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Abstract

Renewable energy has enormous welfare potential. Yet development around the world remains slow,
in part because residents protest the amenity impacts of wind and solar parks. Using fine data from
Germany and an instrumental variable strategy that exploits technology-induced changes in wind energy
suitability, I infer residents’ revealed preferences against wind turbines from observed changes in house
prices, population, and income. I embed the estimated preferences in a quantitative spatial general
equilibrium model and use it to evaluate Germany’s renewable energy policy between 2000 and 2045.
Wind energy has large local costs that can be substantially reduced if policy-makers take residents’
preferences into account. I provide an turbine allocation that saves 3 billion USD relative to a business-as-
usual scenario and estimate budget-balanced transfers that allow policy-makers to compensate residents

and incentivize turbine development.
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1 Introduction

Renewable energy is becoming increasingly cheap. As the cost of wind and solar energy
continue to fall, Arkolakis and Walsh (2023) estimate that both sources may account for
70 percent of global electricity production by 2040, reducing electricity prices by half and
increasing welfare by 4.6 percent. Relative to these benefits, the development of renewable
energy is slow. Local residents often object to the installation of wind turbines, solar parks,
and transmission lines (Economist, 2021, New York Times, 2022), and their resistance re-
mains a key obstacle to a rapid energy transition (Jarvis, 2022). Against this backdrop, it
is important to understand the costs that residents face, the welfare trade-offs involved and

their implications in the climate transition.

Quantifying the impact of renewable energy infrastructure on residents’ welfare is chal-
lenging. Anecdotally, residents are concerned about visual impacts, noise pollution, and
potential adverse health effects, but how much these concerns affect their utility is unob-
served. To overcome the challenge, I build a theory-consistent revealed preference argument

to infer residents’ welfare costs from changes in their observed behavior.

First, I develop a novel instrumental variable (IV) strategy that exploits technology-
induced changes in wind potential to predict which locations become more suitable for wind
energy over time. I use the IV and granular data from the wind energy expansion in Germany,
2000-2017, to show that wind turbine development leads to long-run decreases in house
prices and the share of college-educated residents in surrounding neighborhoods. Second,
I use a quantitative spatial location choice model to infer changes in local quality of life,
for example due to wind turbines, from changes in population, house prices, and income. I
combine the IV results and the model-implied mapping to estimate residents’” willingness-to-
pay to avoid wind turbines in their neighborhood. The model allows residents to adapt, for
example through sorting, and housing and labor markets to respond in general equilibrium.
Third, I use the model to evaluate Germany’s wind energy development policy for 2025-
2045. Specifically, I evaluate different scenarios that can achieve Germany’s climate goals,
evaluate the aggregate and redistributive welfare costs of the development plans laid out in
the Onshore Wind Act enacted in 2023, and estimate budget-balanced transfers that allow

the policymaker to achieve a low-cost transition while compensating affected residents.

Wind energy in Germany is an ideal empirical setting. First, the country is an early
adopter of wind energy which allows to study its long-run consequences. Since the early

2000s Germany has heavily subsidized wind energy, and today wind energy is Germany’s



largest source of electricity, producing 32.2 percent of the national mix (German Federal
Statistical Office, 2023).! Second, the context highlights the challenges that residents and
policy-makers face as wind energy becomes a prominent energy source. The country operates
a staggering 28,000 wind turbines, of which 97 percent are located within two kilometers of
residential population. Residents’ objections and local policy-makers’ attempts to restrict
turbine development close to residences are ubiquitous themes in the German energy transi-
tion, and they are likely to have contributed to the recent slowdown in turbine development.
Third, Germany has ambitious wind development goals that are threatened by residents’
concerns. The federal government plans to double wind energy capacity until 2030, which
may require the installation of an additional 25,000 wind turbines. Understanding the costs

for residents and how to mitigate them is decisive for a successful energy transition.

Throughout the empirical analysis, I draw on a unique data set that links turbine con-
struction, house prices, population, income, employment, and wage data for the universe
of German neighborhoods at 1-by-1 kilometer resolution. The information on population,
income, employment, and wages stems from restricted-access social security data hosted by
the Institute for Employment Research in Nuremberg, Germany. It is constructed from the
universe of employees covered by German social security, approximately 40 million workers
annually. To construct the local house price index, I leverage geo-located information on 35
million houses and flats offered on Germany’s largest online real estate platform. I collect
the data for the years 2000 to 2017 (except house prices which are available from 2007),

covering the key period of the German expansion in wind energy.

In the first part of the paper, I provide systematic evidence that wind turbine development
decreases house prices and the share of high-skilled residents in surrounding neighborhoods.
I develop a novel IV strategy that exploits how changes in technology interact with local
wind conditions, making some neighborhoods more attractive for wind energy over time than
others. Specifically, wind turbines have become taller over time, from 71 meters in 2000 to
127 meters in 2017. Wind conditions are better high above the ground, though how much
a neighborhood benefits depends on the topography around it. High terrain ruggedness
upwind of the neighborhood, for example due to hills, blocks wind speeds closer to the
ground, leading to a larger vertical dispersion of wind speeds, see Figure 4 for an illustration.
In these neighborhoods, turbine development becomes disproportionally more attractive as

wind turbine heights increase. I show that the implied changes in wind energy suitability

n the first quarter of 2023, wind energy contributed 32.2 percent of electricity, ahead of coal (30 percent),
natural gas (14.6 percent), biogas (5.5 percent), solar (4.9 percent), and nuclear energy (4.3 percent). In
2021 and 2022, two years with weaker wind conditions, coal was the largest source, in 2020 wind was ahead.



strongly predict turbine development. Comparing neighborhoods that are relatively close
and have similar geography, I use the IV strategy to estimate the long-run effect of turbine

development on surrounding neighborhoods.

Wind turbine development has important local costs. I find that the construction of an
additional wind turbine within three kilometers of a neighborhood reduces house prices by
2.1 percent. As neighborhoods become less attractive, high-skilled residents with college-
education move away. For each additional wind turbine, the share of high-skilled residents

decreases by 0.6 percentage points.

In the second part of the paper, I use a revealed preference argument to quantify the first-
order impact of wind turbines on residents’ welfare. I build on the formulation of residents’
location choice in the standard quantitative urban model (Ahlfeldt et al., 2015). I show that
the models imply a mapping between changes in local quality of life, for example due to wind
turbines, and changes in population, house prices, and income. Intuitively, if real income
increases, for example due to lower house prices, and yet residents move away, by revealed
preference the neighborhood must have become less attractive. Combining the mapping and
my [V strategy, I show that high-skilled and low-skilled residents would be willing to pay 0.9
and 0.6 percent of their income, respectively, if they could avoid an additional wind turbine
within three kilometers of their residence. Then, I embed the preferences in a quantitative
spatial general equilibrium model. In the model, wind turbines decrease local quality of
life, henceforth referred to as amenities. Residents choose where to live and where to work
given amenities, house prices, wages, and commuting costs (as in Ahlfeldt et al., 2015).
To capture residential sorting, I model residents as either high- or low-skilled (similar to
Tsivanidis, 2023). Labor demand flexibly allows for substitution and productivity spillovers
across skill types (following Diamond, 2016), and housing supply is inelastic with a supply

elasticity that depends on local land constraints (following Saiz, 2010).

I estimate the model for 133,339 neighborhoods at 1-by-1 kilometer resolution. To make
the estimation computationally feasible, I allow individuals to choose any neighborhood as
their residence, but restrict that they can only commute to workplaces in the neighborhood’s
labor market, which allows me to invert and solve the model as a series of smaller block
matrices. [ calibrate the key parameter, residents’ preference against wind turbines, from
the willingness-to-pay estimated using the model-consistent amenity mapping and the IV

strategy.

To understand the trade-offs involved in allocating renewable energy infrastructure, I un-



dertake three main counterfactuals. In the first, I counterfactually remove all wind turbines,
solve for the distribution of population and prices in absence of wind turbines and compare
them to the equilibrium observed in the data. I find that the local costs of wind turbines are
large, about 0.45 percent of welfare, and locally dispersed with the biggest impacts in the
North and North-West of the country. While adaptation through residential sorting brings
down the cost from 0.56 to 0.45, the majority of residents remains in their neighborhoods,
highlighting the importance of the placement of wind turbines relative to the population

distribution.

In the second counterfactual, I therefore study how much alternative allocations of wind
turbines can reduce welfare costs. I distribute wind turbines in order to minimize the (first or-
der) costs for residents conditional on the aggregate electricity production target, local avail-
ability of land and wind energy potential, and interstate electricity transmission constraints.
I find that placing wind turbines closer to high-wind regions and away from residents, could
substantially bring down costs, by about a factor of seven. However, the distribution would

increase inequality across space, suggesting an equity-efficiency trade-off.

Finally, I evaluate Germany’s wind energy policy until 2045. I show how Germany can
achieve the targets in the Renewable Energy Act at 35 percent lower cost than under a
business-as-usual scenario and estimate budget-balanced transfers that compensate losing

regions and can help policymakers to incentivize wind energy development in the future.

The paper relates to several strands in the literature. Most directly, it connects to a large
literature that estimates the welfare costs of environmental disamenities, primarily focusing
on house prices as a revealed preference measure of decreased quality of life. Previous
papers have studied the impact of renewable energy infrastructure (Gibbons, 2015, Droes
and Koster, 2016, Sunak and Madlener, 2016, Frondel et al., 2019, Droes and Koster, 2021),
as well as other environmental disamenities (Chay and Greenstone, 2005, Greenstone and
Gallagher, 2008, Currie et al., 2015). I make four contributions. First, studies on wind
turbines commonly use difference-in-difference and event-study methods, and find a wide
range of house price effects between -1.6 and -14.0 percent. I develop a novel IV strategy
that exploits geographic and time variation in local suitability for wind energy, and find a
per turbine effect of -2.1 and a total effect of -6.3 percent for the median neighborhood. The
results confirm the previous results qualitatively and point to effect sizes in the lower half of

the distribution. Second, I use a location choice model to infer the implied welfare costs.? I

ZHere, 1 also relate to Bartik et al. (2019) and Brinkman and Lin (2022) use the same class of location
choice models to infer the amenity costs of fracking and freeway construction, respectively. Compared to



show that ignoring population and income responses would lead to an underestimation of the
amenity cost of wind turbines by 41.7 percent for low-skilled and by 65.5 percent for high-
skilled residents. Third, I embed the the amenity costs in a quantitative spatial model to
understand the welfare costs in general equilibrium, and to show that alternative allocations
of wind turbines may achieve the same electricity production while reducing welfare costs

by almost an order of magnitude.

Secondly, the paper connects to a growing literature that uses quantitative spatial general
equilibrium models to study the geographic implications of climate change. A large share
of the literature focuses on adaptation to climate change. Previous papers study where
individuals move in response to higher temperatures and rising sea levels (Conte, 2022;
Cruz and Rossi-Hansberg, 2022; Bilal and Rossi-Hansberg, 2023), how firms diversify their
production network in response to increasing risk of natural disasters (Castro-Vincenzi, 2022;
Balboni et al., 2023), and how countries adapt to a warming world by specializing in the
sector of their comparative advantage (Conte et al., 2021; Nath, 2022). I contribute to a
small but growing literature that focuses on climate change mitigation (Conte et al., 2022;
Arkolakis and Walsh, 2023). The implications of climate change mitigation are particularly
policy-relevant because they can inform current efforts to reduce emissions and reduce the
welfare costs that will eventually arise as individuals, firms, and countries have to adapt to
a warming world. Most closely related to me are Arkolakis and Walsh (2023) who integrate
renewable energy production into a spatial growth model to measure the welfare effects of
increasingly cheap electricity. Their paper abstracts from the negative externalities that
renewable energy infrastructure creates for residents. My paper shows that local costs are
quantitatively important for aggregate welfare and the optimal allocation of renewable energy
production. I also complement Balboni (2021) and Hsiao (2023) who study the optimal
allocation of infrastructure, roads and seawalls respectively, in response to rising sea levels.
I study optimal infrastructure allocation of renewable energy production, a policy to reduce

emissions and limit damages before they arise.

2 Background

Climate change and the rise of renewable energy. Climate change is caused by
the emission of greenhouse gases (GHGs) into the atmosphere. In the Paris Agreement in

2015 the international community declared its goal to reduce net GHG emissions to zero

them, I contribute by estimating the amenity costs separately for high- and low-skilled residents.



