the common technology change has made some neighborhoods more attrac-

tive for wind energy than others because their vertical wind shear - how much cross-sectional

wind power density increases with turbine height above ground - is larger. The variation in

wind shear that I use arises from the direction of the wind and its interaction with elements

of rugged terrain, for example hills, that block the wind at lower heights and lead to larger

vertical wind shear up to ten kilometers downwind of the rugged terrain (Global Wind Atlas,

2023). Figure 4 illustrates the idea for two hypothetical neighborhoods A and B that are

separated by a hill. In the example, wind flows from West to East. The hill blocks the wind

at lower heights, leading to a higher vertical wind shear in neighborhood B on the east side

of the hill. As a consequence, wind turbine development becomes more attractive in village

B over time, relative to village A.

Construction of the instrument. I obtain cross-sectional data on wind power den-

sity from the Global Wind Atlas. The data is available at three heights, at 50, 100, and

150 metersabove ground. For heights in between, I calculate wind power density by linear

interpolation. Since I want to predict wind turbine development within three kilometers of a

neighborhood, I also calculate the average wind power density within three kilometers. Then,

I calculate the effective change in wind power density between 2000 and 2017 as the change

in wind power density between height 71 meter, the average height of a turbine installed in

2000, and height 127 meter, the average height of a turbine installed in 2017.

Figure 5 shows the resulting change in effective wind power density across all 1-by-1 kilo-

meter grid cells in Germany. Panel 5a reports the raw variation, Panel 5b reports the residual

variation that remains after controlling for district fixed effects as well as the neighborhood’s

altitude, ruggedness, slope, and the share of land used for buildings, agriculture, forests,

and water bodies. My empirical specification uses the residual variation. Importantly, the

district fixed effects ensure that I compare only neighborhoods relatively close to each other,

and the geographic controls ensure that I remove any variation in vertical wind shear that

arises from the neighborhood’s geography. The identifying variation, thus, comes from larger

scale wind patterns and their interaction with topography upwind of the neighborhood.

6I define a ”typical” turbine in a year as one that is as tall as the average turbine installed in the year.
Figure A.3 in the Appendix plots the distribution of turbine heights in 2000 and 2017 and confirms that a
turbine of average height indeed represents a typical turbine.

13



Figure 4: Schematic Illustration of IV Strategy

Notes: Figure 4 illustrates the idea of the IV strategy. It depicts two villages A and B, separated by a hill.
In the hypothetical example, wind flows from West to East. The wind is disrupted by the hill which leads
to higher vertical wind shear on the right side of the hill. Since wind turbines become taller over time - from
71 meters in 2000 to 127 meters in 2017 - effective wind power density accessible for a turbine installed in
a given year increases over time. As a consequence, wind turbine development becomes more attractive in
village B over time, relative to village A.

Secondly, I construct the share of land within three kilometers of each neighborhood

that is available for wind turbine development. I use this variation as a placebo check as

changes in wind power density should not affect wind turbine development in places where

no turbines can be constructed, for example a densely built city like Berlin. Moreover, I

interact changes in wind power density with the share of land available for wind energy as

it increases the precision of the IV estimates.

To construct the share of land available, I obtain high-resolution data on built areas and

water bodies, where turbine construction is physically impossible, and on conservation zones

that forbid wind turbine development. I also exclude 400 metersbands around urban areas

accounting for the legally mandated minimum distance between residential areas and wind

turbine development. Section B.1 in the Appendix provides additional details.

IV specification. I estimate the following specification,
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Figure 5: Change in Wind Power Density, 2000-2017

(a) Raw Variation (b) Residual Variation

Notes: Figure 5 shows the effective change in wind power density (in kg/s3) between 2000 and 2017 that
occurs due to increases in turbine heights. Wind power density in 2000 is measured as cross-sectional wind
power density at 71 meters, the average height of turbines installed in 2000. Analogously, wind power density
in 2017 is measured at 127 meters, the average height of turbines installed in 2017. Panel 5a shows the raw
variation. Panel 5b shows the residual variation in wind power density changes that remains after controlling
for district fixed effects as well as geographic characteristics including altitude, terrain ruggedness, slope and
the share of land that is covered by buildings, agriculture, forests, and water. The variation is grouped into
quintiles. Dark blue indicates large changes, light blue indicates small changes. Source: Own calculation
based on wind power density data from the Global Wind Atlas.

∆yn = β ·∆T̂n + γXn + δd(n) + εn (2)

where ∆yn is the change in an outcome variable, ∆T̂n is the number of wind turbines

constructed over the same period as predicted from the corresponding first-stage regression

in Equation (3), Xn is a vector of geographic controls including altitude, ruggedness, slope,

and the share of land used for built areas, agriculture, forests, and water bodies, and δd(n)

denotes district fixed effects. The corresponding first-stage is
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∆Tn = β ·∆Wn + γXn + δd(n) + εn (3)

Where ∆Wn is the change in wind power density over the period induced by the increase in

average national turbine height. In some specifications I add a second instrument ∆WnSn,

which is the interaction of changes in wind power density with the share of land that is

available for wind turbine development at baseline. The outcome, wind power density, and

turbine construction are measured as changes between 2000 and 2017, except when the

dependent variable is house prices, in which case all changes are measured between 2007 and

2017.

The parameter of interest is β, the long-run effect of wind turbine development on the

outcome. The identifying assumption is E[εn|∆Wn,∆WnSn, Xn, δd(n)] = 0 which holds if

changes in wind power density are quasi-randomnly assigned, conditional on all control vari-

ables. Since the estimation equation is in long differences, any (unobserved) time-invariant

variation is already differenced-out, so that any correlation of changes in wind power den-

sity with variation in geography, invariant wind conditions, or cross-sectional socio-economic

characteristics does not affect the consistency of the estimate. Moreover, I include district

fixed effects, which take out any changes in the outcome variable that are common in the

district and ensure that, effectively, I compare neighborhoods that are close7 to each other.

Furthermore, I control for all the local geographic characteristics that, according to the data

provider (Global Wind Atlas, 2023), may affect vertical wind shear. I argue that the remain-

ing variation comes exclusively from the interaction of wind patterns and terrain ruggedness

outside of the neighborhood as depicted in Figure 4, and is as-good-as-random as supported

by the evidence in Figure 5. Finally, in Section 4.2, I show that changes in wind power den-

sity affect all outcome variables only in areas where wind turbine development is possible,

lending further support to the identifying assumption.

To account for spatial correlation in the error term, I cluster the standard errors at the

district level in all specifications.

Effects by distance. To understand how the effects vary by distance to the wind

turbine, I also estimate the augmented specification in Equation (4)

∆yn =
∑

k

(
βk ·∆T̂ k

n

)
+ γXn + δd(n) + εn (4)

7The average district in Germany has 892 square kilometers, a bit under a third of the size of a US county.
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where T̂ k
n is the predicted change in turbine construction in one of five three Kilometer

distance bands around the neighborhood. Since changes in wind power density alone are too

correlated across space to establish a first-stage for turbine construction by distance band, I

instrument turbine construction with changes in wind power density and its interaction with

the share of land available for turbine construction as in Equation (5)

∆T k
n =

∑

k

(
αk ·∆W k

n + βk∆W k
n · Sk

n

)
+ γXn + δd(n) + εn (5)

where ∆W k
n is the change in wind power density in distance band k and Sk

n is the share

of land available for wind energy development in k.

4.2 Main Results

Table 1 reports the first-stage, intention-to-treat, and IV results from estimating Equation

(2), Equation (3), and the corresponding reduced form specification. Odd columns report

the specification using only changes in wind power density as the instrument, even columns

additionally include the interaction of changes in wind power density with the share of land

that is available for wind energy.

First-stage. Column (1) regresses wind turbine construction between 2000 and 2017

on the change in wind power density over the same period. The coefficient indicates that

changes in wind power density are a strong and significant predictor of turbine development.

Moving a neighborhood from the 25th to the 75th percentile in the distribution of wind

power density changes at baseline, i.e. from 205 to 347 kg/s3 increases the expected number

of turbines constructed within three kilometers of the neighborhood by 2.5 wind turbines.

Column (2) regresses wind turbine construction on the change in wind power density and

the interaction of wind power density with the share of land that is available for wind

turbine construction. The results indicate that changes in wind power density affect turbine

construction only in neighborhoods that have land available. For neighborhoods that are in

the urban core or surrounded by natural parks, on the other hand, changes in wind power

density do not significantly affect turbine construction. Moving a neighborhood from the

25th to the 75th percentile in the distribution of wind power density changes increases wind

turbine development by 0.13 turbines if there is no land available and by 3.3 turbines if all

land around the neighborhood is available.
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Table 1: Main Results

(1) (2) (3) (4) (5) (6)

∆ Wind Turbines ∆ Log House Prices ∆ Share High-Skilled

Panel A: FS + ITT

∆ Wind power density 1.76*** 0.09 -0.031* -0.006 -0.011*** -0.002
(0.24) (0.21) (0.018) (0.019) (0.002) (0.002)

∆ Wind power density 2.21*** -0.032*** -0.012***
x Share land available (0.17) (0.008) (0.001)

Panel B: IV Estimates

∆ Wind turbines -0.024* -0.021*** -0.007*** -0.006***
(0.014) (0.005) (0.002) (0.001)

Instrument(s) Wind Wind + Wind Wind +
Interaction Interaction

Effective F-Statistic 34 66 52 134
Observations 133,339 133,339 79,573 79,573 128,209 128,209

Notes: Table 1 shows the estimates for the first-stage, intention-to-treat and IV specification estimated from
Equation (2), Equation (2), and the corresponding reduced form specification. Panel A shows the first-stage
(in Columns 1 and 2) and intention-to-treat effect, Panel B the IV effects. The dependent variable are
wind turbine construction between 2000 and 2017, log changes in house prices between 2007 and 2017, and
the change in the share of high-skilled residents. The independent variables are changes in wind power
density and its interaction with the share of land within three kilometers that is available for wind turbine
construction in Panel A, and the instrumented change in wind turbines in Panel B. The Effective F-Statistic
is calculated following Montiel and Pflueger (2013). Geographic controls include altitude, terrain ruggedness,
slope and the share of land that is covered by buildings, agriculture, forests, and water. The standard errors
are clustered at the level of 401 districts.