Figure 1: Projection Cost of Electricity by Energy Source (in USD/MWh)
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Notes: Figure 1 shows projections of the levelized cost of electricity (in USD/MWh) for coal, gas, nuclear,
hydro, solar, onshore wind, fixed offshore, and floating offshore wind energy. Source: Energy Transition
Outlook 2023 (DNV, 2023).

by 2050 in order to limit global warming relative to pre-industrial temperature levels to a
maximum of 2°C" and ideally to 1.5°C. One of the largest contributors to emissions is heat
and electricity production from fossil fuels. Renewable sources of energy, such as wind, solar,
hydro, and geothermal energy are sustainable alternatives. Especially, wind and solar energy
are becoming increasingly prevalent as technological advances cut down their costs. Figure
1 shows the evolution of electricity costs by source. Costs are shown for the period 2010 to
2050 as estimated in the Energy Transition Outlook (DNV, 2023). The estimates report the
levelized cost of electricity (LCOE), a standard measure that calculates the net present cost
of electricity of a plant installed in a given year, taking into account the plant’s fixed and

variable cost as well as the total electricity produced over its lifetime.

The costs of wind and solar energy have fallen sharply between 2010 and 2020. Today,
both sources are cheaper than traditional sources such as coal, gas or nuclear energy. In
2022, a newly installed wind turbine produces electricity at 49 USD/MWh, while newly
installed fossil and nuclear plants produce electricity at around 75 USD/MWh (DNV, 2023).
Moreover, the price of wind energy is projected to fall to 27 USD/MWh by 2050, while the

cost of gas and nuclear stays constant, and the price of coal is projected to sharply increase.

As a result, wind and solar energy are becoming increasingly present. Figure 2 reports
the evolution of the global electricity mix between 1990 and 2050. Electricity production
from 2023 onward is based on projections in the Energy Transition Outlook (DNV, 2023).



Figure 2: Projection Electricity Production by Energy Source (in billion MWh)
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Notes: Figure 2 shows projections of global electricity production (in billion MWh) for wind, solar, other

renewables, coal and oil, gas, and nuclear energy. Source: Own calculation based on the Energy Transition
Outlook 2023 (DNV, 2023).

Between 2000 and 2010, electricity production from wind energy grew by 454 percent, and
its contribution to the global mix grew from 1.6 to 6.0 percent. By 2050, the report expects
the share of wind energy in global electricity to grow to 30 percent, and for solar and wind
energy together to account for 69 percent. Arkolakis and Walsh (2023) find that by 2040,

solar and wind energy will account for 50 to 70 percent of global electricity production.

Wind energy in Germany. Systematic wind development in Germany began in the
mid 1990s. From the early 2000s the government heavily subsidized turbine development
through feed-in-tariffs. Today, wind energy, alongside with coal, is Germany’s largest source
of electricity. In the first quarter of 2023, wind energy contributed 32.2 percent (German
Federal Statistical Office, 2023).

Wind energy can be produced by wind turbines at land ("onshore”) and at sea (”off-
shore”). In Germany, approximately 87 percent of wind energy are produced at land. In
2022, Germany operated 28,443 wind turbines at land. Due to the high population den-

sity of the country, 97 percent of turbines are located within two kilometers of residential
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population.

Impact of wind turbines on residential amenities. The two primary channels
through which wind turbines may affect residential amenities are visual and sound pollution.
Modern wind turbines are up to 200 meters high with rotor blades up to 75 meters long.
Exploiting that wind turbines are visible for some residents but not for others due to the
terrain, for example hills between residents and the turbine, Gibbons (2015) shows that a
wind turbine reduces house prices by 6.5 percent within one kilometer and between 5.5 and
6 percent within two kilometers. The results suggest that the visual impact of turbines is

important for residential amenities.

A second concern is that the rotation of wind turbines’ blades produces noise and in-
frasound that are negatively perceived by residents. The noise effects of turbines are very
localized. At a distance of 500 meters, turbines can be heard at about 45 decibel, comparable
to the noise that light car traffic generates for residents at a street. After 500 meters, the
noise level declines rapidly. This suggests that the disamenity effect of noise is relatively
low. Residents have also complained about infrasound, low frequency sound that cannot be
perceived by the human ear, claiming that it disrupts their sleep and causes stress. The
medical literature is mostly doubtful of the health effects of infrasound. However, even the
belief in adverse health effects may harm sleep quality and induce stress. Zou (2020) shows

that wind turbines decrease self-reported sleep quality and may even increase suicide rates.

Development plans until 2030. Germany has ambitious goals for the further devel-
opment of wind energy. With the 2021 Climate Act Germany is bound to reduce its GHG
emissions by 65 percent until 2030 (relative to 1990 emission levels) and to achieve climate
neutrality by 2045. As part of the legislation, the government plans to provide 80 percent of
gross electricity consumption in 2030 from renewable sources. Figure A.1 in the Appendix
shows the explicit capacity development goal that the government has given out for wind

and solar energy as well as the evolution of the electricity mix in the past.

For wind energy at land, the law requires that capacity grows approximately 98 percent
from 58 GW in 2022 to 115 GW in 2030. Despite the expected growth in turbine efficiency,
the capacity goal requires an enormous speed-up in the number of wind turbines constructed
per year. Figure A.2 in the Appendix shows the net number of wind turbines installed each

year as well as the turbines required to reach the 2030 goal.®> On average, Germany would

3The Climate Act specifies only the wind energy capacity in 2030, not the number of wind turbines. To
translate capacity into the number of turbines needed, I assume that capacity per turbine grows linear (as
it did between 2000 and 2022) and that Germany adds an equal number of wind turbines each year.



have to add about 2200 wind turbines per year, more than were installed in any year in the

past two decades.

The ambitious goals are in stark contrast to the recent slowdown in turbine develop-
ment. Between 2017 and 2022 the number of active wind turbines decreased from 28,675 to
28,443 turbines. Because today’s turbines are more efficient than the older models that are

deinstalled, total capacity is still growing but more slowly than ever before.

The central reason for the slowdown in turbine construction is that there is not enough
area for new constructions (Wind, 2023). Since 2017 various states have enacted minimum
distance rules that forbid turbine construction close to residential population. Minimum
distance rules vary across states, ranging from 500 to 1500 meters. Conservation, for example

to protect birds, and construction regulation at the local level further amplify the problem.

3 Data

This section describes the main data used in the analysis. Details on the construction of

variables and further information on auxiliary data can be found in Appendix B.

In brief, I divide Germany into 133,339 populated 1-by-1 kilometer cells and collect
information on wind turbines, house prices, residential and workplace population and wages
at this level. With the exception of house prices (which are available from 2007), I collect
all data between 2000 and 2017. T add cross-sectional information on wind conditions and

other geographic variables.

Geographic unit of analysis. As the unit of analysis, I choose the 1-by-1 kilometer
grid cell level. The cells are delineated using the European cartography standard INSPIRE.
Compared to administrative units such as municipalities, the grid cells are considerably finer
and have consistent shape and size. For the analysis this is important because wind turbines
are likely to have local effects and may lead to substantial within-municipality residential

sorting across neighborhoods that an analysis at a coarser level would mask.

Sample. The base sample consists of 133,339 grid cells in contiguous Germany that have

positive residential or workplace population.* 92 percent of cells have positive population,

4Residential and workplace population are measured from the Integrated Employment Biographies. The
data includes the universe of all employees in Germany, excluding civil servants and self-employed. To
preserve anonymity of the population in smaller cells, the base sample only includes cells with at least ten



Figure 3: Wind Turbines
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Notes: Figure 3 shows the distribution of wind turbines installed in 2000 and 2017, respectively. For
reference, the wind power density (in kg/s%) at 100 meters above ground is shown in blue. Wind power
density is grouped into quintiles. Dark blue indicates strong winds, light blue indicates weak winds. Source:
Own calculation using data on wind turbines from The Wind Power and data on wind power density from
the Global Wind Atlas.

49 percent have positive employment, and 45 percent have both positive population and

employment. I refer to all cells as neighborhoods.

Wind Turbines. The data on onshore wind turbines stems from Eichhorn et al. (2019)
who collect and systematize the information from the authorities of the federal states in
Germany. Most importantly, the data comes with the coordinates and the construction year
of each turbine. Since the data only includes wind turbines built until 2015, for the years
2016 and 2017 I complement the data with information from the wind energy intelligence
company The Wind Power. Figure 3 shows the distribution of wind turbines in Germany

in 2000, the start of my sample period, and in 2017, the end of the sample period.

residents or ten employees in all years between 2000 and 2017. Nevertheless, in 2017 the base sample captures
98.4 percent of total residential population and 97.8 percent of total workplace population.
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House prices. I construct a quality-adjusted house price index using object level data
from Germany’s largest online real estate platform ImmobilienScout24. The data has been
previously used in Economics research; a detailed description can be found in Schaffner
(2020). Due to the website’s start year, the data is only available from 2007. Over the
sample period, the website listed more than 35 million houses and flats. Each listing comes
with information on the asking price, the date of the ad, the object’s location, and a rich
set of object characteristics. To obtain the quality-adjusted house price index, I residualize
the rental price per square meter on a flexible function of these characteristics, and calculate
the average residual house price in the neighborhood. Since the number of listings each year

varies especially for smaller neighborhoods, I take a three year rolling window average.

Residents, workers, and wages. The data on the residential and workplace population
as well as workers’ wages in each neighborhood stems from the GridAB data provided by the
Institute for Employment Research (IAB). The GridAB draws on the Integrated Employment
Biographies (IEB), individual level social security data that cover close to the universe of

the German workforce, including approximately 40 million individuals every year.’

A neighborhood’s residential population is measured as the number of individuals in the
IEB that have their residential address in the neighborhood. Conversely, the workplace
population is measured as the number of individuals whose job address is located in the
neighborhood. Finally, I calculate wages as the average wage among all full-time workers
(not residents) in a neighborhood. To measure residential sorting, I obtain all variables
separately for college-educated residents and workers and those without college education.
Following the literature on residential sorting (for example Diamond, 2016), I refer to college-

educated as high-skilled and to individuals without college education as low-skilled.

Instrument data. To construct the instrument, I collect information on wind power
density at 50, 100, and 150 meters above ground from the Global Wind Atlas. I also obtain
information on the average turbine height for a wind turbine installed in a given year from
the company The Wind Power. Moreover, I collect geographic information on land use from
the German Environment Agency and on natural reserves from the German Federal Agency

for Nature Conservation.

°The data includes regular (full- or parttime) employees whose jobs are subject to social security con-
tributions, marginal employees whose jobs are not subject to social security contributions, individuals who
report seeking employment or who receive unemployment benefits. It excludes civil servants, self-employed,
and individuals outside of the labor force.
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4 Quasi-Experimental Evidence

4.1 Empirical Strategy

The goal of this section is to estimate the impact of wind turbine development on housing
prices and the residential composition of the surrounding neighborhood. Since households
may face short-term migration frictions that prevent them from reacting immediately to
the change in residential amenities, I focus on the long-term effects of turbine development.
Due to data availability, I use changes between 2007 and 2017 for house prices, and changes
between 2000 and 2017 for residential sorting and all other outcomes. Specifically, I am

interested in a causal estimate of 3 in the following specification.

Ay, =B AT, +¢, (1)

Where Ay, are long-run changes in the outcome variable, for example in house prices, in
neighborhood n and AT, is the number of wind turbines constructed over the same period.
Following previous studies that suggest that the cost of wind turbines, as measured by house
price changes, drops sharply at two to three kilometers (Gibbons, 2015, Drées and Koster,
2016, Sunak and Madlener, 2016), throughout the paper AT,, measures turbine construction

within three kilometers of neighborhood n.

The identification challenge in Equation (1) is that wind turbine development may be cor-
related with unobserved trends in the outcome variable €,,. On the demand side, politicians
may preferentially allow wind turbine development in regions where they expect electricity
demand to grow. On the supply side, wind turbine developers may avoid regions in which
they expect strong resistance from residents. To overcome the identification challenge, I
develop an instrumental variable (IV) strategy that exploits technology-induced changes in
wind turbine development that are arguably unrelated to confounding demand and supply

factors.