House prices. Columns (3) and (4) report the results on changes in house prices. The

intention-to-treat effects in Panel A indicate that changes in wind potential are associated

with a decrease in house prices. When including wind power density and its interaction with

land available, the entire negative effect is picked up by the interaction coefficient. This

result is consistent with the first-stage results in Columns (1) and (2), which indicates that

changes in wind power density strongly predict turbine development only in neighborhoods

with potential areas for turbine development. In neighborhoods that have no area around

them that can be used for turbine development, changes in wind power density do not

predict turbine development or decreases in house prices. These results lend support to

the identifying assumption that changes in wind power density are unrelated to unobserved

trends in house prices.
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The IV estimates in Panel B show that the effect is robust across specifications. My

preferred specification, reported in Column (3), indicates that each additional wind turbine

within three kilometers decreases house prices by 2.1 percent. The result are broadly in

line with the previous literature. Gibbons (2015) finds that visible wind turbines reduce

house prices by 5-6 percent within two kilometers, and by 2 percent between two and four

kilometers. Dröes and Koster (2016) find that wind turbines within two kilometers reduce

house prices by 1.4 percent. However, their analysis focuses on an earlier period in which

the average wind turbine was only 60 metershigh while wind turbines in my sample are on

average 100 meters high. For wind turbines larger than 100 meter, they find that house

prices decrease by 3.7 percent.

Residential sorting. Columns (5) and (6) report the effect on residential sorting. The

intention-to-treat estimates indicate that changes in wind power density decrease the share

of residents that is high-skilled. As for house prices, the effect appears only in neighborhoods

with sufficient area for turbine development.

The IV estimates in my preferred specification in Column (6) suggest that each additional

wind turbine within three kilometers decreases the share of residents by 0.6 percentage

points. Among neighborhoods that see wind turbine development between 2000 and 2017,

the median neighborhood receives three wind turbines, implying a cumulative effect of 1.8

percentage points.

Effects by distance. Next, I estimate Equation (4) to understand how the effects vary

by distance. Figure 6 reports the results. For both outcomes, I find that wind turbines

within three Kilometer drive essentially the entire effect. For all other bands, the effects on

housing are small in magnitude and insignificant, except the effect for wind turbines between

9 and 12 Kilometer, which is significant but small. For residential sorting, I find small but

significant effects for turbines between 3 and 6 as well as 6 and 9 Kilometer.

Robustness. Finally, Table A.1 in the Appendix reports additional robustness checks

for the two main results on house prices and residential sorting. Column (1) repeats the

base specification, Column (2) repeats the augmented base specification that additionally

controls for population density, income per capita, and the share of high-skilled residents

in 2000. Since the specification is in (long) differences, including these variables controls

for trends in the outcome variable in less dense, poorer, or less educated neighborhoods.

Thus, the wind turbine effect is not driven by initial differences in the three socioeconomic

indicators. Column (3) controls for the demography of the residential population in 2000,
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Figure 6: Effect by Distance

(a) House Prices (b) Share High-Skilled Residents

Notes: Figure 6 shows the effect on house prices and residential sorting by distance as estimated by Equation
(4). Distance bands measure wind turbines within 0-3, 3-6, 6-9, 9-12, and 12-15 Kilometers of the grid cell.

including the share of female residents, the share of residents aged 15-25, 26-35, 36-45, 46-

55, and above 55, and the share of foreign residents. Initial differences in demography do

not drive the wind turbine results. Column (4) controls for the industrial structure in and

around the neighborhood. Specifically, I control for the share of residents that work in each

of the 21 industries in the WZ 2008 classification. The results do not change significantly.

Column (5) adds wind power density in 2000. With this column, I confirm that changes in

wind power density due to technological advances drive the result, not differences in initial

wind conditions. Column (6) adds the longitude and latitude of the neighborhood, clarifying

that the changes in outcomes are not driven by the location of the neighborhood within

the district, for example because neighborhoods closer to the coast in Northern Germany

experience different changes in wind power density and different changes in the outcome

variable.

Finally, Columns (7) and (8) interrogate the validity of the Stable Unit Treatment Value

Assumption (SUTVA). There are two potential concerns. First, how many residents leave

when turbines are built depends on their outside option. If there are many turbines built in

the whole region fewer people emigrate, and from the observed migration and house price re-

sponses, we would underestimate residents’ preferences against wind turbines, see Borusyak

et al. (2023) for a detailed explanation of the concern. Second, the reduced form com-

pares neighborhoods that experience turbine construction with neighborhoods that remain

unspoiled. The latter serve as a control group but as residents leave wind turbine neigh-

borhoods and settle in unspoiled neighborhoods, the control group, too, maybe affected,

potentially biasing the results upwards.
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To rule out both concerns, I include a measure of the aggregate shock that surrounding

neighborhoods experience as a control variable. Following Borusyak et al. (2023), the aggre-

gate shock weights shocks in surrounding neighborhoods by their population as well as the

distance.8 Column (7) includes changes in wind power density and its interaction with land

available aggregated over surrounding neighborhoods. Column (8) includes predicted wind

turbines based on both instruments aggregated over surrounding neighborhood. Compared

to the base specification, the coefficient is virtually unchanged. This lends support to the

assumption that potential violations of SUTVA do not bias the results. Intuitively, under

both violations of SUTVA discussed above, being surrounded by neighborhoods that are also

treated induces bias in the estimates. Under concern one, it leads to worse outside options

and less emigration. Under concern two, it leads to a higher ratio of treated to control

units, inducing larger spillovers on the control group and a larger bias. By controlling for

the prevalence of shocks in surrounding neighborhoods, I account for these two alternative

stories, confirming that the results are not driven by SUTVA violations.

5 Using Theory to Infer the Implied Welfare Costs

Section 4 shows that wind turbine development decreases house prices and leads to the

emigration of high-skilled residents. Implicitly, the reduced form results suggest that wind

turbine development makes surrounding neighborhoods less attractive for residents, but they

remain silent on the size of the implied welfare losses. To estimate the costs and evaluate

policy, Section 5 develops a quantitative spatial general equilibrium model that complements

the reduced form results in two important ways. First, it yields a revealed preference map-

ping that allows me to infer residents’ willingness-to-pay to avoid wind turbines from their

observed behavior. These preferences are then embedded in a general equilibrium model,

which allows residents to move in response to wind turbine development and housing and

labor markets to adjust accordingly.

8Specifically, the shock is ẑdist−n ≡ (
∑

k ̸=n
Rk

( dist nk)
ς ẑk)/(

∑
k ̸=n

Rk

( dist nk)
ς ), ẑk is the shock, for example

changes in wind power density, or predicted wind turbines, Rk is the number of residents in k, distnk is the
distance between n and k and ς is the elasticity of migration with respect to distance which I set as −1.25
as Borusyak et al. (2023).
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5.1 Model

The economy is populated by L workers. Each worker ω is high-skilled or low-skilled. Vari-

ables and parameters that differ by type are denoted with a superscript θ ∈ {h, l}. The total

measure of high- and low-skilled workers in the economy is Lh and Ll, respectively. There

are N neighborhoods in the economy, denoted by subscript n and.

Residence and workplace choice. Individuals choose a residence neighborhood n and

a workplace i given the amenities A
′θ
n in the residential neighborhood, the wages w

′θ
i paid at

the workplace, the commuting cost dθni between n and i, house prices Qn in the residence,

and a residence-workplace pair specific individual taste shock εθni(ω).
9 Their corresponding

indirect utility is

vθni(ω) =
A

′θ
nw

′θ
i

dθniQ
αθ

n

εθni(ω) (6)

Wind turbines affect amenities such that A
′θ
n = a

′θ
n ·exp(β

θ ·Tn) where a
′θ
n are fundamental

amenities in the neighborhood, Tn is the number of wind turbines within three kilometers

of the neighborhood and βθ is the skill-specific preference against wind turbines. I model

commuting cost as dθni = exp(µθτni) where τni is the commuting time in minutes and µθ is

the semi-elasticity of costs with respect to travel times (Ahlfeldt et al., 2015).

For each residence-workplace pair individuals draw an idiosyncratic preference shock from

a Frechet distribution such that εθni(ω) ∼ F (ε) = exp(−Dθ
nE

θ
i ε

−κθ

). The shape parameter

κθ controls the dispersion of the taste shock distribution and can be interpreted as the labor

supply elasticity. The scale parameters Dθ
n and Eθ

i determine the average utility of living in

n and working in i, respectively. Empirically, they are used to match the spatial distribution

of residents and workers in the data.

Using the properties of the Frechet distribution, we can write the share of individuals

that live in n and work in i as

λθ
ni =

Dθ
nE

θ
i

(
A

′
θ
n w

′
θ

i

dθ
ni
Qαθ

n

)κθ

∑N
r=1

∑N
s=1 D

θ
rE

θ
s

(
A′θ

r w′θ
s

dθrsQ
αθ

r

)κθ
=

(
Aθ

nw
θ

i

dθ
ni
Qαθ

n

)κθ

∑N
r=1

∑N
s=1

(
Aθ

rw
θ
s

dθrsQ
αθ

r

)κθ
(7)

9Amenities and wages are indicated with a prime to simplify notation further down the line.
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The scale parameters for the average utility Dθ
n and the amenities A

′θ
n enter isomorphi-

cally and cannot be identified separately. To simplify notation I denote Aθ
n ≡ (Dθ

n)
1/κθ

A
′θ
n

as adjusted amenities. Similarly, average utility at the workplace Eθ
i and wages w

′θ
i enter

isomorphically. I denote wθ
i ≡ (Eθ

i )
1/κθ

w
′θ
i as adjusted wages. Summing the bilateral com-

muting shares over workplaces yields the share of residents, summing over residences yields

the share of workers, so that the number of residents and workers is

Rθ
n = Lθ

∑

i∈N

λθ
ni, Lθ

i = Lθ
∑

n∈N

λθ
ni (8)

where Lθ is total number of individuals of type θ in the economy.

Labor market. Labor supply is given by Lθ
i above. For labor demand, I follow Diamond

(2016) and model (inverse) labor demand as log-linear function of high-skilled and low-skilled

workers, so that high-skilled wages in workplace i are determined as

ln(wh
i ) = γhhln(Lh

i ) + γlhln(Ll
i) + zhi (9)

and low-skilled wages are determined as

ln(wl
i) = γhlln(Lh

i ) + γllln(Ll
i) + zli (10)

The labor demand parameters γhh, γhl, γlh, and γll allow to capture substitution patterns

across skill types and spillovers between workers without taking a stance on the functional

form of the production function and the embedded agglomeration externalities. Finally, the

labor market clearing implies that

Lθ =
∑

n∈N

Rθ
n =

∑

n∈N

Lθ
n (11)

Housing market. The demand for housing HDn is the total income that both types

spend on housing divided by the price of housing
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HDn =
Rh

nv̄
h
nα

h +Rl
nv̄

l
nα

l

Qn

(12)

where v̄θn is the average income of residents in the neighborhood. Average income is

calculated over the wages in the surrounding neighborhoods i weighted by the probability

that a resident from n commutes to i.

v̄θn =
∑

i∈N

λθ
ni|nw

θ
i =

∑

i∈N

(
wθ

i /d
θ
ni

)κθ

∑
s∈N (wθ

s/d
θ
ns)

κθ
wθ

i (13)

For the supply of housing, I assume that each neighborhood draws on a fixed pre-existing

housing stock Hn and that housing is supplied inelastically with elasticity ηn such that

HSn = H̄nQ
ηn
n (14)

Equating supply and demand, the market clearing is

H̄nQ
1+ηn
n = Rh

nv̄
h
nα

h +Rl
nv̄

l
nα

l (15)

Welfare. From the indirect utility and using properties of the Frechet distribution, the

expected utility of a resident is

Ū θ = E
[
vθni(ω)

]
= Γ

(
κθ − 1

κθ

)[∑

r∈N

∑

s∈N

(
Aθ

rw
θ
s

)κθ
(
dθrsQ

αθ

r

)−κθ

] 1

κθ

(16)

where Γ is the Gamma function. Because residents are free to move expected utility

equalizes across locations.

Equilibrium. An equilibrium is a vector
{
Rθ

n, L
θ
n, v̄

θ
n, w

θ
n, Qn

}
n,θ

and two scalars Ū θ such

that residents Rθ
n and workers Lθ

n are determined by Equations (7) and (8), wages wθ
n are

determined by firms’ labor demand given by (9) and (10), average income v̄θn is given by

(13), the housing market clearing (15) pins down the rental price Qn, and the labor market

clearing (11) pins down Ū θ.
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5.2 Estimation

5.2.1 The Amenity Cost of Wind Turbines

Rewriting the labor supply in Equation (7), we can express unobserved changes in amenities

as a function of residents, house prices, and commuting-cost weighted wages. Specifically,

∆ln
(
Aθ

n

)
=

1

κθ
·∆ln

(
Rθ

n

)
+ αθ ·∆ln (Qn)−∆ln



(

N∑

i=1

(
wθ

i /d
θ
ni

)κθ

)1/κθ

+∆cθ (17)

Intuitively, the model uses the unobserved changes in amenities to rationalize observed

changes in population. For example, if more residents move to a location that is becoming

more expensive in terms due to increasing house prices or decreasing wages, by revealed pref-

erence, the location is becoming more attractive. Conversely, locations that lose population

despite decreasing house prices, such as neighborhoods close to wind energy development,

are becoming less attractive. To estimate how much amenities decrease due to turbine con-

struction, I calculate the implied amenity change between 2007 and 2017 following Equation

(17) and regress it on wind turbine construction instrumented by the change in wind power

density as described in Section 4.

Doing so requires estimates of the labor supply elasticity across space κθ, the share of

their income that residents spend on housing αθ, and the cost of commuting between their

home and workplace dθni. Intuitively, if residents move away from a location, for example

due wind turbines, the implied amenity decrease must be even stronger if residents are

usually relatively immobile (low κθ), if they spend a lot on housing and are thus partially

compensated by falling rental prices (high αθ) and if they have good commuting-cost weighted

access to jobs in the area (low dθni).

Housing share αθ. I estimate the income share that residents spend on housing from the

expenditure survey in the German Microcensus in 2018. I find αθ to be 0.25 for low-skilled

and 0.23 for high-skilled residents.

Labor supply elasticity κθ. I calibrate the Frechet parameter or labor supply elasticity

to be 4.56, drawing on a recent estimate for Germany by Krebs and Pflüger (2023). Choosing

a uniform value for high- and low-skilled residents has the obvious disadvantage that it
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ignores (potential) differences in labor mobility across skill types. Nevertheless, I provide a

series of robustness checks in which I vary the parameter separately by skill type and show

that the amenity cost remains similar across specifications.

Commuting costs dθni. Following Ahlfeldt et al. (2015), I model commuting costs as a

function of bilateral travel times τni and the semi-elasticity of commuting costs with respect

to travel times µ dθni = exp(µθτni). Given the commuting shares in Equation (7) and the

commuting costs, the model implies the commuting gravity estimation equation

ln
(
λθ
ni

)
= νθ · τni + δi + δn + εni (18)

where νθ = −µθ · κθ is the commuting semi-elasticity with respect to travel times, τni

measures travel times in minutes, the workplace fixed effect δi absorbs wages, the residence

fixed effects δn absorbs neighborhood amenities and house prices, and I add εni to allow for

measurement error and other deviations from the model-implied commuting equation in the

data.

I construct bilateral travel times using data from OpenStreetMap and the routing software

developed by Huber and Rust (2016), see Section B.3 in the Appendix for details. For

commuting shares, I use data on the district-pair level that I construct from the SIAB data,

a two percent random sample of the German workforce, see Section B.2 in the Appendix.

Since the commuting shares are zero for the majority of pairs, I estimate Equation (18)

using Poisson Pseudo Maximum Likelihood (PPML, Silva and Tenreyro, 2006, Ahlfeldt et

al., 2015). Table 2 shows the results. Columns (1) and (3) indicates that an increase in travel

times by one minute decreases commuting by 8.5 percent for high-skilled and by 12 percent

for low-skilled. As Columns (2) and (4) show, the results are robust to excluding district

pairs with less than 10 commuters. Quantitatively, the results are higher than in Ahlfeldt et

al. (2015) who find that each additional minute travel time decreases commuting in Berlin

by 7 percent. A possible reconciliation of both estimates is that pecuniary commuting costs

are higher in Germany (which includes rural commutes) due to higher mileage and fuel costs

per minute traveled.

With the travel times and the estimated commuting cost semi-elasticity, I calculate the

travel costs dθni. Since I estimate the model for 133,339 neighborhoods, allowing residents to

commute across all pair of locations would require 133, 3392, or approximately 1010 calcula-

tions per matrix multiplication. To make the estimation computationally feasible, I divide
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Table 2: Commuting Semi-Elasticity

(1) (2) (3) (4)
High-Skilled High-Skilled Low-Skilled Low-Skilled

Travel time (νθ) -0.085*** -0.083*** -0.120*** -0.121***
(0.001) (0.001) (0.001) (0.001)

Sample All > 10 Commuters All > 10 Commuters
Observations 160,801 5,881 160,801 9,468

Notes: Table 2 shows Poisson Pseudo Maximum Likelihood estimates for the commuter gravity Equation
(18). Each Column reports a separate regression. The regressions are at the district-pair level. Standard
errors are clustered at the residence and at the workplace level. Columns 2 and 4 only include residence-
workplace pairs with at least 10 commuters.

Germany into 257 regional labor markets. While individuals are free to choose any location

to live in, conditional on that location, they can only commute to workplaces in the same la-

bor market, effectively setting dθni to infinite for commutes across labor markets. Empirically,

the simplification is reasonable. First, quantitative spatial models that study the allocation

of economic activity within a city, for example Ahlfeldt et al. (2015), implicitly assume that

there is no commuting beyond the city’s labor market. Secondly, Dauth and Haller (2020)

show that the vast majority of German workers commutes less than 20 kilometer, and ap-

proximately 94 percent of Germans commute less than 50 kilometer. Third, I show that the

number of residents and workers in each labor market is fairly balanced, see Figure A.5 in

the Appendix. o ensure that the commuter market clears everywhere, I re-scale the number

of workers in all workplaces so that the total population matches total employment in each

labor market.

Amenity costs of wind turbines βθ. Equipped with estimates of the labor supply

elasticity, the share of income spent on housing, and the commuting costs, I calculate the

implied amenity changes between 2007 and 2017 on the number of wind turbines constructed

over the same period. Then, I regress the implied amenity changes on the predicted number

of wind turbines in each distance band around the grid cell as in Equation (4). Figure 7

shows the results. I find that wind turbines within three Kilometers reduce high-skilled and

low-skilled amenities by 0.9 and 0.6 percent, respectively, while for wind turbines in any

distance band beyond three Kilometer is statistically insignificant and close to zero.
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Figure 7: Amenity Cost of Turbines

(a) High-Skilled Amenities (b) Low-Skilled Amenities

Notes: Figure 7 shows the effect on high-skilled and low-skilled amenities by distance as estimated by
Equation (4). Distance bands measure wind turbines within 0-3, 3-6, 6-9, 9-12, and 12-15 Kilometers of the
grid cell.