Instrumental variable strategy. The electricity production of a wind turbine depends
on local wind conditions, specifically the local wind power density. Local wind conditions
do not vary decisively over the years, and in my data they are cross-sectionally fixed. How-
ever, the effective wind power density that turbines reap has changed considerably due to

technology-induced increases in wind turbine height. Between 2000 and 2017, the average
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height of wind turbines has increased from 71 to 127 meters. Wind conditions are better
high above the ground, and for the average neighborhood in Germany, a typical® turbine
installed in 2017 would reap a wind power density that is 59 percent higher than a wind
turbine installed in 2000, simply due to the height increase.

I exploit that the common technology change has made some neighborhoods more attrac-
tive for wind energy than others because their vertical wind shear - how much cross-sectional
wind power density increases with turbine height above ground - is larger. The variation in
wind shear that I use arises from the direction of the wind and its interaction with elements
of rugged terrain, for example hills, that block the wind at lower heights and lead to larger
vertical wind shear up to ten kilometers downwind of the rugged terrain (Global Wind Atlas,
2023). Figure 4 illustrates the idea for two hypothetical neighborhoods A and B that are
separated by a hill. In the example, wind flows from West to East. The hill blocks the wind
at lower heights, leading to a higher vertical wind shear in neighborhood B on the east side
of the hill. As a consequence, wind turbine development becomes more attractive in village

B over time, relative to village A.

Construction of the instrument. I obtain cross-sectional data on wind power den-
sity from the Global Wind Atlas. The data is available at three heights, at 50, 100, and
150 metersabove ground. For heights in between, I calculate wind power density by linear
interpolation. Since I want to predict wind turbine development within three kilometers of a
neighborhood, I also calculate the average wind power density within three kilometers. Then,
I calculate the effective change in wind power density between 2000 and 2017 as the change
in wind power density between height 71 meter, the average height of a turbine installed in
2000, and height 127 meter, the average height of a turbine installed in 2017.

Figure 5 shows the resulting change in effective wind power density across all 1-by-1 kilo-
meter grid cells in Germany. Panel 5a reports the raw variation, Panel 5b reports the residual
variation that remains after controlling for district fixed effects as well as the neighborhood’s
altitude, ruggedness, slope, and the share of land used for buildings, agriculture, forests,
and water bodies. My empirical specification uses the residual variation. Importantly, the
district fixed effects ensure that I compare only neighborhoods relatively close to each other,
and the geographic controls ensure that I remove any variation in vertical wind shear that
arises from the neighborhood’s geography. The identifying variation, thus, comes from larger

scale wind patterns and their interaction with topography upwind of the neighborhood.

6T define a "typical” turbine in a year as one that is as tall as the average turbine installed in the year.
Figure A.3 in the Appendix plots the distribution of turbine heights in 2000 and 2017 and confirms that a
turbine of average height indeed represents a typical turbine.

13



Figure 4: Schematic Illustration of IV Strategy
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Notes: Figure 4 illustrates the idea of the IV strategy. It depicts two villages A and B, separated by a hill.
In the hypothetical example, wind flows from West to East. The wind is disrupted by the hill which leads
to higher vertical wind shear on the right side of the hill. Since wind turbines become taller over time - from
71 meters in 2000 to 127 meters in 2017 - effective wind power density accessible for a turbine installed in
a given year increases over time. As a consequence, wind turbine development becomes more attractive in
village B over time, relative to village A.

Secondly, I construct the share of land within three kilometers of each neighborhood
that is available for wind turbine development. I use this variation as a placebo check as
changes in wind power density should not affect wind turbine development in places where
no turbines can be constructed, for example a densely built city like Berlin. Moreover, I
interact changes in wind power density with the share of land available for wind energy as

it increases the precision of the IV estimates.

To construct the share of land available, I obtain high-resolution data on built areas and
water bodies, where turbine construction is physically impossible, and on conservation zones
that forbid wind turbine development. I also exclude 400 metersbands around urban areas
accounting for the legally mandated minimum distance between residential areas and wind

turbine development. Section B.1 in the Appendix provides additional details.

IV specification. I estimate the following specification,

14



Figure 5: Change in Wind Power Density, 2000-2017

(a) Raw Variation (b) Residual Variation

B 154 - 186
W 186 - 223
| EFrE]

Notes: Figure 5 shows the effective change in wind power density (in kg/s) between 2000 and 2017 that
occurs due to increases in turbine heights. Wind power density in 2000 is measured as cross-sectional wind
power density at 71 meters, the average height of turbines installed in 2000. Analogously, wind power density
in 2017 is measured at 127 meters, the average height of turbines installed in 2017. Panel 5a shows the raw
variation. Panel 5bb shows the residual variation in wind power density changes that remains after controlling
for district fixed effects as well as geographic characteristics including altitude, terrain ruggedness, slope and
the share of land that is covered by buildings, agriculture, forests, and water. The variation is grouped into
quintiles. Dark blue indicates large changes, light blue indicates small changes. Source: Own calculation
based on wind power density data from the Global Wind Atlas.

where Ay, is the change in an outcome variable, AT, is the number of wind turbines
constructed over the same period as predicted from the corresponding first-stage regression
in Equation (3), X,, is a vector of geographic controls including altitude, ruggedness, slope,
and the share of land used for built areas, agriculture, forests, and water bodies, and dg(n)

denotes district fixed effects. The corresponding first-stage is
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Where AW, is the change in wind power density over the period induced by the increase in
average national turbine height. In some specifications I add a second instrument AW,,S,,,
which is the interaction of changes in wind power density with the share of land that is
available for wind turbine development at baseline. The outcome, wind power density, and
turbine construction are measured as changes between 2000 and 2017, except when the
dependent variable is house prices, in which case all changes are measured between 2007 and

2017.

The parameter of interest is (3, the long-run effect of wind turbine development on the
outcome. The identifying assumption is Ele,|AW,, AW, S,, Xy, 04(m)] = 0 which holds if
changes in wind power density are quasi-randomnly assigned, conditional on all control vari-
ables. Since the estimation equation is in long differences, any (unobserved) time-invariant
variation is already differenced-out, so that any correlation of changes in wind power den-
sity with variation in geography, invariant wind conditions, or cross-sectional socio-economic
characteristics does not affect the consistency of the estimate. Moreover, I include district
fixed effects, which take out any changes in the outcome variable that are common in the
district and ensure that, effectively, I compare neighborhoods that are close” to each other.
Furthermore, I control for all the local geographic characteristics that, according to the data
provider (Global Wind Atlas, 2023), may affect vertical wind shear. I argue that the remain-
ing variation comes exclusively from the interaction of wind patterns and terrain ruggedness
outside of the neighborhood as depicted in Figure 4, and is as-good-as-random as supported
by the evidence in Figure 5. Finally, in Section 4.2, I show that changes in wind power den-
sity affect all outcome variables only in areas where wind turbine development is possible,

lending further support to the identifying assumption.

To account for spatial correlation in the error term, I cluster the standard errors at the

district level in all specifications.

Effects by distance. To understand how the effects vary by distance to the wind

turbine, I also estimate the augmented specification in Equation (4)

Ay, = Z <5k : ATJ;) + 7YX + San) + €n (4)
k

"The average district in Germany has 892 square kilometers, a bit under a third of the size of a US county.
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where ﬁ’f is the predicted change in turbine construction in one of five three Kilometer
distance bands around the neighborhood. Since changes in wind power density alone are too
correlated across space to establish a first-stage for turbine construction by distance band, I
instrument turbine construction with changes in wind power density and its interaction with

the share of land available for turbine construction as in Equation (5)

ATF =" (af - AWE + BEAWE - SE) + /X, + San) + €n (5)
k

where AWF is the change in wind power density in distance band k and S* is the share

of land available for wind energy development in k.

4.2 Main Results

Table 1 reports the first-stage, intention-to-treat, and IV results from estimating Equation
(2), Equation (3), and the corresponding reduced form specification. Odd columns report
the specification using only changes in wind power density as the instrument, even columns
additionally include the interaction of changes in wind power density with the share of land

that is available for wind energy.

First-stage. Column (1) regresses wind turbine construction between 2000 and 2017
on the change in wind power density over the same period. The coefficient indicates that
changes in wind power density are a strong and significant predictor of turbine development.
Moving a neighborhood from the 25th to the 75th percentile in the distribution of wind
power density changes at baseline, i.e. from 205 to 347 kg/s? increases the expected number
of turbines constructed within three kilometers of the neighborhood by 2.5 wind turbines.
Column (2) regresses wind turbine construction on the change in wind power density and
the interaction of wind power density with the share of land that is available for wind
turbine construction. The results indicate that changes in wind power density affect turbine
construction only in neighborhoods that have land available. For neighborhoods that are in
the urban core or surrounded by natural parks, on the other hand, changes in wind power
density do not significantly affect turbine construction. Moving a neighborhood from the
25th to the 75th percentile in the distribution of wind power density changes increases wind
turbine development by 0.13 turbines if there is no land available and by 3.3 turbines if all

land around the neighborhood is available.
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Table 1: Main Results
(1) (2) (3) (4) (5) (6)

A Wind Turbines A Log House Prices A Share High-Skilled

Panel A: FS + ITT

A Wind power density 1.76%** 0.09 -0.031* -0.006 -0.01 1% -0.002
(0.24)  (0.21)  (0.018)  (0.019)  (0.002)  (0.002)

A Wind power density 2.21%%* -0.032%** -0.012%**
x Share land available (0.17) (0.008) (0.001)

Panel B: IV Estimates
A Wind turbines -0.024* -0.021%**  _0.007***  -0.006***
(0.014) (0.005) (0.002) (0.001)

Instrument(s) Wind Wind + Wind Wind +
Interaction Interaction

Effective F-Statistic 34 66 52 134

Observations 133,339 133,339 79,573 79,573 128,209 128,209

Notes: Table 1 shows the estimates for the first-stage, intention-to-treat and IV specification estimated from
Equation (2), Equation (2), and the corresponding reduced form specification. Panel A shows the first-stage
(in Columns 1 and 2) and intention-to-treat effect, Panel B the IV effects. The dependent variable are
wind turbine construction between 2000 and 2017, log changes in house prices between 2007 and 2017, and
the change in the share of high-skilled residents. The independent variables are changes in wind power
density and its interaction with the share of land within three kilometers that is available for wind turbine
construction in Panel A, and the instrumented change in wind turbines in Panel B. The Effective F-Statistic
is calculated following Montiel and Pflueger (2013). Geographic controls include altitude, terrain ruggedness,
slope and the share of land that is covered by buildings, agriculture, forests, and water. The standard errors
are clustered at the level of 401 districts.

House prices. Columns (3) and (4) report the results on changes in house prices. The
intention-to-treat effects in Panel A indicate that changes in wind potential are associated
with a decrease in house prices. When including wind power density and its interaction with
land available, the entire negative effect is picked up by the interaction coefficient. This
result is consistent with the first-stage results in Columns (1) and (2), which indicates that
changes in wind power density strongly predict turbine development only in neighborhoods
with potential areas for turbine development. In neighborhoods that have no area around
them that can be used for turbine development, changes in wind power density do not
predict turbine development or decreases in house prices. These results lend support to
the identifying assumption that changes in wind power density are unrelated to unobserved

trends in house prices.
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The IV estimates in Panel B show that the effect is robust across specifications. My
preferred specification, reported in Column (3), indicates that each additional wind turbine
within three kilometers decreases house prices by 2.1 percent. The result are broadly in
line with the previous literature. Gibbons (2015) finds that visible wind turbines reduce
house prices by 5-6 percent within two kilometers, and by 2 percent between two and four
kilometers. Drées and Koster (2016) find that wind turbines within two kilometers reduce
house prices by 1.4 percent. However, their analysis focuses on an earlier period in which
the average wind turbine was only 60 metershigh while wind turbines in my sample are on
average 100 meters high. For wind turbines larger than 100 meter, they find that house

prices decrease by 3.7 percent.

Residential sorting. Columns (5) and (6) report the effect on residential sorting. The
intention-to-treat estimates indicate that changes in wind power density decrease the share
of residents that is high-skilled. As for house prices, the effect appears only in neighborhoods

with sufficient area for turbine development.

The IV estimates in my preferred specification in Column (6) suggest that each additional
wind turbine within three kilometers decreases the share of residents by 0.6 percentage
points. Among neighborhoods that see wind turbine development between 2000 and 2017,
the median neighborhood receives three wind turbines, implying a cumulative effect of 1.8

percentage points.