5.2.2 Labor Demand and Housing Supply

Labor demand elasticities γhh, γhl, γlh, γll. To estimate the long-run labor demand

elasticites, I take long differences of the model’s labor demand in Equations (9) and (10).

Specifically,

∆ln(wh
i ) = γhh∆ln(Lh

i ) + γlh∆ln(Ll
i) + ∆zhi (19)

and

∆ln(wl
i) = γhl∆ln(Lh

i ) + γll∆ln(Ll
i) + ∆zli (20)

where ∆ln(wθ
i ) are log changes in the wage of type θ between 2000 and 2017, and ∆ln(Lθ

i )

are log changes in the number of workers of type θ between 2000 and 2017. Estimating

the labor demand equations using OLS would likely yield bias estimates due to reversed

causality. Instead, I develop a migration shift share IV strategy that shifts labor supply

and allows me to trace out the (inverse) labor demand curve. The strategy exploits the

historical distribution of migrants from different origin countries and national skill-specific

shifts in immigration between 2000 and 2017. Specifically, I construct the expected increase

in workers over the period as
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Table 3: Labor Demand Elasticities

(1) (2)
Log Wages

High-Skilled Low-Skilled

Log workers, high-skilled 0.053*** -0.010*
(0.016) (0.006)

Log workers, low-skilled -0.007 -0.061**
(0.047) (0.023)

Observations 35,918 32,539

Notes: Table 3 estimates the long-run labor demand elasticities in Equations (19) and (20). I instrument
∆ln(Lh

i ) and ∆ln(Ll
i) using the migration shift-share instruments ∆Bh

i /L
h
i,2000 and ∆Bl

i/L
l
i,2000 constructed

in Equation (21). The standard errors are clustered at the level of 401 districts.

∆Bθ
i =

∑

g∈G

(
Rθ

g,2017,−i −Rθ
g,2000,−i

)
·
Rig,2000

Rg,2000

(21)

where Rθ
g,2017,−i − Rθ

g,2000,−i is the national change in immigrants of skill θ from country

group g between 2000 and 2017, leaving out migrants to i to avoid a mechanic effect, and

Rig,2000/Rg,2000 is the share of immigrants of group g that live in i among all immigrants of

group g in Germany. For the national trend, I net out the number of migrants in i, indicated

by the −i subscript, to avoid any mechanic correlation with changes in Lθ
i . Data Appendix

B.4 describes the data sources, the construction of groups and the variables in detail.

Since ∆ln(Lh
i ) and ∆ln(Ll

i) capture relative changes, I use ∆Bh
i /L

h
i,2000 and ∆Bl

i/L
l
i,2000

as the instruments, respectively. Table A.3 in the Appendix reports the first-stage results.

One caveat is that the first-stage is moderately strong, with a Kleibergen Paap F-Statistic of

9.6 and 4.4, respectively. More reassuringly, the first stage results show that the predictive

power in the change in labor supply of each skill type comes from the migration-induced

labor supply shock for that skill type.

Table 3 shows the IV estimates for the four labor demand elasticities. For high-skilled

workers, I find that a one percent increase in high-skilled workers increases wages by 5.3

percent while a one percent increase in low-skilled workers decreases wages by 0.7 percent.

The positive own-wage elasticity suggests positive spillovers between high-skilled workers

and is qualitatively consistent with previous estimates, for example in Diamond (2016). For
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low-skilled workers, a one percent increase in high-skilled and low-skilled workers decreases

wages by 1.0 percent and 6.1 percent, respectively. The own-wage elasticity suggests that

there are few (if any) spillovers between low-skilled workers, again consistent with previous

evidence (Diamond, 2016).

Housing supply elasticity ηn. Following Saiz (2010), I approximate the location-

specific housing supply elasticity as function of variation in land constraints. The intuition

is that housing supply typically reacts less to house prices when there is little land for

development available. Specifically, I construct the share of land that is unavailable due to

water bodies and steep terrain with a slope larger than 15 percent as well as the share of

land that is already developed, and calculate the housing supply elasticity as

ηn = 0.310− 0.463 · share developedd(n) − 1.01 · share unavailabled(n) (22)

using long-run estimates for the German housing market, 2008-2019 by Beze (2023).10

The average neighborhood in my sample has a housing supply elasticity of 0.26. The 25th

percentile is 0.25, the 75th percentile 0.28. Although the estimates are small relative to the

US context (Saiz, 2010), they are consistent with Beze (2023) who finds an average elasticity

of 0.22 and Caldera and Åsa Johansson (2013) who report a Germany-wide housing supply

elasticity of 0.43.

Table 4 summarizes the model parameters as well as the estimation strategy or source.

I detail the estimation of each parameter in the rest of the section.

5.3 Model Inversion

I estimate the model for 133,339 neighborhoods in Germany. Given data on population,

employment, house prices, and bilateral travel times as well as the parameters estimated

in Section 5.2, one can invert the model and obtain adjusted amenities Aθ
n, adjusted wages

wθ
n, productivity zθn, and the housing stock H̄θ

n. Adding data on wind turbines, one can

further obtain adjusted fundamental amenities aθn. Section C in the Appendix formalizes the

model inversion and shows that the obtained location fundamentals are unique, in the case

10Five districts, Berlin, Munich, as well as Oberhausen, Gelsenkirchen, Herne in the Ruhr area are so
densely built that the implied supply elasticity would be (slightly) negative. For these districts, I replace
the elasticity with zero.
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Table 4: Summary Parameters

Parameter Symbol h l Estimation Strategy

Amenity cost of turbines βθ -0.009 -0.006 Wind power density IV

Share spent on housing αθ 0.23 0.25 Microcensus 2018
Frechet scale parameter κθ 4.56 4.56 Krebs and Pflüger (2023)
Commuting semi-elasticity νθ -0.085 -0.120 Commuting gravity equation
Labor demand elasticity, wh γhθ 0.053 -0.007 Migration shift share IV
Labor demand elasticity, wl γlθ -0.010 -0.061 Migration shift share IV
Total Labor Lθ 7.6M 30.8M GridAB Data 2017

Housing supply elasticity ηn IQR = [0.25, 0.28] Saiz (2010), Beze (2023)

of amenities and wages up to a normalization.

First, I use the commuter market clearing and data on population, employment, and

commuting costs to recover adjusted wages wθ
n. Intuitively, the model structure uses adjusted

wages to match employment in the data. If a workplace has high employment even though

observed wages are low and the workplace has bad access to commuters, the location must

pay high adjusted wages. Second, I use the labor supply equation, the adjusted wages and

data on population, house prices, and commuting costs to recover adjusted amenities Aθ
n.

Intuitively, the model structure uses adjusted amenities to match population in the data. If a

residence has high population despite high house prices and weak commuting-cost weighted

access to jobs with high adjusted wages, the neighborhood must have high amenities. Given

adjusted amenities and data on wind turbines, one can infer adjusted fundamental amenities

aθn. Third, I use the labor demand equations and data on adjusted wages and employment

to recover productivity fundamentals zθn. Fourth, I use the housing market clearing and data

on house prices, population, adjusted wages, and commuting costs to recover the housing

stock H̄θ
n.

6 Policy Implications

Section 6 uses the quantified model to evaluate Germany’s wind energy policy. First, I show

that the current distribution of wind turbines has large annual welfare costs for residents -

0.45 percent of welfare or approximately 5.6 billion USD. Second, I find that alternative allo-

cation of wind turbines that takes the varying willingness-to-pay across neighborhoods into
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account could have substantially decreased welfare costs but also concentrates the burden,

especially in rural and poorer regions. Third, I evaluate the Renewable Energy Act and Ger-

many’s implied wind energy targets for 2045. I show that a low-cost allocation of turbines

can save about 35 percent of the welfare cost for residents compared to a business-as-usual

scenario. Both scenarios, however, are better than a slow expansion of wind turbines, and

I provide budget-balanced transfers to compensate residents and incentivize development in

the future.

6.1 The Local Cost of Wind Turbines

First, I analyze how the expansion of wind energy until 2017 has affected the geographic dis-

tribution of residents and economic activity and its implications for welfare. Specifically, I

counterfactually remove all wind turbines active in 2017 and solve for the equilibrium distri-

bution of residents, workers, house prices, and wages, and compare the resulting equilibrium

with the equilibrium observed in the data in 2017.11

Effect on residents’ location choices. The quantified model suggests that the amenity

costs associated with the expansion of wind energy substantially affected the distribution of

residents and workers, and as a consequence of house prices, income, and wages. Figure 10

shows how the expansion of wind energy affects the two main outcomes, house prices and

residential sorting. Figures A.8 and A.9 in the Appendix show the effect on population,

employment, income, and wages, separately for high- and low-skilled.

By construction, wind turbine development decreases amenities. Neighborhoods close

to wind turbines become less attractive, especially for high-skilled residents, who move to

other locations. Low-skilled residents move predominately to neighborhoods that are far

enough from the wind turbines but still in the larger area. High-skilled residents, on the

other hand, move predominantly to larger cities as well as to Southern Germany. Both types

relocate differently responding to different incentives in the labor market. Labor demand

for low-skilled is downward-sloping. As low-skilled residents leave, workers in places within

11Since I observe when wind turbines are connected to the grid but not if and when they are removed or
replaced, taking all wind turbines constructed until 2017 may imply that some wind turbines are counted
double. In the reduced form, the instrumental variable strategy corrects for the implied measurement error.
In the quantitative model, double-counting would lead to inflated welfare costs of the expansion. To correct
for this, I follow the common assumption that wind turbines have a lifetime of 20 years (see also the discussion
in FA Wind, 2018), after which increasing maintenance costs and halted government subsidies reduce the
incentives for continued operation. Figure A.7 in the Appendix shows the geographic distribution of wind
turbines active in 2017 for reference.
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Figure 8: Effects of Wind Turbines on House Prices and Sorting

(a) House Prices (b) Share of High-Skilled Residents

Notes: Figure 10 shows the general equilibrium effects of wind turbine development on house prices and the
share of high-skilled residents. Changes are calculated as percent changes, comparing the variables observed
in the data in 2017 with the model counterfactual assuming the absence of wind turbines. Panel (a) shows
the changes in house prices, Panel (b) shows the changes in the share of residents that are high-skilled.
The variation is grouped into quintiles, ranging from the most negative changes in red to the most positive
changes in blue.

commuting-distance are compensated by higher wages, and this binds low-skilled workers to

the larger area around the wind turbines. High-skilled workers, on the other hand, increase

the productivity of other high-skilled workers. When they leave turbine neighborhoods, high-

skilled wages in the larger area fall, incentivizing high-skilled residents to leave the entire

region.

Effect on welfare. Using Equation (16) to calculate welfare in the counterfactual

equilibrium without wind turbines and in the data, I find that the local costs of the full

wind turbine expansion amount to 0.45 percent. Residential adaptation is important - not

allowing residents and the economy to respond would have increased costs by an additional

0.056 percent - but even after that the costs are substantial. In terms of compensating

variation, the welfare costs suggest total losses of about 5.6 billion or about 67 USD per

capita.
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6.2 Wind Turbine Placement and the Equity-Efficiency Trade-Off

The quantified model suggests that wind turbine development has important costs for res-

idents. In the following, I use model counterfactuals to show that alternative placements

of wind turbines can achieve the same electricity production while substantially lowering

model-implied welfare costs.

Alternative turbine placement. Identifying the optimal allocation of wind turbines

is a high-dimensional discrete choice problem that does not appear to have an analytical

solution and that is computationally intractable.12 Instead, I minimize the log-linearized

first-order welfare costs and use the quantified model to calculate the resulting welfare costs

in general equilibrium, a procedure that allows me to find a lower bound of welfare gains

that alternative distributions can achieve relative to the current distribution. In Appendix

D.2, I show that minimizing the log-linearized first-order costs comes down to minimizing

the willingness-to-pay weighted by the number of high- and low-skilled residents, formally,

minimize
{Tn}n

N∑

n=1

(
−0.009 ·Rh

n − 0.006 ·Rl
n

)
· Tn (23)

To replicate the problem of the social planner as closely as possible, three constraints

restrict the possible allocations of wind turbines.

Constraint 1: Turbines achieve the same electricity capacity as in the data.

First, given the spatial distribution of wind power density Wn, wind turbines must achieve

the same electricity capacity as wind turbines in the data in 2017. Formally,

N∑

n=1

Wn · Tn ≥
N∑

n=1

Wn · T
2017
n (24)

Constraint 2: Turbines are only placed on available land. Second, I draw on

detailed land use maps published by the German think tank Agora Energiewende (2021)

12Importantly, the welfare cost of placing an additional wind turbine depends on the distribution of all
other wind turbines in the economy since locations are spatially linked through residence and employment
choices. With approximately 25,000 wind turbines and more than 100,000 potential locations, each of which
can potentially accommodate more than one wind turbine, brute force optimization is impossible. Secondly,
simulating different turbine distributions to understand properties of the optimal allocation as in Kreindler
et al. (2023) is computationally infeasible due to the large number of repetitions required and the prohibitive
time it takes to solve the model in my context.
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to ensure that wind turbines are only placed on land on which turbine development is al-

lowed and physically possible. The list of excluded areas is detailed and exhaustive, and can

be found in Appendix D.3. For areas with unclear status, in particular forests, protected

landscapes (”Landschaftsschutzgebiete”), and areas within short distance of residential pop-

ulation, Agora Energiewende (2021) provides different maps. I choose the strictest scenario,

excluding forests and protected landscapes, and assuming a minimum distance to residential

population of 1000 meters, so that the minimization problem yields a lower bound for the

welfare gains from alternative wind turbine allocations.

Constraint 3: Electricity production respects interstate transmission limits.

Third, I ensure that the production of wind energy in each state does not exceed the capac-

ity that can be consumed in the state itself or transported given the existing electricity grid

infrastructure. This is particularly important because Germany has better wind resources

in the less densely populated regions in the North and North-East but higher population

density and energy consumption in the West and South, and because the existing network

of ultra-high voltage transmission lines restricts how much electricity can be transported

across regions. Modeling energy consumption and transmission capacity is traditionally

assumption-heavy. In light of this, I assume that the state-level wind energy capacity ob-

served in the data in 2017 reflects current transmission constraints, and that each state can

sustain at most this observed limit or, alternatively, the wind energy that can be consumed

by the state’s population.

Figure 9 shows the geographic distributions of wind turbines in the data as well as

the distribution obtained in the cost-minimizing scenario. Overall, the two distributions of

wind turbines are similar, which suggests that the minimization problem captures well the

incentives for turbine construction. Both scenarios tend to allocate wind turbines to the

high-wind Northern parts of Germany, as well as in areas with lower population density.

The cost-minimizing scenario, however, is even stricter in avoiding populated areas, which

can be seen most clearly in the Rhein-Ruhr area in West Germany, and around cities such

as Hamburg and Berlin. Instead, the cost-minimizing scenario concentrates wind turbines

more strongly in sparsely populated areas, such as the North-East, for example.

Welfare and inequality. I use the quantitative spatial general equilibrium model to

understand how much welfare would have decreased under the cost-minimizing turbine allo-

cation, and find that the losses would have been seven times lower, reducing from a loss of

5.6 to 0.8 billion USD.
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Figure 9: Wind Turbine Scenarios, 2017

(a) Data, 2017 (b) Cost-Minimizing Alternative

Notes: Figure 9 shows the distribution of wind turbines (in blue) relative to the population density (in red,
larger density in darker tones). Panel (a) plots the distribution of wind turbines in the data in 2017. Panel
(b) plots the alternative distribution derived from the cost-minimization problem in Equation (23).

While the alternative distribution reduces average welfare costs, it substantially increases

inequality across space. In the cost-minimizing scenario, 73.9 percent of wind turbines are

concentrated in five percent of municipalities, relative to 56.9 percent under the current

turbine distribution. Moreover, the scenario tends to place the burden on rural, low-income,

and low-educated municipalities. Going from the turbine distribution in the data to the

cost-minimizing scenario, the share of wind turbines in rural, low-income, and low-educated

municipalities increases by 16, 10, and 6 percentage points, respectively.

Compensation. I derive budget-balanced transfers that allow the social planner to

implement any allocation of wind turbines without changing the relative welfare across lo-

cations. Specifically, I denote τ θn the proportional compensation that a resident of type θ

in neighborhood n receives, and τ θ the proportional tax that residents in all neighborhoods

pay so that transfers are budget balanced. The indirect utility is thus

vθni(ω) =
τ θn
τ θ

·
A

′θ
nw

′θ
i

dθniQ
αθ

n

· εθni(ω) (25)
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Figure 10: Compensatory Transfers, 2017

(a) Data, 2017 (b) Cost-Minimizing Alternative

Notes: Figure 10 shows budget-balanced transfers (in Euro per capita, aggregated at the municipality level)
that compensate residents close to wind turbines for their welfare loss. On net, municipalities in blue receive
transfers, municipalities in red pay transfers. Panel (a) plots the transfers for the distribution of wind
turbines in the data in 2017. Panel (b) plots the the transfers for the alternative distribution derived from
the cost-minimization problem in Equation (23). Transfers are calculated based on Equation (25) and as
derived in Appendix D.4.

In Appendix D.4, I show that setting τ θn = 1/exp(−βθTn) fully compensates residents

and I derive the proportional uniform tax τ θ as well as the absolute net transfers that each

neighborhood receives. Figure 10 shows the implied net per capita transfers for the cur-

rent allocation of wind turbines as well as for the alternative, cost-minimizing scenario. I

aggregate the neighborhood-level transfers at the municipality level, which is the lowest con-

sistent political unit in Germany. While both scenarios achieve the same electricity output,

the current allocation creates larger costs for residents, and thus both the net transfers that

municipalities with wind turbines receive as well as the net payments of all other municipal-

ities are larger than in the cost-minimizing scenario.
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6.3 Wind Energy Development Plans for 2045

Finally, I use the quantified model to evaluate Germany’s climate policy until 2045. With the

Renewable Energy Act (2023), Germany has set itself binding targets for the development

of wind energy - from a cumulative capacity of 62 Gigawatt in 2024 to 115, 155, 160, and

160 Gigawatt in the years 2030, 2035, 2040, and 2045, respectively.

I compare the welfare implications of four scenarios. In the first, I assume that policy-

makers achieve the targets in the respective years by developing turbines in similar areas

as in 2017, that is without explicitly minimizing the cost for residents. I take into account

that wind turbines get more efficient over time. Old turbines are taken off the grid after

20 years and replaced with new wind turbines. For the capacity of new wind turbines, I

note that the growth in wind energy capacity per turbine in Germany has been surprisingly

linear between 2000 and 2024, with no signs of a slowdown in improvements, and I assume

wind turbine technology to improve at the same rate until 2045. As a result, I estimate that

the cumulative number of wind turbines required to achieve the targets increases from 29

thousand turbines observed in the data in 2017 to 31, 38, 36, and 35 thousand wind turbines

in 2030, 2035, 2040, and 2045, respectively.

While this paper provides no theory of where policy-makers and developers will allocate

these turbines, in the first business-as-usual scenario I assume that the policy-maker does

not change her approach to the costs for residents and that the average welfare cost per

turbine remains at 0.2 million USD per turbine, as estimated in Section 6.1.