Effects by distance. Next, I estimate Equation (4) to understand how the effects vary
by distance. Figure 6 reports the results. For both outcomes, I find that wind turbines
within three Kilometer drive essentially the entire effect. For all other bands, the effects on
housing are small in magnitude and insignificant, except the effect for wind turbines between
9 and 12 Kilometer, which is significant but small. For residential sorting, I find small but

significant effects for turbines between 3 and 6 as well as 6 and 9 Kilometer.

Robustness. Finally, Table A.1 in the Appendix reports additional robustness checks
for the two main results on house prices and residential sorting. Column (1) repeats the
base specification, Column (2) repeats the augmented base specification that additionally
controls for population density, income per capita, and the share of high-skilled residents
in 2000. Since the specification is in (long) differences, including these variables controls
for trends in the outcome variable in less dense, poorer, or less educated neighborhoods.
Thus, the wind turbine effect is not driven by initial differences in the three socioeconomic

indicators. Column (3) controls for the demography of the residential population in 2000,

19



Figure 6: Effect by Distance

(a) House Prices (b) Share High-Skilled Residents
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Notes: Figure 6 shows the effect on house prices and residential sorting by distance as estimated by Equation
(4). Distance bands measure wind turbines within 0-3, 3-6, 6-9, 9-12, and 12-15 Kilometers of the grid cell.

including the share of female residents, the share of residents aged 15-25, 26-35, 36-45, 46-
55, and above 55, and the share of foreign residents. Initial differences in demography do
not drive the wind turbine results. Column (4) controls for the industrial structure in and
around the neighborhood. Specifically, I control for the share of residents that work in each
of the 21 industries in the WZ 2008 classification. The results do not change significantly.
Column (5) adds wind power density in 2000. With this column, I confirm that changes in
wind power density due to technological advances drive the result, not differences in initial
wind conditions. Column (6) adds the longitude and latitude of the neighborhood, clarifying
that the changes in outcomes are not driven by the location of the neighborhood within
the district, for example because neighborhoods closer to the coast in Northern Germany
experience different changes in wind power density and different changes in the outcome

variable.

Finally, Columns (7) and (8) interrogate the validity of the Stable Unit Treatment Value
Assumption (SUTVA). There are two potential concerns. First, how many residents leave
when turbines are built depends on their outside option. If there are many turbines built in
the whole region fewer people emigrate, and from the observed migration and house price re-
sponses, we would underestimate residents’ preferences against wind turbines, see Borusyak
et al. (2023) for a detailed explanation of the concern. Second, the reduced form com-
pares neighborhoods that experience turbine construction with neighborhoods that remain
unspoiled. The latter serve as a control group but as residents leave wind turbine neigh-
borhoods and settle in unspoiled neighborhoods, the control group, too, maybe affected,

potentially biasing the results upwards.
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To rule out both concerns, I include a measure of the aggregate shock that surrounding
neighborhoods experience as a control variable. Following Borusyak et al. (2023), the aggre-
gate shock weights shocks in surrounding neighborhoods by their population as well as the
distance.® Column (7) includes changes in wind power density and its interaction with land
available aggregated over surrounding neighborhoods. Column (8) includes predicted wind
turbines based on both instruments aggregated over surrounding neighborhood. Compared
to the base specification, the coefficient is virtually unchanged. This lends support to the
assumption that potential violations of SUTVA do not bias the results. Intuitively, under
both violations of SUTVA discussed above, being surrounded by neighborhoods that are also
treated induces bias in the estimates. Under concern one, it leads to worse outside options
and less emigration. Under concern two, it leads to a higher ratio of treated to control
units, inducing larger spillovers on the control group and a larger bias. By controlling for
the prevalence of shocks in surrounding neighborhoods, I account for these two alternative

stories, confirming that the results are not driven by SUTVA violations.

5 Using Theory to Infer the Implied Welfare Costs

Section 4 shows that wind turbine development decreases house prices and leads to the
emigration of high-skilled residents. Implicitly, the reduced form results suggest that wind
turbine development makes surrounding neighborhoods less attractive for residents, but they
remain silent on the size of the implied welfare losses. To estimate the costs and evaluate
policy, Section 5 develops a quantitative spatial general equilibrium model that complements
the reduced form results in two important ways. First, it yields a revealed preference map-
ping that allows me to infer residents’ willingness-to-pay to avoid wind turbines from their
observed behavior. These preferences are then embedded in a general equilibrium model,
which allows residents to move in response to wind turbine development and housing and

labor markets to adjust accordingly.

8Specifically, the shock is 295t = (> kot ﬁ?k)/(zk¢n ((ji;f#), Zk is the shock, for example
changes in wind power density, or predicted wind turbines, Ry is the number of residents in k, dist, is the
distance between n and k and ¢ is the elasticity of migration with respect to distance which I set as —1.25
as Borusyak et al. (2023).
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5.1 Model

The economy is populated by L workers. Each worker w is high-skilled or low-skilled. Vari-
ables and parameters that differ by type are denoted with a superscript 6 € {h,[}. The total
measure of high- and low-skilled workers in the economy is L" and L', respectively. There

are N neighborhoods in the economy, denoted by subscript n and.

Residence and workplace choice. Individuals choose a residence neighborhood n and
a workplace 7 given the amenities A"’ in the residential neighborhood, the wages w? paid at
the workplace, the commuting cost d?; between n and i, house prices Q,, in the residence,
and a residence-workplace pair specific individual taste shock €2, (w).? Their corresponding

indirect utility is

Alw?
i) = o) ()

Wind turbines affect amenities such that AY = a.-exp(3’-T,,) where @, are fundamental
amenities in the neighborhood, T, is the number of wind turbines within three kilometers

of the neighborhood and /39 is the skill-specific preference against wind turbines. I model
0

0 = exp(u’1,;) where 7,; is the commuting time in minutes and p? is

commuting cost as d

the semi-elasticity of costs with respect to travel times (Ahlfeldt et al., 2015).

For each residence-workplace pair individuals draw an idiosyncratic preference shock from
a Frechet distribution such that e (w) ~ F(e) = exp(—D? E%<~"). The shape parameter
x? controls the dispersion of the taste shock distribution and can be interpreted as the labor
supply elasticity. The scale parameters DY and EY determine the average utility of living in
n and working in ¢, respectively. Empirically, they are used to match the spatial distribution

of residents and workers in the data.

Using the properties of the Frechet distribution, we can write the share of individuals

that live in n and work in 7 as

) )
DG E0 A;GW;G " Aflwze "
ni 0 ol 0 ad
dle’ﬂ _ dniQn
0 — 0
N N popo ((Afw " N N Afwf \*
Zr:l Zs:l ris dQSQﬁ‘G Zr:l Zs:l ngQﬁ‘e

9 Amenities and wages are indicated with a prime to simplify notation further down the line.

0 _
/\m'_
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The scale parameters for the average utility D? and the amenities A" enter isomorphi-
cally and cannot be identified separately. To simplify notation I denote A? = (Df)1/=" A'?
as adjusted amenities. Similarly, average utility at the workplace EY and wages w;(’ enter
isomorphically. I denote w? = (E?)Y "ew;(’ as adjusted wages. Summing the bilateral com-
muting shares over workplaces yields the share of residents, summing over residences yields

the share of workers, so that the number of residents and workers is

Ry=L") X  LI=L") X, (8)

iEN neN

where L? is total number of individuals of type @ in the economy.

Labor market. Labor supply is given by LY above. For labor demand, I follow Diamond
(2016) and model (inverse) labor demand as log-linear function of high-skilled and low-skilled

workers, so that high-skilled wages in workplace ¢ are determined as

In(wy) =" In(Li) ++"n(Lg) + 2} 9)

and low-skilled wages are determined as

ln(wﬁ) = vhlln(L?) + vllln(Lli) + zf (10)

The labor demand parameters 7", v* 4" and +" allow to capture substitution patterns
across skill types and spillovers between workers without taking a stance on the functional
form of the production function and the embedded agglomeration externalities. Finally, the

labor market clearing implies that

LP=) Rl =>"1° (11)

neN neN

Housing market. The demand for housing HD,, is the total income that both types
spend on housing divided by the price of housing
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hh o h Ll ol
HD, — Rivpa” + R, 0, (12)
@n

where #¢ is the average income of residents in the neighborhood. Average income is
calculated over the wages in the surrounding neighborhoods i weighted by the probability

that a resident from n commutes to 7.

D SEITE PRGN (13)

iEN 1EN ZSEN (U}g/dfw)N

For the supply of housing, I assume that each neighborhood draws on a fixed pre-existing

housing stock H,, and that housing is supplied inelastically with elasticity 7, such that

Equating supply and demand, the market clearing is

H,QYm = RM'tal + R 3 of (15)

Welfare. From the indirect utility and using properties of the Frechet distribution, the

expected utility of a resident is

1
P

0’ = B [o)(w)] =F(K _1) [ZZ (Afw?) (dﬁsQi"g)_HQ] (16)

reN se N

where I' is the Gamma function. Because residents are free to move expected utility

equalizes across locations.

Equilibrium. An equilibrium is a vector {RG L8 0% wl, Qn}n, , and two scalars U? such
that residents R? and workers LY are determined by Equations (7) and (8), Wages w? are
determined by firms’ labor demand given by (9) and (10), average income ¥’ is given by
(13), the housing market clearing (15) pins down the rental price @Q,,, and the labor market

clearing (11) pins down U°.
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5.2 Estimation
5.2.1 The Amenity Cost of Wind Turbines

Rewriting the labor supply in Equation (7), we can express unobserved changes in amenities

as a function of residents, house prices, and commuting-cost weighted wages. Specifically,

1/x?
Aln (AY) = % -Aln (RY) + o’ - Aln (Q,) — Aln (Z (wf/d8;) > + A (17)

=1

Intuitively, the model uses the unobserved changes in amenities to rationalize observed
changes in population. For example, if more residents move to a location that is becoming
more expensive in terms due to increasing house prices or decreasing wages, by revealed pref-
erence, the location is becoming more attractive. Conversely, locations that lose population
despite decreasing house prices, such as neighborhoods close to wind energy development,
are becoming less attractive. To estimate how much amenities decrease due to turbine con-
struction, I calculate the implied amenity change between 2007 and 2017 following Equation
(17) and regress it on wind turbine construction instrumented by the change in wind power

density as described in Section 4.

Doing so requires estimates of the labor supply elasticity across space x?, the share of
their income that residents spend on housing o, and the cost of commuting between their
home and workplace d’;. Intuitively, if residents move away from a location, for example
due wind turbines, the implied amenity decrease must be even stronger if residents are
usually relatively immobile (low x), if they spend a lot on housing and are thus partially
compensated by falling rental prices (high o) and if they have good commuting-cost weighted

access to jobs in the area (low d;).

Housing share o’. I estimate the income share that residents spend on housing from the
expenditure survey in the German Microcensus in 2018. I find o to be 0.25 for low-skilled
and 0.23 for high-skilled residents.

Labor supply elasticity x’. I calibrate the Frechet parameter or labor supply elasticity
to be 4.56, drawing on a recent estimate for Germany by Krebs and Pfliiger (2023). Choosing

a uniform value for high- and low-skilled residents has the obvious disadvantage that it
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ignores (potential) differences in labor mobility across skill types. Nevertheless, I provide a
series of robustness checks in which I vary the parameter separately by skill type and show

that the amenity cost remains similar across specifications.

Commuting costs d’,. Following Ahlfeldt et al. (2015), I model commuting costs as a

function of bilateral travel times 7,,; and the semi-elasticity of commuting costs with respect

0

0 = exp(u1,;). Given the commuting shares in Equation (7) and the

to travel times u d

commuting costs, the model implies the commuting gravity estimation equation

In (M%) =" 70 4 6; + 0 + Eni (18)

where 1 = —pf - K is the commuting semi-elasticity with respect to travel times, 7,;

measures travel times in minutes, the workplace fixed effect 9; absorbs wages, the residence

fixed effects 6,, absorbs neighborhood amenities and house prices, and I add ¢,; to allow for

measurement error and other deviations from the model-implied commuting equation in the
data.

I construct bilateral travel times using data from OpenStreetMap and the routing software
developed by Huber and Rust (2016), see Section B.3 in the Appendix for details. For
commuting shares, I use data on the district-pair level that I construct from the SIAB data,

a two percent random sample of the German workforce, see Section B.2 in the Appendix.