In the second scenario, I assume that the policy-maker allocates wind turbines by mini-

mizing the cost for residents given in Equation (23). As in Section 6.2, I take into account

the spatial distribution of wind power density (which changes over time as turbines be-

come taller), the spatial distribution of available land (which changes as potential areas are

gradually filled up by wind turbines), and state-level capacity limits given by the electricity

transmission network. For the latter, I assume limits consistent with the network expansion

planned in the most recent grid development plan (NEP 2037/2045). As before, I obtain the

implied turbine distribution and calculate the aggregate welfare costs obtained from solving

the quantitative spatial model. Figure 11 shows the resulting distribution of wind turbines,

represented as blue dots on the left, as well as the budget balanced transfers that compensate

residents and incentivize turbine construction as calculated in Appendix D.4 on the right.

In the third and fourth scenario, I assume that Germany continues to place wind turbines
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Figure 11: Wind Energy Development Scenarios Until 2045

(a) Turbines - Flexible Allocation (b) Turbines - State Targets

Notes: Figure 11 shows two scenarios under which Germany would achieve its wind energy development
goals for 2045, a flexible scenario on the left and a scenario with mandatory state targets as proposed in the
Onshore Wind Act 2023. The top panel shows the distribution of wind turbines, the bottom panel shows
the set of budget-balanced transfers that would be necessary to compensate residents in both scenarios.

without minimizing the cost for residents (so that the average welfare cost per turbine is

the same as in 2017), but wind turbine construction remains slow and Germany does not

achieve its target for 2045. Again, I assume that old wind turbines are decommissioned after

20 years. In the third scenario, I assume that Germany adds 982 new turbines per year,

which is the average number of turbines installed per year between 2014 and 2023. In the

fourth scenario, I assume 505 new turbines per year, which is the average number installed

between 2019 and 2023. The scenarios, which I refer to as the slow and very slow business-

as-usual scenarios respectively, achieve only 57 and 29 percent of Germany’s onshore wind

energy target.

For a complete welfare analysis, I also make assumptions about the welfare benefits

of wind energy. Arkolakis and Walsh (2023) show that the shift to renewable energy will

decrease electricity prices, raise industrial production, and increase welfare in Germany by 3.4

percent. I attribute about a third of that to onshore wind energy (the remaining two thirds of

renewable energy production come from solar and offshore wind energy). After multiplying
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Table 5: Scenarios 2045 - Welfare Comparison

Cost minimization Business-as-usual Business-as-usual Business-as-usual
(Fast) (Fast) (Slow) (Very slow)

Wind Turbines in 1000s 35 35 20 10
Electricity capacity in Gigawatt 160 160 91 46

Welfare Costs in USD

Residents 5.6B 8.6B 1.1B 0.5B

Welfare Benefits in USD

Electricity 42.2B 42.2B 24.0B 12.1B
Abated emissions 25.6B 25.6B 14.6B 7.4B

Net Welfare Benefits in USD 62.2B 59.2B 37.5B 19.0B

the estimates with Germany’s GDP, I find that electricity prices increase welfare by 42.2

billion USD. For the abated emissions, I assume that wind energy in Germany replaces

mostly coal energy, which, at the newest standard, emit 0.8 Kilogram of CO2 per KWh of

electricity. Assuming a social cost of carbon of 100 USD per ton of CO2, I find that the

emissions abatement of the full expansion of wind energy saves 25.6 billion USD.

Table 5 shows the welfare calculation for all scenarios. Comparing Columns (1) and (2), I

find that taking the costs for residents explicitly into account when allocating wind turbines

may save 3 billion USD or about 35 percent of the total welfare costs. While the costs are

large, they only amount to between 8.3 and 12.7 percent of the welfare benefits from lower

electricity prices and abated emissions. This also implies that a successful expansion has

welfare benefits that far exceed the financial cost of compensating residents and thereby

incentivizing turbine development. While a slower transition to renewable energy may bring

lower costs for residents, Columns (3) and (4) suggest, that, on net, a slower transition costs

welfare benefits between 22.4 and 39.9 billion USD, or between 39 and 70 percent of the

total net welfare benefits.

7 Conclusion

Policy-makers around the world that aim to reduce emissions often face political frictions.

While many policies aimed at climate change mitigation, such as for example the expan-

sion of renewable energy, ultimately bring welfare benefits that justify their pursuit, their

implementation sometimes comes with redistributive welfare effects that leads to political

backlash, reduced or slower adoption, and ultimately aggregate welfare losses.
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In this paper, I study one particularly important climate change mitigation policy, the

transition to renewable energy. Consistent with the resistance that we observe against the

construction of renewable energy infrastructure, I find that wind turbines have important

local costs, and that residents are willing-to-pay between 0.6 and 0.9 percent of their income

to avoid an additional wind turbine near their home. I show that these preferences amount

to large implicit welfare costs that can be substantially reduced if the policy-maker takes

them into account. Evaluating Germany’s targets in the Renewable Energy Act, I find

that the allocation that takes residents’ costs into account saves 35 percent of the cost of a

business-as-usual scenario. Both scenarios, however, are better than a slow expansion of wind

energy, which highlights that the largest welfare costs may come from the resistance against

renewable energy. Policy-makers may therefore wish to compensate residents to incentivize

wind turbine development in the future.
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Appendices

A Additional Figures and Tables

Figure A.1: Current Installed Electricity Capacity and Plan Until 2030

Notes: Figure A.1 shows the evolution of electricity mix between 2002 and 2022, as as well as government’s
goals until 2030. Over the time, the installed wind energy capacity at land rises from 12 GW in 2002, to
32 GW in in 2012, to 55 GWW in 2022. With the Renewable Energy Act 2023, the government plans to
increase the capacity to 115 GW until 2030, a 98 percent increase in capacity in eight years. Source: Own
calculation based on data provided by the project Energy Charts operated by the Fraunhofer Institute for
Solar Energy Systems ISE (for 2002-2022) and the government’s expansion goals enacted with the Climate
Act 2023.
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Figure A.2: Past Wind Turbine Construction and Plan Until 2030

Notes: Figure A.2 shows the evolution of wind turbine construction in Germany. The blue bars indicate the
number of new constructed turbines, net of old turbines that were taken off the grid. The red line shows the
cumulative number of wind turbines. The light blue bars in 2022 to 2030 show the number of new turbines
that would be necessary to reach the government’s capacity goal, 115 GW until 2030. The government does
not name an explicit goal for the number of wind turbines. In translating wind capacity goals to annual
turbine, I assume that capacity per wind turbine continues to increase at the same rate as in the past and
that the same number of wind turbines is installed each year. Source: Own calculation based on data from
the Bundesverband Windenergie (for 2000-2021) and the government’s expansion goals enacted with the
Climate Act 2023.
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Figure A.3: Distribution of Turbine Heights

(a) Turbines constructed in 2000 (b) Turbines constructed in 2017

Notes: Figure A.3 shows the distribution of wind turbine heights. Panel A.3a plots the distribution in 2000,

Panel A.3b plots the distribution in 2017. Source: Own calculation based on data from The Wind Power.

Figure A.4: Changes in Wind Power Density and Turbines, 2000-2017

(a) Raw Variation (b) Residual Variation

Notes: Figure A.4 shows the change in wind turbines between 2000 and 2017 for deciles in the change of
wind power density (in kg/s3) over the same period. Panel A.4a uses the raw variation of both variables.
Figure A.4b uses the residual variation that remains after controlling for district fixed effects as well as
geographic controls including altitude, terrain ruggedness, slope and the share of land that is covered by
buildings, agriculture, forests, and water. Source: Own calculation using data on wind turbines from The
Wind Power and data on wind power density from the Global Wind Atlas.
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Figure A.5: Balance Residents and Workers Across Labor Markets

(a) High-Skilled (b) Low-Skilled

Notes: Figure A.5 plots the log number of residents against the log number of each workers. Each dot

represents one of 257 labor markets. The red line represents the 45 degree line.
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Figure A.6: Amenities

(a) High-Skilled (b) Low-Skilled

Notes: Figure A.6 shows the model-implied amenities in 2017. Panel A.6a shows amenities for high-skilled

residents, Panel A.6b for low-skilled residents. The variation is grouped into quintiles. Dark quintiles indicate

high amenities, light quintiles indicate low amenities.
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Figure A.7: Geographic Distribution of Wind Turbines Active in 2017

Notes: Figure A.7 shows the geographic distribution of active wind turbines in 2017.
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Figure A.8: Effects of Wind Turbines on Population and Employment

(a) High-Skilled Population (b) Low-Skilled Population

(c) High-Skilled Employment (d) Low-Skilled Employment

Notes: Figure A.8 shows the general equilibrium effects of wind turbine development on population and

employment. Changes are calculated as percent changes, comparing the variables observed in the data in

2017 with the model counterfactual assuming the absence of wind turbines. Panels (a) and (b) show the

changes in high- and low-skilled residents, respectively. Panels (c) and (d) show the changes in high- and

low-skilled workers, respectively. The variation is grouped into quintiles, ranging from the most negative

changes in red to the most positive changes in blue.
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Figure A.9: Effects of Wind Turbines on Income and Wages

(a) High-Skilled Income (b) Low-Skilled Income

(c) High-Skilled Wages (d) Low-Skilled Wages

Notes: Figure A.9 shows the general equilibrium effects of wind turbine development on income and wages.

Changes are calculated as percent changes, comparing the variables observed in the data in 2017 with the

model counterfactual assuming the absence of wind turbines. Panels (a) and (b) show the changes in high-

and low-skilled income, respectively. Panels (c) and (d) show the changes in high- and low-skilled wages,

respectively. The variation is grouped into quintiles, ranging from the most negative changes in red to the

most positive changes in blue.
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Table A.3: Labor Demand Estimation, First-Stage

(1) (2) (3) (4)

∆ln(Lh
i ) ∆ln(Ll

i) ∆ln(Lh
i ) ∆ln(Ll

i)

∆Bh
i /L

h
i,2000 0.097*** 0.006 0.094*** 0.004

(0.009) (0.003) (0.009) (0.003)

∆Bl
i/L

l
i,2000 -0.062*** 0.050*** -0.087*** 0.052***

(0.013) (0.014) (0.026) (0.023)

2nd-Stage Dep. Var. ∆ln(wh
i ) ∆ln(wh

i ) ∆ln(wl
i) ∆ln(wl

i)

Kleibergen-Paap F-Statistic 9.6 9.6 4.4 4.4

Observations 35,918 35,918 32,539 32,539

Notes: Table A.3 shows the first-stage results for the labor demand estimation. Columns (1) and (2) show

the first-stage where the outcome of the second-stage are high-skilled wages. Columns (3) and (4) show the

first-stage where the outcome of the second-stage are low-skilled wages. The standard errors are clustered

at the level of 401 districts.

B Additional Details on the Data

B.1 Area Available for Wind Turbines (Placebo Check)

I construct the share of land within three kilometers of a neighborhood that is theoretically

available for wind turbine construction. The variation serves two purposes. First, I use

it as a placebo check, to confirm that changes in wind power density do not affect the

outcome variables for neighborhood where wind turbine development is physically impossible

or forbidden. Second, I interact the variation in land available with changes in wind power

density to increase the power of my instrument.

To make the placebo check useful, I make sure to only exclude areas where wind turbine

development is definitely impossible. First, I obtain data on land use in Germany in 1990,

before the start of wind turbine development, from the German Federal Environment Agency.
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I exclude urban areas (CLC codes 111 and 112), industrial areas (121), road infrastructure

(122), green urban araes (141) and sport and leisure facilities (142). Moreover, I exclude 400

meter bands around urban areas (CLC codes 111 and 112) as minimum required distance

between residential areas and wind turbine development. Minimum distance rules have

changed over time, and are heterogeneous across German states. I decide to take 400 metersas

it is the bare minimum enacted by the vast majority of states (FA Wind, 2022).13 Moreover,

I exclude all water bodies (CLC codes starting with 4 or 5).

Secondly, I obtain maps on conservation areas from Germany’s Federal Agency for Na-

ture Conservation. In line with the placebo argument, I only exclude conservation areas

where turbine development is strictly or almost always prohibited. Following a report by

the German Federal Environment Agency (2013) on the availability of land for wind energy,

I exclude nature reserves (Naturschutzgebiete, § 23 BNatSchG), national parks and monu-

ments (Nationalparke und Nationale Naturmonumente, § 24 BNatSchG), the core areas of

bioshphere reserves (Kern- und Pflegezone der Biosphärenreservate, § 25 BNatSchG), flora

and fauna protection areas (FFH Gebiete), and wetlands basd on the RAMSAR convention

(RAMSAR Feuchtgebiete).

B.2 Commuting Times

To calibrate commuting costs in the model, I calculate the approximate travel times τni

for all neighborhood pairs ni. Since there are 133,339 neighborhoods and more than 1010

pairs, I simplify the problem as follows: for neighborhood pairs in different municipalities, I

approximate the travel time by using the travel time between population-weighted centroids

of both municipalities. I calculate these travel times using data from OpenStreetMap and

the routing algorithm developed by Huber and Rust (2016). For neighborhood pairs within

the same municipality, I calculate the distance as-the-crow-flies and translate distances to

travel times by assuming a commuting speed of 50 kilometers per hour.

To estimate the commuting gravity equation (for which I draw on district pair level

commuter shares), I aggregate travel times at the district pair level by taking the population-

weighted average of the travel times across all municipality pairs within the district pair.

1313 out of 16 states have minimum distance rules of at least 400 meter. Bavaria has a minimum distance
rule equal to the height of the turbine times factor ten, which in practice is always larger than 400 meter.
Baden-Württemberg and the Saarland use case-by-case minimum distance rules.
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B.3 Commuter Data

In Section 5.2, I estimate the commuting cost semi-elasticity using a commuting gravity

equation. To do so, I draw on individual level data from the SIAB, a two percent random

sample of workers in the IEB. I restrict the sample to all individuals between 25 and 65

years. Moreover, I follow Monte et al. (2018) and exclude all commutes longer than 120

kilometersone-way. These commutes are likely to arise from measurement error in the data.

For example, when I plot commuting share against distance the relationship is clearly nega-

tive below 120 kilometer, suggesting that residents dislike longer commuters, but turns flat

for commutes above 120 kilometer. Finally, I calculate the mean commuting shares over the

entire sample period, 2000 to 2017, to reduce year-to-year measurement error and improve

the reliability of the data.

B.4 Migration Data

In Section 5.2, I estimate the the labor demand elasticities using a shift-share design exploit-

ing the geographic distribution of migrants of different origin across Germany at baseline

and national trends in migration over the sample period.

Specifically, I calculate the shift share instrument

∆Bθ
i =

∑

g∈G

(
Rθ

g,2017,−i −Rθ
g,2000,−i

)
·
Rig,2000

Rg,2000

(26)

where Rθ
g,2017,−i − Rθ

g,2000,−i is the national change in immigrants of skill θ from country

group g between 2000 and 2017, leaving out migrants to i to avoid a mechanic effect, and

Rig,2000/Rg,2000 is the share of immigrants of group g that live in i among all immigrants of

group g in Germany.

As the groups g ∈ G, I use the following six country groups (determined by the GridAB

data). West-European and North American countries (Austria, Belgium, Canada, Denmark,

Finland, France, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portu-

gal, Spain, Sweden, Switzerland, United Kingdom, United States), East European countries

based on the expansion of the European Union in 2004 (Cyprus, Czech Republic, Estonia,

Hungary, Latvia, Lithuania, Malta, Poland, Slovakia, Slovenia), East European countries

57



based on the expansion of the European Union in 2007 and later (Bulgaria, Croatia, Ro-

mania), Balkan countries not in the European Union (Albania, Bosnia and Herzegovina,

Serbia and Montenegro, Macedonia, Kosovo), ex-Soviet countries (Armenia, Azerbaijan, Be-

larus, Kazakhstan, Kirghistan, Moldavia, Russia, Tajikistan, Turkmenistan, Uzbekistan,

Ukraine, Georgia), and countries that are historic origins of the refugee population in Ger-

many (Afghanistan, Eritrea, Iraq, Iran, Nigeria, Pakistan, Somalia, Syria).

I obtain the migration distribution at baseline Rig,2000/Rg,2000 from the GridAB data. For

the national trends Rθ
g,2017,−i−Rθ

g,2000,−i, I use individual data from the SIAB. I define high-

skilled individuals as those with college education, and low-skilled individuals as everyone

else. Since the SIAB is a 2 percent sample, I multiply the numbers with 50 to obtain the

total number of residents from each country. I aggregate the numbers by the origin groups

of the GridAB data, and calculate the national change in migrants in each origin group

between 2000 and 2017. To avoid any mechanic positive correlation, I subtract the number

of residents of the specific origin country group in each neighborhood when constructing the

nationwide trends.

C Additional Details on the Model Inversion

C.1 Adjusted Wages

In the first step, I use the commuter market clearing, data on residents Rθ
n, workers R

θ
n and

estimated commuting costs information on dθni as well as the parameter κθ to infer adjusted

wages wθ
n. Specifically, the model implies the following commuter market clearing.

Lθ
i =

N∑

i=1

(
wi/d

θ
ni

)κθ

∑N
s=1 (ws/dθns)

κθ
Rθ

n (27)

Workplaces with zero employment (Lθ
i ) have zero adjusted wages. For the rest of locations

with strictly positive employment, Section S.3.1.1 in the Online Appendix of Ahlfeldt et al.

(2015) shows that the recovered wages are unique (up to a normalization).
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C.2 Adjusted Amenities

In the second step, I use the location choice Equation (7) and data on residents Rθ
n, house

prices Qn, adjusted wages wθ
n and estimated commuting costs dθni as well as the parameters

κθ and αθ to infer adjusted amenities Aθ
n. From the location choice equation, we have

λθ
ni =

(
Aθ

nw
θ

i

dθ
ni
Qαθ

n

)κθ

∑N
r=1

∑N
s=1

(
Aθ

rw
θ
s

dθrsQ
αθ

r

)κθ
(28)

Summing across workplaces, solving for Aθ
n, and dividing by the same equation for the

first equation yields

Ãθ
n =

(
R̃θ

n

)1/κθ

Q̃αθ

n /W̃ θ
n (29)

where X̃n = Xn/X1 and Wn =
∑

i w
θ
i /d

θ
ni. From this mapping, one can calculate the

unique (up to a normalization) vector Ãθ
n. With further information on βθ and Tn, one can

further infer fundamental amenities ãθn.

C.3 Productivity Fundamentals

In the third step, I use the labor demand Equations (9) and (10), data on employment Lθ
i , and

the labor demand elasticities γhh, γhl, γlh, and γll to infer adjusted productivity fundamentals

zθn. Solving the labor demand equations for productivity, we obtain high-skilled fundamental

productivity

zhi = ln(wh
i )− γhhln(Lh

i ) + γlhln(Ll
i) (30)

and low-skilled fundamental productivity

zli = ln(wl
i)− γhlln(Lh

i ) + γllln(Ll
i) (31)
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When employment of both types is zero, I assume a fundamental productivity of zero.

When employment of one type is zero, I add 10−6, to calculate approximate productivity.

With these additions, the inferred vector of fundamental productivity are unique.