Since the commuting shares are zero for the majority of pairs, I estimate Equation (18)
using Poisson Pseudo Maximum Likelihood (PPML, Silva and Tenreyro, 2006, Ahlfeldt et
al., 2015). Table 2 shows the results. Columns (1) and (3) indicates that an increase in travel
times by one minute decreases commuting by 8.5 percent for high-skilled and by 12 percent
for low-skilled. As Columns (2) and (4) show, the results are robust to excluding district
pairs with less than 10 commuters. Quantitatively, the results are higher than in Ahlfeldt et
al. (2015) who find that each additional minute travel time decreases commuting in Berlin
by 7 percent. A possible reconciliation of both estimates is that pecuniary commuting costs
are higher in Germany (which includes rural commutes) due to higher mileage and fuel costs

per minute traveled.

With the travel times and the estimated commuting cost semi-elasticity, I calculate the
travel costs d?,. Since I estimate the model for 133,339 neighborhoods, allowing residents to
commute across all pair of locations would require 133, 3392, or approximately 10'° calcula-

tions per matrix multiplication. To make the estimation computationally feasible, I divide
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Table 2: Commuting Semi-Elasticity

(1) (2) (3) (4)
High-Skilled ~ High-Skilled ~ Low-Skilled  Low-Skilled

Travel time (v9)  -0.085%** -0.083%+* -0.120%%* -0.1271°%%*
(0.001) (0.001) (0.001) (0.001)

Sample All > 10 Commuters All > 10 Commuters

Observations 160,801 5,881 160,801 9,468

Notes: Table 2 shows Poisson Pseudo Maximum Likelihood estimates for the commuter gravity Equation
(18). Each Column reports a separate regression. The regressions are at the district-pair level. Standard
errors are clustered at the residence and at the workplace level. Columns 2 and 4 only include residence-
workplace pairs with at least 10 commuters.

Germany into 257 regional labor markets. While individuals are free to choose any location
to live in, conditional on that location, they can only commute to workplaces in the same la-
bor market, effectively setting d?; to infinite for commutes across labor markets. Empirically,
the simplification is reasonable. First, quantitative spatial models that study the allocation
of economic activity within a city, for example Ahlfeldt et al. (2015), implicitly assume that
there is no commuting beyond the city’s labor market. Secondly, Dauth and Haller (2020)
show that the vast majority of German workers commutes less than 20 kilometer, and ap-
proximately 94 percent of Germans commute less than 50 kilometer. Third, I show that the
number of residents and workers in each labor market is fairly balanced, see Figure A.5 in
the Appendix. o ensure that the commuter market clears everywhere, I re-scale the number
of workers in all workplaces so that the total population matches total employment in each

labor market.

Amenity costs of wind turbines 3°. Equipped with estimates of the labor supply
elasticity, the share of income spent on housing, and the commuting costs, I calculate the
implied amenity changes between 2007 and 2017 on the number of wind turbines constructed
over the same period. Then, I regress the implied amenity changes on the predicted number
of wind turbines in each distance band around the grid cell as in Equation (4). Figure 7
shows the results. I find that wind turbines within three Kilometers reduce high-skilled and
low-skilled amenities by 0.9 and 0.6 percent, respectively, while for wind turbines in any

distance band beyond three Kilometer is statistically insignificant and close to zero.
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Figure 7: Amenity Cost of Turbines

(a) High-Skilled Amenities (b) Low-Skilled Amenities

054 54

0054 0054

Effeect
=}
Effeect
=}
t
|
|
1
1
1
|
|
|
|
|
|
|
|
*
1
1
|
|
|
|
|
|
1
I
1
|
|
|
|
|
|
|
I
|
1
1
|
i
|
1
1
|
|
|
|
1
|

0154 = - - 0154

03 36 6-9 212 1216 03 36 6-9 212 12-16
Kilometers Kilometers

Notes: Figure 7 shows the effect on high-skilled and low-skilled amenities by distance as estimated by
Equation (4). Distance bands measure wind turbines within 0-3, 3-6, 6-9, 9-12, and 12-15 Kilometers of the
grid cell.

5.2.2 Labor Demand and Housing Supply

Labor demand elasticities v"", 7", v, 4!, To estimate the long-run labor demand
elasticites, I take long differences of the model’s labor demand in Equations (9) and (10).
Specifically,

Aln(wl) = 4" Aln (L) + " Aln(L) + Azl (19)

and

Aln(w!) = Y™ Aln(L") + A" Aln(LL) + Az (20)

where Aln(w?) are log changes in the wage of type 6 between 2000 and 2017, and Aln(LY)
are log changes in the number of workers of type 6 between 2000 and 2017. Estimating
the labor demand equations using OLS would likely yield bias estimates due to reversed
causality. Instead, I develop a migration shift share IV strategy that shifts labor supply
and allows me to trace out the (inverse) labor demand curve. The strategy exploits the
historical distribution of migrants from different origin countries and national skill-specific
shifts in immigration between 2000 and 2017. Specifically, I construct the expected increase

in workers over the period as
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Table 3: Labor Demand Elasticities

(1) (2)
Log Wages
High-Skilled Low-Skilled

Log workers, high-skilled ~ 0.053*** -0.010*
(0.016) (0.006)
Log workers, low-skilled -0.007 -0.061**
(0.047) (0.023)
Observations 35,918 32,539

Notes: Table 3 estimates the long-run labor demand elasticities in Equations (19) and (20). T instrument
Aln(L}) and Aln(L}) using the migration shift-share instruments ABJ' /L5000 and ABL/L! 5, constructed
in Equation (21). The standard errors are clustered at the level of 401 districts.

Rig 2000
AB? = Z (Rz,z(n?,fz - Rggooo,ﬂ‘) ’ —Rg (21)
veC 49,2000

where Rf1720177_i — Rz,2000,—i is the national change in immigrants of skill § from country
group g between 2000 and 2017, leaving out migrants to ¢ to avoid a mechanic effect, and
Rig 2000/ Rg.2000 is the share of immigrants of group g that live in ¢ among all immigrants of
group ¢ in Germany. For the national trend, I net out the number of migrants in ¢, indicated
by the —i subscript, to avoid any mechanic correlation with changes in LY. Data Appendix

B.4 describes the data sources, the construction of groups and the variables in detail.

Since Aln(L}') and Aln(L!) capture relative changes, I use ABJ'/L!,, and AB;/L} 5
as the instruments, respectively. Table A.3 in the Appendix reports the first-stage results.
One caveat is that the first-stage is moderately strong, with a Kleibergen Paap F-Statistic of
9.6 and 4.4, respectively. More reassuringly, the first stage results show that the predictive
power in the change in labor supply of each skill type comes from the migration-induced

labor supply shock for that skill type.

Table 3 shows the IV estimates for the four labor demand elasticities. For high-skilled
workers, I find that a one percent increase in high-skilled workers increases wages by 5.3
percent while a one percent increase in low-skilled workers decreases wages by 0.7 percent.
The positive own-wage elasticity suggests positive spillovers between high-skilled workers

and is qualitatively consistent with previous estimates, for example in Diamond (2016). For
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low-skilled workers, a one percent increase in high-skilled and low-skilled workers decreases
wages by 1.0 percent and 6.1 percent, respectively. The own-wage elasticity suggests that
there are few (if any) spillovers between low-skilled workers, again consistent with previous
evidence (Diamond, 2016).

Housing supply elasticity 7,. Following Saiz (2010), I approximate the location-
specific housing supply elasticity as function of variation in land constraints. The intuition
is that housing supply typically reacts less to house prices when there is little land for
development available. Specifically, I construct the share of land that is unavailable due to
water bodies and steep terrain with a slope larger than 15 percent as well as the share of

land that is already developed, and calculate the housing supply elasticity as

Nn = 0.310 — 0.463 - share_developed,,,) — 1.01 - share_unavailable(,) (22)

using long-run estimates for the German housing market, 2008-2019 by Beze (2023).1°

The average neighborhood in my sample has a housing supply elasticity of 0.26. The 25th
percentile is 0.25, the 75th percentile 0.28. Although the estimates are small relative to the
US context (Saiz, 2010), they are consistent with Beze (2023) who finds an average elasticity
of 0.22 and Caldera and Asa Johansson (2013) who report a Germany-wide housing supply
elasticity of 0.43.

Table 4 summarizes the model parameters as well as the estimation strategy or source.

I detail the estimation of each parameter in the rest of the section.

5.3 Model Inversion

I estimate the model for 133,339 neighborhoods in Germany. Given data on population,
employment, house prices, and bilateral travel times as well as the parameters estimated
in Section 5.2, one can invert the model and obtain adjusted amenities A%, adjusted wages
w?, productivity z¢, and the housing stock H?. Adding data on wind turbines, one can
further obtain adjusted fundamental amenities a’. Section C in the Appendix formalizes the

model inversion and shows that the obtained location fundamentals are unique, in the case

OFive districts, Berlin, Munich, as well as Oberhausen, Gelsenkirchen, Herne in the Ruhr area are so
densely built that the implied supply elasticity would be (slightly) negative. For these districts, I replace
the elasticity with zero.
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Table 4: Summary Parameters

Parameter Symbol h 1 Estimation Strategy

Amenity cost of turbines 3? -0.009  -0.006  Wind power density IV

a? 0.23 0.25 Microcensus 2018
Frechet scale parameter K’ 4.56 4.56 Krebs and Pfliiger (2023)
Commuting semi-elasticity v? -0.085 -0.120 Commuting gravity equation
Labor demand elasticity, w" o 0.053 -0.007 Migration shift share IV
Labor demand elasticity, w' ol -0.010 -0.061 Migration shift share IV
Total Labor LY 7.6M 30.8M  GridAB Data 2017

Share spent on housing

Housing supply elasticity M IQR = [0.25,0.28] Saiz (2010), Beze (2023)

of amenities and wages up to a normalization.

First, I use the commuter market clearing and data on population, employment, and
commuting costs to recover adjusted wages w?. Intuitively, the model structure uses adjusted
wages to match employment in the data. If a workplace has high employment even though
observed wages are low and the workplace has bad access to commuters, the location must
pay high adjusted wages. Second, I use the labor supply equation, the adjusted wages and
data on population, house prices, and commuting costs to recover adjusted amenities A?.
Intuitively, the model structure uses adjusted amenities to match population in the data. If a
residence has high population despite high house prices and weak commuting-cost weighted
access to jobs with high adjusted wages, the neighborhood must have high amenities. Given
adjusted amenities and data on wind turbines, one can infer adjusted fundamental amenities
a?. Third, I use the labor demand equations and data on adjusted wages and employment
to recover productivity fundamentals 2?. Fourth, I use the housing market clearing and data

on house prices, population, adjusted wages, and commuting costs to recover the housing
stock HY.

6 Policy Implications

Section 6 uses the quantified model to evaluate Germany’s wind energy policy. First, I show
that the current distribution of wind turbines has large annual welfare costs for residents -
0.45 percent of welfare or approximately 5.6 billion USD. Second, I find that alternative allo-

cation of wind turbines that takes the varying willingness-to-pay across neighborhoods into
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account could have substantially decreased welfare costs but also concentrates the burden,
especially in rural and poorer regions. Third, I evaluate the Renewable Energy Act and Ger-
many’s implied wind energy targets for 2045. 1 show that a low-cost allocation of turbines
can save about 35 percent of the welfare cost for residents compared to a business-as-usual
scenario. Both scenarios, however, are better than a slow expansion of wind turbines, and
I provide budget-balanced transfers to compensate residents and incentivize development in

the future.

6.1 The Local Cost of Wind Turbines

First, I analyze how the expansion of wind energy until 2017 has affected the geographic dis-
tribution of residents and economic activity and its implications for welfare. Specifically, I
counterfactually remove all wind turbines active in 2017 and solve for the equilibrium distri-
bution of residents, workers, house prices, and wages, and compare the resulting equilibrium
with the equilibrium observed in the data in 2017.1!

Effect on residents’ location choices. The quantified model suggests that the amenity
costs associated with the expansion of wind energy substantially affected the distribution of
residents and workers, and as a consequence of house prices, income, and wages. Figure 10
shows how the expansion of wind energy affects the two main outcomes, house prices and
residential sorting. Figures A.8 and A.9 in the Appendix show the effect on population,

employment, income, and wages, separately for high- and low-skilled.

By construction, wind turbine development decreases amenities. Neighborhoods close
to wind turbines become less attractive, especially for high-skilled residents, who move to
other locations. Low-skilled residents move predominately to neighborhoods that are far
enough from the wind turbines but still in the larger area. High-skilled residents, on the
other hand, move predominantly to larger cities as well as to Southern Germany. Both types
relocate differently responding to different incentives in the labor market. Labor demand

for low-skilled is downward-sloping. As low-skilled residents leave, workers in places within

Since I observe when wind turbines are connected to the grid but not if and when they are removed or
replaced, taking all wind turbines constructed until 2017 may imply that some wind turbines are counted
double. In the reduced form, the instrumental variable strategy corrects for the implied measurement error.
In the quantitative model, double-counting would lead to inflated welfare costs of the expansion. To correct
for this, I follow the common assumption that wind turbines have a lifetime of 20 years (see also the discussion
in FA Wind, 2018), after which increasing maintenance costs and halted government subsidies reduce the
incentives for continued operation. Figure A.7 in the Appendix shows the geographic distribution of wind
turbines active in 2017 for reference.
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Figure 8: Effects of Wind Turbines on House Prices and Sorting

(a) House Prices (b) Share of High-Skilled Residents

16-17
|_ES &)

Notes: Figure 10 shows the general equilibrium effects of wind turbine development on house prices and the
share of high-skilled residents. Changes are calculated as percent changes, comparing the variables observed
in the data in 2017 with the model counterfactual assuming the absence of wind turbines. Panel (a) shows
the changes in house prices, Panel (b) shows the changes in the share of residents that are high-skilled.
The variation is grouped into quintiles, ranging from the most negative changes in red to the most positive
changes in blue.

commuting-distance are compensated by higher wages, and this binds low-skilled workers to
the larger area around the wind turbines. High-skilled workers, on the other hand, increase
the productivity of other high-skilled workers. When they leave turbine neighborhoods, high-
skilled wages in the larger area fall, incentivizing high-skilled residents to leave the entire

region.

Effect on welfare. Using Equation (16) to calculate welfare in the counterfactual
equilibrium without wind turbines and in the data, I find that the local costs of the full
wind turbine expansion amount to 0.45 percent. Residential adaptation is important - not
allowing residents and the economy to respond would have increased costs by an additional
0.056 percent - but even after that the costs are substantial. In terms of compensating
variation, the welfare costs suggest total losses of about 5.6 billion or about 67 USD per

capita.
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6.2 Wind Turbine Placement and the Equity-Efficiency Trade-Off

The quantified model suggests that wind turbine development has important costs for res-
idents. In the following, I use model counterfactuals to show that alternative placements
of wind turbines can achieve the same electricity production while substantially lowering

model-implied welfare costs.

Alternative turbine placement. Identifying the optimal allocation of wind turbines
is a high-dimensional discrete choice problem that does not appear to have an analytical
solution and that is computationally intractable.'? Instead, I minimize the log-linearized
first-order welfare costs and use the quantified model to calculate the resulting welfare costs
in general equilibrium, a procedure that allows me to find a lower bound of welfare gains
that alternative distributions can achieve relative to the current distribution. In Appendix
D.2, I show that minimizing the log-linearized first-order costs comes down to minimizing

the willingness-to-pay weighted by the number of high- and low-skilled residents, formally,

N
minimize —0.009- R" —0.006- R') - T, 23
iz 3 ' ) (23)

To replicate the problem of the social planner as closely as possible, three constraints

restrict the possible allocations of wind turbines.

Constraint 1: Turbines achieve the same electricity capacity as in the data.
First, given the spatial distribution of wind power density W,,, wind turbines must achieve

the same electricity capacity as wind turbines in the data in 2017. Formally,

N N
> W T, > > W, -T2V (24)
n=1 n=1

Constraint 2: Turbines are only placed on available land. Second, I draw on

detailed land use maps published by the German think tank Agora Energiewende (2021)

12Importantly, the welfare cost of placing an additional wind turbine depends on the distribution of all
other wind turbines in the economy since locations are spatially linked through residence and employment
choices. With approximately 25,000 wind turbines and more than 100,000 potential locations, each of which
can potentially accommodate more than one wind turbine, brute force optimization is impossible. Secondly,
simulating different turbine distributions to understand properties of the optimal allocation as in Kreindler
et al. (2023) is computationally infeasible due to the large number of repetitions required and the prohibitive
time it takes to solve the model in my context.
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to ensure that wind turbines are only placed on land on which turbine development is al-
lowed and physically possible. The list of excluded areas is detailed and exhaustive, and can
be found in Appendix D.3. For areas with unclear status, in particular forests, protected
landscapes (”Landschaftsschutzgebiete” ), and areas within short distance of residential pop-
ulation, Agora Energiewende (2021) provides different maps. I choose the strictest scenario,
excluding forests and protected landscapes, and assuming a minimum distance to residential
population of 1000 meters, so that the minimization problem yields a lower bound for the

welfare gains from alternative wind turbine allocations.

Constraint 3: Electricity production respects interstate transmission limits.
Third, I ensure that the production of wind energy in each state does not exceed the capac-
ity that can be consumed in the state itself or transported given the existing electricity grid
infrastructure. This is particularly important because Germany has better wind resources
in the less densely populated regions in the North and North-East but higher population
density and energy consumption in the West and South, and because the existing network
of ultra-high voltage transmission lines restricts how much electricity can be transported
across regions. Modeling energy consumption and transmission capacity is traditionally
assumption-heavy. In light of this, I assume that the state-level wind energy capacity ob-
served in the data in 2017 reflects current transmission constraints, and that each state can
sustain at most this observed limit or, alternatively, the wind energy that can be consumed

by the state’s population.

Figure 9 shows the geographic distributions of wind turbines in the data as well as
the distribution obtained in the cost-minimizing scenario. Overall, the two distributions of
wind turbines are similar, which suggests that the minimization problem captures well the
incentives for turbine construction. Both scenarios tend to allocate wind turbines to the
high-wind Northern parts of Germany, as well as in areas with lower population density.
The cost-minimizing scenario, however, is even stricter in avoiding populated areas, which
can be seen most clearly in the Rhein-Ruhr area in West Germany, and around cities such
as Hamburg and Berlin. Instead, the cost-minimizing scenario concentrates wind turbines

more strongly in sparsely populated areas, such as the North-East, for example.

Welfare and inequality. I use the quantitative spatial general equilibrium model to
understand how much welfare would have decreased under the cost-minimizing turbine allo-

cation, and find that the losses would have been seven times lower, reducing from a loss of

5.6 to 0.8 billion USD.
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Figure 9: Wind Turbine Scenarios, 2017

(a) Data, 2017 (b) Cost-Minimizing Alternative

Notes: Figure 9 shows the distribution of wind turbines (in blue) relative to the population density (in red,
larger density in darker tones). Panel (a) plots the distribution of wind turbines in the data in 2017. Panel
(b) plots the alternative distribution derived from the cost-minimization problem in Equation (23).

While the alternative distribution reduces average welfare costs, it substantially increases
inequality across space. In the cost-minimizing scenario, 73.9 percent of wind turbines are
concentrated in five percent of municipalities, relative to 56.9 percent under the current
turbine distribution. Moreover, the scenario tends to place the burden on rural, low-income,
and low-educated municipalities. Going from the turbine distribution in the data to the
cost-minimizing scenario, the share of wind turbines in rural, low-income, and low-educated

municipalities increases by 16, 10, and 6 percentage points, respectively.

Compensation. [ derive budget-balanced transfers that allow the social planner to
implement any allocation of wind turbines without changing the relative welfare across lo-
cations. Specifically, I denote 7¢ the proportional compensation that a resident of type
in neighborhood n receives, and 7% the proportional tax that residents in all neighborhoods

pay so that transfers are budget balanced. The indirect utility is thus

0 9,0
6 _ Tn An w; (7
) = T i) (25)



Figure 10: Compensatory Transfers, 2017

(a) Data, 2017 (b) Cost-Minimizing Alternative
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Notes: Figure 10 shows budget-balanced transfers (in Euro per capita, aggregated at the municipality level)
that compensate residents close to wind turbines for their welfare loss. On net, municipalities in blue receive
transfers, municipalities in red pay transfers. Panel (a) plots the transfers for the distribution of wind
turbines in the data in 2017. Panel (b) plots the the transfers for the alternative distribution derived from
the cost-minimization problem in Equation (23). Transfers are calculated based on Equation (25) and as
derived in Appendix D.4.

In Appendix D.4, I show that setting 79 = 1/exp(—3T;,) fully compensates residents

9 as well as the absolute net transfers that each

and I derive the proportional uniform tax 7
neighborhood receives. Figure 10 shows the implied net per capita transfers for the cur-
rent allocation of wind turbines as well as for the alternative, cost-minimizing scenario. I
aggregate the neighborhood-level transfers at the municipality level, which is the lowest con-
sistent political unit in Germany. While both scenarios achieve the same electricity output,
the current allocation creates larger costs for residents, and thus both the net transfers that
municipalities with wind turbines receive as well as the net payments of all other municipal-

ities are larger than in the cost-minimizing scenario.
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6.3 Wind Energy Development Plans for 2045

Finally, I use the quantified model to evaluate Germany’s climate policy until 2045. With the
Renewable Energy Act (2023), Germany has set itself binding targets for the development
of wind energy - from a cumulative capacity of 62 Gigawatt in 2024 to 115, 155, 160, and
160 Gigawatt in the years 2030, 2035, 2040, and 2045, respectively.

I compare the welfare implications of four scenarios. In the first, I assume that policy-
makers achieve the targets in the respective years by developing turbines in similar areas
as in 2017, that is without explicitly minimizing the cost for residents. I take into account
that wind turbines get more efficient over time. Old turbines are taken off the grid after
20 years and replaced with new wind turbines. For the capacity of new wind turbines, I
note that the growth in wind energy capacity per turbine in Germany has been surprisingly
linear between 2000 and 2024, with no signs of a slowdown in improvements, and I assume
wind turbine technology to improve at the same rate until 2045. As a result, I estimate that
the cumulative number of wind turbines required to achieve the targets increases from 29
thousand turbines observed in the data in 2017 to 31, 38, 36, and 35 thousand wind turbines
in 2030, 2035, 2040, and 2045, respectively.

While this paper provides no theory of where policy-makers and developers will allocate
these turbines, in the first business-as-usual scenario I assume that the policy-maker does
not change her approach to the costs for residents and that the average welfare cost per

turbine remains at 0.2 million USD per turbine, as estimated in Section 6.1.

In the second scenario, I assume that the policy-maker allocates wind turbines by mini-
mizing the cost for residents given in Equation (23). As in Section 6.2, I take into account
the spatial distribution of wind power density (which changes over time as turbines be-
come taller), the spatial distribution of available land (which changes as potential areas are
gradually filled up by wind turbines), and state-level capacity limits given by the electricity
transmission network. For the latter, I assume limits consistent with the network expansion
planned in the most recent grid development plan (NEP 2037/2045). As before, I obtain the
implied turbine distribution and calculate the aggregate welfare costs obtained from solving
the quantitative spatial model. Figure 11 shows the resulting distribution of wind turbines,
represented as blue dots on the left, as well as the budget balanced transfers that compensate

residents and incentivize turbine construction as calculated in Appendix D.4 on the right.

In the third and fourth scenario, I assume that Germany continues to place wind turbines
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Figure 11: Wind Energy Development Scenarios Until 2045

(a) Turbines - Flexible Allocation (b) Turbines - State Targets
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Notes: Figure 11 shows two scenarios under which Germany would achieve its wind energy development
goals for 2045, a flexible scenario on the left and a scenario with mandatory state targets as proposed in the
Onshore Wind Act 2023. The top panel shows the distribution of wind turbines, the bottom panel shows
the set of budget-balanced transfers that would be necessary to compensate residents in both scenarios.

without minimizing the cost for residents (so that the average welfare cost per turbine is
the same as in 2017), but wind turbine construction remains slow and Germany does not
achieve its target for 2045. Again, I assume that old wind turbines are decommissioned after
20 years. In the third scenario, I assume that Germany adds 982 new turbines per year,
which is the average number of turbines installed per year between 2014 and 2023. In the
fourth scenario, I assume 505 new turbines per year, which is the average number installed
between 2019 and 2023. The scenarios, which I refer to as the slow and very slow business-
as-usual scenarios respectively, achieve only 57 and 29 percent of Germany’s onshore wind

energy target.