C.4 Housing Fundamentals

In the fourth step, I use data on adjusted wages and commuting costs to calculate adjusted

income

v̄θn =
∑

i∈N

λθ
ni|nw

θ
i =

∑

i∈N

(
wθ

i /d
θ
ni

)κθ

∑
s∈N (wθ

s/d
θ
ns)

κθ
wθ

i (32)

Then, I use the housing market clearing in Equation (15), data on house prices, residents,

and income and the estimated housing supply elasticities ηn to solve for housing fundamentals

H̄n. Specifically,

H̄n =
Rh

nv̄
h
nα

h +Rl
nv̄

l
nα

l

Q1+ηn
n

(33)

yields the unique housing fundamentals H̄n.

D Additional Details on Turbine Scenarios

D.1 Cost Benefit

While the quantified model suggests large costs for residents, there are also important benefits

of wind energy that are outside of the model. First, wind energy is Germany’s largest source

of electricity, and it is becoming increasingly cheap. Second, wind energy avoids greenhouse

gas emissions and mitigates climate change. Third, wind energy avoids the air pollution

costs that come from fossil sources such as coal energy. I discuss these three benefits in turn.

First, wind energy is Germany’s largest source of electricity and it is getting increas-

ingly cheap. Figure 1 in the Appendix reports projections on the levelized cost of electricity
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(LCOE)14 of different types of energy reported by DNV (2023). While wind energy has

historically been more expensive than fossil sources, advances in turbine technology have de-

creased its price substantially. An onshore wind turbine installed in 2022 provides electricity

for 49 USD per MWh, compared to coal, gas, and nuclear electricity provided at around 75

USD. Multiplying the price difference by total electricity produced by onshore wind energy

in 2022, about 99 TWh, saves 2.6 billion USD, or about 0.07 percent of GDP. By 2050, the

LCOE is projected to fall to 27 USD, while the LCOE of coal, the source that is most likely

to be replaced by wind energy, will increase to around 125 USD. Given this cost differential,

wind energy production of 99 TWh may save up to 9.7 billion USD, or about 0.26 percent

of GDP.

Secondly, Germany wind energy replaces fossil sources of energy and leads to lower emis-

sions. The German Environment Agency estimates that onshore wind energy production

in 2018 decreased emissions by 63 million CO2 equivalent tons (Umweltbundesamt, 2019).

Moreover, the agency estimates welfare benefits between 207 USD and 721 USD per avoided

ton of CO2 (Federal Environment Agency, 2020).15 Together with the total emissions es-

timates, the price implies that onshore wind energy production in 2018 increased welfare

by between 0.35 and 1.22 percent. Nevertheless, there is substantial methodological uncer-

tainty around pricing the welfare costs of Carbon emissions, and previous estimates have

often seen upward corrections over time. For example, a special report of the Intergovern-

mental Panel on Climate Change suggests that limiting global warming to 1.5 degrees above

pre-industrial temperatures would require a social of cost of carbon between 135 USD and

5500 USD (IPCC, 2018). This wider range of estimates implies that onshore wind energy

production in 2018 increased welfare by between 0.23 and 9.39 percent.

Thirdly, electricity production from wind energy avoids air pollution that fossil sources

of energy create. The reduced air pollution following the German phaseout of coal energy is

estimated to increase welfare by about 0.12 percent (Böhringer and Rosendahl, 2022).

The discussion suggests that there is meaningful methodological uncertainty around the

benefits of wind energy. Nevertheless, the estimates imply that the benefits are very likely

to be larger than the residential costs estimated in this study, especially as the costs of wind

energy technology continue to fall, and as policy-makers are becoming more ambitious in

14The LCOE measures the net present cost of electricity of a plant installed in a given year, taking into
account the plant’s fixed and variable cost as well as the total electricity produced over its lifetime.

15The German Environment Agency reports benefits between 190 Euro and 680 Euro per ton of CO2
equivalents. I translate the costs to USD using the recent exchange rate of 1.06 USD per Euro (October
2023).
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their climate policies.

D.2 Minimization Problem

To find a low-cost alternative turbine distribution, I minimize the log-linearized first-order

welfare costs. Denote Υ0 short for the baseline wind turbine scenario (possibly, but not

necessarily, the absence of any wind turbines) and Υ1 short for the new distribution of

turbines {Tn}n, and denote [X]Υ0
and [X]Υ1

the outcome of a variableX under each scenario,

respectively.

For worker ω of type θ, who lives in n and works in i under Υ0, the log change in utility

is ln(
[
vθni(ω)

]
Υ0
)− ln(

[
vθni(ω)

]
Υ1
) where

vθni(ω) =
A

′θ
nw

′θ
i

dθniQ
αθ

n

εθni(ω) (34)

Since I am minimizing the first-order impact on residents, I assume that residents are

required to continue living in n and working in i, and hence [X]Υ0
= [X]Υ1

for all X except

Aθ
n. The minimization problem thus becomes

minimize
{Tn}n

N∑

n=1

µh
[
Rh

n

]
Υ0

ln

([
A

′h
n

]
Υ0

/[
A

′h
n

]
Υ1

)
+(1−µh)

[
Rl

n

]
Υ0

ln

([
A

′l
n

]
Υ0

/[
A

′l
n

]
Υ1

)

(35)

I set the relative weights µh and 1 − µh that the policy-maker places on the welfare of

high- and low-skilled residents equal, so that they scale total utility and do not affect the

solution of the minimiation problem. Next, note that

ln
(
A

′θ
n

)
= ln

(
a

′θ
n · exp

(
βθ · Tn

))
= ln

(
a

′θ
n

)
+ βθ · Tn =

{
ln
(
a

′θ
n

)
+ βθ · [Tn]Υ0

under Υ0

ln
(
a

′θ
n

)
+ βθ · [Tn]Υ1

under Υ1

(36)

and so the minimization problem simplifies to
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minimize
{Tn}n

N∑

n=1

(
βh ·

[
Rh

n

]
Υ0

+ βl ·
[
Rl

n

]
Υ0

)
·
(
[Tn]Υ1

− [Tn]Υ0

)
(37)

D.3 Areas Available for Wind Turbine Development

To identify potential areas for alternative wind turbine allocations, as well as areas for

future wind turbines, I draw on maps published by Agora Energiewende (2021), and the

accompanying method report (Reiner Lemoine Institute, 2022). The maps start with a base

map of Germany and exclude all areas in which wind turbine development is forbidden or

physically impossible. Table D.4 lists all excluded areas, as well as the buffer zone around

each area. The method report Reiner Lemoine Institute (2022) explains in detail why areas

are excluded, and links to further documentation on the legal regulation of wind turbine

development in each area type.

63



Table D.4: Areas Excluded from Wind Turbine Development - Scenarios

Area Excluded Buffer (in meter)

Settlements and Infrastructure:

Industrial parks Yes 0

Residential areas Yes Depends

Freeways Yes 40

Other roads Yes 20

Railroads Yes 50

Other train infrastructure Yes 0

Airports Yes 5000

Airfields Yes 1760

Power lines Yes 141

Military exclusion zones Yes 0

Aviation communication beacons Yes 3000

Environmental Protection Areas:

National parks Yes 0

Protected areas (Naturschutzgebiet) Yes 0

Bird protection areas Yes 0

Wetlands (Ramsar) Yes 0

Nature reserves (Biosphärenreservat, Kern- und Pflegezone) Yes 0

Protected areas (Landschaftsschutzgebiet) Depends 0

Fauna and flora habitats (FFH) Yes 0

Drinking water protection areas Yes 0

Other Areas:

Forests Depends 0

Water bodies, standing Yes 5

Water bodies, running Yes 50

Flood plains Yes 0

Steep terrain (slope larger than 30 degrees) Yes 0

Notes: The table shows all areas that are excluded from wind turbine development. For further details, see

Reiner Lemoine Institute (2022).
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D.4 Compensatory Transfers

The goal is to find compensatory transfers {τ θn}n and a uniform tax τ θ that allow the social

planner to implement any allocation of wind turbines without changing the relative welfare

across locations. Again denote Υ0short for the baseline wind turbine scenario and Υ1 short

for new distribution of wind turbines {Tn}n, and denote [X]Υ0
and [X]Υ1

the outcome of

a variable X under each scenario, respectively. The proportional tax τ θn = 1/exp(−βθ ·

([Tn]Υ1
− [Tn]Υ0

)) compensates residents and preserves the relative welfare in all locations

since

τ θn ·
[
A

′θ
n

]
Υ1

=

[
A

′θ
n

]
Υ1

exp
(
−βθ · ([Tn]Υ1

− [Tn]Υ0
)
) = a

′θ
n ·

exp
(
−βθ · [Tn]Υ1

)

exp
(
−βθ · ([Tn]Υ1

− [Tn]Υ0
)
) =

[
A

′θ
n

]
Υ0

(38)

Moreover, since the financing tax τ θ is the same for all neighborhoods, the relative or-

dering of neighborhoods is preserved for all individuals. τ θ balances the budget if

N∑

n=1

N∑

i=1

λθ
ni · w

′θ
i · τ θ =

N∑

n=1

N∑

i=1

λθ
ni · w

′θ
i · τ θn (39)

and, substituting in τ θn and solving for τ θ,

τ θ =

∑N
n=1

∑N
i=1 λ

θ
ni · w

′θ
i∑N

n=1

∑N
i=1 λ

θ
ni · w

′θ
i · exp

(
−βθ · ([Tn]Υ1

− [Tn]Υ0
)
) (40)

Finally, since the taxes that preserve relative welfare are proportional, the absolute taxes

depend on the income in the neighborhood. Specifically, the total absolute payment that a

neighborhood receive is

πn =
∑

θ∈{h,l}

Rθ
n · v

θ
n · (τ

θ
n − τ θ) (41)

where income is vθn =
∑N

i=1 λ
θ
ni|n · w

′θ
i
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