For a complete welfare analysis, I also make assumptions about the welfare benefits
of wind energy. Arkolakis and Walsh (2023) show that the shift to renewable energy will
decrease electricity prices, raise industrial production, and increase welfare in Germany by 3.4
percent. T attribute about a third of that to onshore wind energy (the remaining two thirds of

renewable energy production come from solar and offshore wind energy). After multiplying
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Table 5: Scenarios 2045 - Welfare Comparison

Cost minimization = Business-as-usual  Business-as-usual  Business-as-usual

(Fast) (Fast) (Slow) (Very slow)

Wind Turbines in 1000s 35 35 20 10
Electricity capacity in Gigawatt 160 160 91 46
Welfare Costs in USD

Residents 5.6B 8.6B 1.1B 0.5B
Welfare Benefits in USD

Electricity 42.2B 42.2B 24.0B 12.1B

Abated emissions 25.6B 25.6B 14.6B 7.4B
Net Welfare Benefits in USD 62.2B 59.2B 37.5B 19.0B

the estimates with Germany’s GDP, I find that electricity prices increase welfare by 42.2
billion USD. For the abated emissions, I assume that wind energy in Germany replaces
mostly coal energy, which, at the newest standard, emit 0.8 Kilogram of CO2 per KWh of
electricity. Assuming a social cost of carbon of 100 USD per ton of CO2, I find that the

emissions abatement of the full expansion of wind energy saves 25.6 billion USD.

Table 5 shows the welfare calculation for all scenarios. Comparing Columns (1) and (2), I
find that taking the costs for residents explicitly into account when allocating wind turbines
may save 3 billion USD or about 35 percent of the total welfare costs. While the costs are
large, they only amount to between 8.3 and 12.7 percent of the welfare benefits from lower
electricity prices and abated emissions. This also implies that a successful expansion has
welfare benefits that far exceed the financial cost of compensating residents and thereby
incentivizing turbine development. While a slower transition to renewable energy may bring
lower costs for residents, Columns (3) and (4) suggest, that, on net, a slower transition costs

welfare benefits between 22.4 and 39.9 billion USD, or between 39 and 70 percent of the
total net welfare benefits.

7 Conclusion

Policy-makers around the world that aim to reduce emissions often face political frictions.
While many policies aimed at climate change mitigation, such as for example the expan-
sion of renewable energy, ultimately bring welfare benefits that justify their pursuit, their
implementation sometimes comes with redistributive welfare effects that leads to political

backlash, reduced or slower adoption, and ultimately aggregate welfare losses.
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In this paper, I study one particularly important climate change mitigation policy, the
transition to renewable energy. Consistent with the resistance that we observe against the
construction of renewable energy infrastructure, I find that wind turbines have important
local costs, and that residents are willing-to-pay between 0.6 and 0.9 percent of their income
to avoid an additional wind turbine near their home. I show that these preferences amount
to large implicit welfare costs that can be substantially reduced if the policy-maker takes
them into account. Evaluating Germany’s targets in the Renewable Energy Act, I find
that the allocation that takes residents’ costs into account saves 35 percent of the cost of a
business-as-usual scenario. Both scenarios, however, are better than a slow expansion of wind
energy, which highlights that the largest welfare costs may come from the resistance against
renewable energy. Policy-makers may therefore wish to compensate residents to incentivize

wind turbine development in the future.
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Appendices

A Additional Figures and Tables

Figure A.1: Current Installed FElectricity Capacity and Plan Until 2030
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Notes: Figure A.1 shows the evolution of electricity mix between 2002 and 2022, as as well as government’s
goals until 2030. Over the time, the installed wind energy capacity at land rises from 12 GW in 2002, to
32 GW in in 2012, to 55 GWW in 2022. With the Renewable Energy Act 2023, the government plans to
increase the capacity to 115 GW until 2030, a 98 percent increase in capacity in eight years. Source: Own
calculation based on data provided by the project Energy Charts operated by the Fraunhofer Institute for
Solar Energy Systems ISE (for 2002-2022) and the government’s expansion goals enacted with the Climate
Act 2023.
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Figure A.2: Past Wind Turbine Construction and Plan Until 2030
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Notes: Figure A.2 shows the evolution of wind turbine construction in Germany. The blue bars indicate the
number of new constructed turbines, net of old turbines that were taken off the grid. The red line shows the
cumulative number of wind turbines. The light blue bars in 2022 to 2030 show the number of new turbines
that would be necessary to reach the government’s capacity goal, 115 GW until 2030. The government does
not name an explicit goal for the number of wind turbines. In translating wind capacity goals to annual
turbine, I assume that capacity per wind turbine continues to increase at the same rate as in the past and
that the same number of wind turbines is installed each year. Source: Own calculation based on data from
the Bundesverband Windenergie (for 2000-2021) and the government’s expansion goals enacted with the

Climate Act 2023.
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Figure A.3: Distribution of Turbine Heights

(a) Turbines constructed in 2000 (b) Turbines constructed in 2017
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Notes: Figure A.3 shows the distribution of wind turbine heights. Panel A.3a plots the distribution in 2000,
Panel A.3b plots the distribution in 2017. Source: Own calculation based on data from The Wind Power.

Figure A.4: Changes in Wind Power Density and Turbines, 2000-2017
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Notes: Figure A.4 shows the change in wind turbines between 2000 and 2017 for deciles in the change of
wind power density (in kg/s®) over the same period. Panel A.4a uses the raw variation of both variables.
Figure A.4b uses the residual variation that remains after controlling for district fixed effects as well as
geographic controls including altitude, terrain ruggedness, slope and the share of land that is covered by
buildings, agriculture, forests, and water. Source: Own calculation using data on wind turbines from The
Wind Power and data on wind power density from the Global Wind Atlas.
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Figure A.5: Balance Residents and Workers Across Labor Markets
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Notes: Figure A.5 plots the log number of residents against the log number of each workers. Each dot

represents one of 257 labor markets. The red line represents the 45 degree line.
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Figure A.6: Amenities

(a) High-Skilled (b) Low-Skilled

Notes: Figure A.6 shows the model-implied amenities in 2017. Panel A.6a shows amenities for high-skilled
residents, Panel A.6b for low-skilled residents. The variation is grouped into quintiles. Dark quintiles indicate

high amenities, light quintiles indicate low amenities.
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Figure A.7: Geographic Distribution of Wind Turbines Active in 2017

Notes: Figure A.7 shows the geographic distribution of active wind turbines in 2017.
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Figure A.8: Effects of Wind Turbines on Population and Employment
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Notes: Figure A.8 shows the general equilibrium effects of wind turbine development on population and
employment. Changes are calculated as percent changes, comparing the variables observed in the data in
2017 with the model counterfactual assuming the absence of wind turbines. Panels (a) and (b) show the
changes in high- and low-skilled residents, respectively. Panels (¢) and (d) show the changes in high- and
low-skilled workers, respectively. The variation is grouped into quintiles, ranging from the most negative
changes in red to the most positive changes in blue.
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Figure A.9: Effects of Wind Turbines on Income and Wages
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Notes: Figure A.9 shows the general equilibrium effects of wind turbine development on income and wages.
Changes are calculated as percent changes, comparing the variables observed in the data in 2017 with the
model counterfactual assuming the absence of wind turbines. Panels (a) and (b) show the changes in high-
and low-skilled income, respectively. Panels (¢) and (d) show the changes in high- and low-skilled wages,
respectively. The variation is grouped into quintiles, ranging from the most negative changes in red to the
most positive changes in blue.
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Table A.3: Labor Demand Estimation, First-Stage

(1) (2) (3) (4)
Aln(LF)  Aln(LY)  Aln(LM)  Aln(LY)

AB! /L a000 0.097%%%  0.006  0.094%¥*  0.004
(0.009)  (0.003)  (0.009)  (0.003)

AB!/ L 5000 J0.062%%%  (0.050%*F  _0.087FF*  (.052%F*
(0.013)  (0.014)  (0.026)  (0.023)

2nd-Stage Dep. Var. Aln(wl)  Aln(wl)  Aln(w!)  Aln(wl)
Kleibergen-Paap F-Statistic 9.6 9.6 4.4 4.4
Observations 35,918 35,918 32,539 32,539

Notes: Table A.3 shows the first-stage results for the labor demand estimation. Columns (1) and (2) show
the first-stage where the outcome of the second-stage are high-skilled wages. Columns (3) and (4) show the
first-stage where the outcome of the second-stage are low-skilled wages. The standard errors are clustered
at the level of 401 districts.

B Additional Details on the Data

B.1 Area Available for Wind Turbines (Placebo Check)

I construct the share of land within three kilometers of a neighborhood that is theoretically
available for wind turbine construction. The variation serves two purposes. First, I use
it as a placebo check, to confirm that changes in wind power density do not affect the
outcome variables for neighborhood where wind turbine development is physically impossible
or forbidden. Second, I interact the variation in land available with changes in wind power

density to increase the power of my instrument.

To make the placebo check useful, I make sure to only exclude areas where wind turbine
development is definitely impossible. First, I obtain data on land use in Germany in 1990,

before the start of wind turbine development, from the German Federal Environment Agency.
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I exclude urban areas (CLC codes 111 and 112), industrial areas (121), road infrastructure
(122), green urban araes (141) and sport and leisure facilities (142). Moreover, I exclude 400
meter bands around urban areas (CLC codes 111 and 112) as minimum required distance
between residential areas and wind turbine development. Minimum distance rules have
changed over time, and are heterogeneous across German states. I decide to take 400 metersas
it is the bare minimum enacted by the vast majority of states (FA Wind, 2022).'* Moreover,
I exclude all water bodies (CLC codes starting with 4 or 5).

Secondly, I obtain maps on conservation areas from Germany’s Federal Agency for Na-
ture Conservation. In line with the placebo argument, I only exclude conservation areas
where turbine development is strictly or almost always prohibited. Following a report by
the German Federal Environment Agency (2013) on the availability of land for wind energy,
I exclude nature reserves (Naturschutzgebiete, § 23 BNatSchG), national parks and monu-
ments (Nationalparke und Nationale Naturmonumente, § 24 BNatSchG), the core areas of
bioshphere reserves (Kern- und Pflegezone der Biosphérenreservate, § 25 BNatSchG), flora
and fauna protection areas (FFH Gebiete), and wetlands basd on the RAMSAR convention
(RAMSAR Feuchtgebiete).

B.2 Commuting Times

To calibrate commuting costs in the model, I calculate the approximate travel times 7,;
for all neighborhood pairs ni. Since there are 133,339 neighborhoods and more than 10°
pairs, I simplify the problem as follows: for neighborhood pairs in different municipalities, I
approximate the travel time by using the travel time between population-weighted centroids
of both municipalities. I calculate these travel times using data from OpenStreetMap and
the routing algorithm developed by Huber and Rust (2016). For neighborhood pairs within
the same municipality, I calculate the distance as-the-crow-flies and translate distances to

travel times by assuming a commuting speed of 50 kilometers per hour.

To estimate the commuting gravity equation (for which I draw on district pair level
commuter shares), I aggregate travel times at the district pair level by taking the population-

weighted average of the travel times across all municipality pairs within the district pair.

1313 out of 16 states have minimum distance rules of at least 400 meter. Bavaria has a minimum distance
rule equal to the height of the turbine times factor ten, which in practice is always larger than 400 meter.
Baden-Wiirttemberg and the Saarland use case-by-case minimum distance rules.
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B.3 Commuter Data

In Section 5.2, I estimate the commuting cost semi-elasticity using a commuting gravity
equation. To do so, I draw on individual level data from the SIAB, a two percent random
sample of workers in the TEB. I restrict the sample to all individuals between 25 and 65
years. Moreover, I follow Monte et al. (2018) and exclude all commutes longer than 120
kilometersone-way. These commutes are likely to arise from measurement error in the data.
For example, when I plot commuting share against distance the relationship is clearly nega-
tive below 120 kilometer, suggesting that residents dislike longer commuters, but turns flat
for commutes above 120 kilometer. Finally, I calculate the mean commuting shares over the
entire sample period, 2000 to 2017, to reduce year-to-year measurement error and improve
the reliability of the data.

B.4 Migration Data

In Section 5.2, I estimate the the labor demand elasticities using a shift-share design exploit-
ing the geographic distribution of migrants of different origin across Germany at baseline

and national trends in migration over the sample period.

Specifically, I calculate the shift share instrument

Rig 2000
AB? = Z (Rz,z(n?,fz - Rz,moo,ﬂ') ’ —Rg (26)
veC 49,2000

where Rz,2017,—i — Rz,QOOO,—i is the national change in immigrants of skill § from country
group g between 2000 and 2017, leaving out migrants to ¢ to avoid a mechanic effect, and
Rig 2000/ Rg,2000 is the share of immigrants of group g that live in ¢ among all immigrants of

group g in Germany.

As the groups g € G, T use the following six country groups (determined by the GridAB
data). West-European and North American countries (Austria, Belgium, Canada, Denmark,
Finland, France, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portu-
gal, Spain, Sweden, Switzerland, United Kingdom, United States), East European countries
based on the expansion of the European Union in 2004 (Cyprus, Czech Republic, Estonia,

Hungary, Latvia, Lithuania, Malta, Poland, Slovakia, Slovenia), East European countries
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based on the expansion of the European Union in 2007 and later (Bulgaria, Croatia, Ro-
mania), Balkan countries not in the European Union (Albania, Bosnia and Herzegovina,
Serbia and Montenegro, Macedonia, Kosovo), ex-Soviet countries (Armenia, Azerbaijan, Be-
larus, Kazakhstan, Kirghistan, Moldavia, Russia, Tajikistan, Turkmenistan, Uzbekistan,
Ukraine, Georgia), and countries that are historic origins of the refugee population in Ger-

many (Afghanistan, Eritrea, Iraq, Iran, Nigeria, Pakistan, Somalia, Syria).

I obtain the migration distribution at baseline R;g 2000/ Ry 2000 from the GridAB data. For
the national trends R 507 ; — R 500 _;, I use individual data from the SIAB. I define high-
skilled individuals as those with college education, and low-skilled individuals as everyone
else. Since the STAB is a 2 percent sample, I multiply the numbers with 50 to obtain the
total number of residents from each country. I aggregate the numbers by the origin groups
of the GridAB data, and calculate the national change in migrants in each origin group
between 2000 and 2017. To avoid any mechanic positive correlation, I subtract the number
of residents of the specific origin country group in each neighborhood when constructing the

nationwide trends.

C Additional Details on the Model Inversion

C.1 Adjusted Wages

In the first step, I use the commuter market clearing, data on residents R?, workers RY and
estimated commuting costs information on d?; as well as the parameter s’ to infer adjusted

wages w?. Specifically, the model implies the following commuter market clearing.

H@
]\gwi/ dﬁi) R’

Wb tn
s=1 (ws/ds)

LI=>"

27
i1 2 0

Workplaces with zero employment (LY) have zero adjusted wages. For the rest of locations
with strictly positive employment, Section S.3.1.1 in the Online Appendix of Ahlfeldt et al.

(2015) shows that the recovered wages are unique (up to a normalization).
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C.2 Adjusted Amenities

In the second step, I use the location choice Equation (7) and data on residents RY, house
prices Q,,, adjusted wages w? and estimated commuting costs d?; as well as the parameters

k% and o to infer adjusted amenities A%. From the location choice equation, we have

(2
K
[Z
)\9 _ dle%

ni g
SN SN (e
r=t st \ag,Qp

(28)

0

o, and dividing by the same equation for the

Summing across workplaces, solving for A

first equation yields
- - \1/k? -
A= (R) @ (29)

where X,, = X,,/X; and W,, = 3>, w?/d%,. From this mapping, one can calculate the

unique (up to a normalization) vector A?. With further information on 4° and T}, one can
0

n:

further infer fundamental amenities a

C.3 Productivity Fundamentals

In the third step, I use the labor demand Equations (9) and (10), data on employment LY, and
the labor demand elasticities v**, v~ and " to infer adjusted productivity fundamentals
29, Solving the labor demand equations for productivity, we obtain high-skilled fundamental

productivity

2 = In(w!) — A"In(LE) +A"in(L)) (30)

)

and low-skilled fundamental productivity

= ln(wl.) — fyhlln(LZh) + ’y”ln([;é) (31)

(2

59



When employment of both types is zero, I assume a fundamental productivity of zero.
When employment of one type is zero, I add 107, to calculate approximate productivity.

With these additions, the inferred vector of fundamental productivity are unique.

C.4 Housing Fundamentals

In the fourth step, I use data on adjusted wages and commuting costs to calculate adjusted

income

(wf /)"
W= 3 Mgl =3 (32)

0
iEN iEN ZseN (WE/d%s)N

Then, I use the housing market clearing in Equation (15), data on house prices, residents,
and income and the estimated housing supply elasticities 7, to solve for housing fundamentals

H,. Specifically,

hh o h Ll ol
7o Ryvp o™ + R0, «

H, T
Qn+77n

(33)

yields the unique housing fundamentals H,,.

D Additional Details on Turbine Scenarios

D.1 Cost Benefit

While the quantified model suggests large costs for residents, there are also important benefits
of wind energy that are outside of the model. First, wind energy is Germany’s largest source
of electricity, and it is becoming increasingly cheap. Second, wind energy avoids greenhouse
gas emissions and mitigates climate change. Third, wind energy avoids the air pollution

costs that come from fossil sources such as coal energy. I discuss these three benefits in turn.

First, wind energy is Germany’s largest source of electricity and it is getting increas-

ingly cheap. Figure 1 in the Appendix reports projections on the levelized cost of electricity
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(LCOE)'" of different types of energy reported by DNV (2023). While wind energy has
historically been more expensive than fossil sources, advances in turbine technology have de-
creased its price substantially. An onshore wind turbine installed in 2022 provides electricity
for 49 USD per MWh, compared to coal, gas, and nuclear electricity provided at around 75
USD. Multiplying the price difference by total electricity produced by onshore wind energy
in 2022, about 99 TWh, saves 2.6 billion USD, or about 0.07 percent of GDP. By 2050, the
LCOE is projected to fall to 27 USD, while the LCOE of coal, the source that is most likely
to be replaced by wind energy, will increase to around 125 USD. Given this cost differential,
wind energy production of 99 TWh may save up to 9.7 billion USD, or about 0.26 percent
of GDP.

Secondly, Germany wind energy replaces fossil sources of energy and leads to lower emis-
sions. The German Environment Agency estimates that onshore wind energy production
in 2018 decreased emissions by 63 million CO2 equivalent tons (Umweltbundesamt, 2019).
Moreover, the agency estimates welfare benefits between 207 USD and 721 USD per avoided
ton of CO2 (Federal Environment Agency, 2020).!® Together with the total emissions es-
timates, the price implies that onshore wind energy production in 2018 increased welfare
by between 0.35 and 1.22 percent. Nevertheless, there is substantial methodological uncer-
tainty around pricing the welfare costs of Carbon emissions, and previous estimates have
often seen upward corrections over time. For example, a special report of the Intergovern-
mental Panel on Climate Change suggests that limiting global warming to 1.5 degrees above
pre-industrial temperatures would require a social of cost of carbon between 135 USD and
5500 USD (IPCC, 2018). This wider range of estimates implies that onshore wind energy
production in 2018 increased welfare by between 0.23 and 9.39 percent.

Thirdly, electricity production from wind energy avoids air pollution that fossil sources
of energy create. The reduced air pollution following the German phaseout of coal energy is

estimated to increase welfare by about 0.12 percent (Bohringer and Rosendahl, 2022).

The discussion suggests that there is meaningful methodological uncertainty around the
benefits of wind energy. Nevertheless, the estimates imply that the benefits are very likely
to be larger than the residential costs estimated in this study, especially as the costs of wind

energy technology continue to fall, and as policy-makers are becoming more ambitious in

4The LCOE measures the net present cost of electricity of a plant installed in a given year, taking into
account the plant’s fixed and variable cost as well as the total electricity produced over its lifetime.

15The German Environment Agency reports benefits between 190 Euro and 680 Euro per ton of CO2
equivalents. I translate the costs to USD using the recent exchange rate of 1.06 USD per Euro (October
2023).
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their climate policies.

D.2 Minimization Problem

To find a low-cost alternative turbine distribution, I minimize the log-linearized first-order
welfare costs. Denote Y short for the baseline wind turbine scenario (possibly, but not
necessarily, the absence of any wind turbines) and T; short for the new distribution of
turbines {7, },,, and denote [X]y and [X]y the outcome of a variable X under each scenario,

respectively.

For worker w of type €, who lives in n and works in ¢ under Yy, the log change in utility

is in([v] (w)]TO) — In([v! (w)]n) where

ni ni

Alw!
i) = o) (34)

Since I am minimizing the first-order impact on residents, I assume that residents are
required to continue living in n and working in 7, and hence [X],y = [X]y, for all X except

A?. The minimization problem thus becomes

migimise S (] n ([a2], /2], ) == )0 ([, /[,
5)

I set the relative weights x4 and 1 — p”* that the policy-maker places on the welfare of
high- and low-skilled residents equal, so that they scale total utility and do not affect the

solution of the minimiation problem. Next, note that

) ) , In(af) +pB°- [T0]y, under Ty
() ot 7)<t ) 19 o 0 2
(36)

and so the minimization problem simplifies to
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N

minimize Z <Bh : [RZ] o, T B [RH T0> ' ([Tn]rl - [Tn]ro) (37)

{Tu}n n=1

D.3 Areas Available for Wind Turbine Development

To identify potential areas for alternative wind turbine allocations, as well as areas for
future wind turbines, I draw on maps published by Agora Energiewende (2021), and the
accompanying method report (Reiner Lemoine Institute, 2022). The maps start with a base
map of Germany and exclude all areas in which wind turbine development is forbidden or
physically impossible. Table D.4 lists all excluded areas, as well as the buffer zone around
each area. The method report Reiner Lemoine Institute (2022) explains in detail why areas
are excluded, and links to further documentation on the legal regulation of wind turbine

development in each area type.
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Table D.4: Areas Excluded from Wind Turbine Development - Scenarios

Area Excluded Buffer (in meter)

Settlements and Infrastructure:

Industrial parks Yes 0
Residential areas Yes Depends
Freeways Yes 40
Other roads Yes 20
Railroads Yes 50
Other train infrastructure Yes 0
Airports Yes 5000
Airfields Yes 1760
Power lines Yes 141
Military exclusion zones Yes 0
Aviation communication beacons Yes 3000

Environmental Protection Areas:

National parks Yes 0
Protected areas (Naturschutzgebiet) Yes 0
Bird protection areas Yes 0
Wetlands (Ramsar) Yes 0
Nature reserves (Biosphérenreservat, Kern- und Pflegezone) Yes 0
Protected areas (Landschaftsschutzgebiet) Depends 0
Fauna and flora habitats (FFH) Yes 0
Drinking water protection areas Yes 0
Other Areas:

Forests Depends

Water bodies, standing Yes

Water bodies, running Yes 50
Flood plains Yes 0
Steep terrain (slope larger than 30 degrees) Yes 0

Notes: The table shows all areas that are excluded from wind turbine development. For further details, see
Reiner Lemoine Institute (2022).
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D.4 Compensatory Transfers

The goal is to find compensatory transfers {7°},, and a uniform tax 7% that allow the social
planner to implement any allocation of wind turbines without changing the relative welfare
across locations. Again denote Tyshort for the baseline wind turbine scenario and Y short
for new distribution of wind turbines {7}, },, and denote [X], and [X ]T the outcome of
a variable X under each scenario, respectively. The proportional tax 70 = 1/exp(—/

([Ta]y, — [Thly,)) compensates residents and preserves the relative welfare in all locations

since

[49],, 0wl D)
exp (=B - ([T, — [Tnly,))

Moreover, since the financing tax 7 is the same for all neighborhoods, the relative or-

dering of neighborhoods is preserved for all individuals. 7% balances the budget if

ZZA T —ZZA w;! (39)

n=1 =1 n=1 =1

and, substituting in 7% and solving for 7,

i

20— - - ij 125\[1 0 ) 0 (40)
Zn:l Zi:l )‘fu‘ ) 67519( 59 ([ ] - [Tn]ro))

Finally, since the taxes that preserve relative welfare are proportional, the absolute taxes
depend on the income in the neighborhood. Specifically, the total absolute payment that a

neighborhood receive is

Z R9 (1., —79) (41)

oc{h,l}

. . 9 _ 9 . /9
where income is v? = SN 1 A T Wi
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