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Abstract

We study the determinants of cost pass-through in differentiated product markets.

Random utility models of demand, such as mixed logit, are attractive because they

place limited restrictions on customer substitution patterns. We show the shape of

the distributions of customer preferences determines cost pass-through. Common

functional form assumptions for these distributions lead to biased estimates of both

pass-through and substitution. We offer a flexible and parsimonious unit-demand

specification that accommodates both log-concave demands (incomplete pass-through)

and log-convex demands (over-shifted pass-through) up to CES demand. Instruments

and estimation are straightforward, and Monte Carlo analysis validates our ability to

recover the underlying demand curvature. Using automobile data, we find the bias

from ex-ante shape restrictions is large. Results show that flexibly estimating cost

pass-through has important implications for evaluating trade and subsidy policies.
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1 Introduction

Demand curvature, through its impact on cost pass-through, drives the conclusions to many

substantive questions in industrial organization (IO), including the ability of digital plat-

forms such as Amazon.com to affect the division of surplus between third-party sellers and

consumers (Gutierrez, 2022), the welfare implications of uniform pricing observed in settings

ranging from consumer packaged goods (DellaVigna and Gentzkow, 2019) to consumer

financial products (Cuesta and Sepúlveda, 2021), or the predicted price effects of horizontal

mergers that generate cost efficiencies.1 Demand curvature is also central to the incidence

of taxes and exchange rates in non-competitive industries (Weyl and Fabinger, 2013) and to

the role of regulation in controlling externalities (Fabra and Reguant, 2014; Miller, Osborne

and Sheu, 2017).

These examples highlight the value to a flexible demand specification to prevent

functional form assumptions from impacting curvature predictions. Bulow and Pfleiderer

(1983) underscore this point by illustrating how the demand specification can skew statis-

tical tests assessing the presence of market power in the context of the tobacco industry.

Likewise, Froeb, Tschantz and Werden (2005) find that the predicted pass-through rates of

cost efficiencies in the WorldCom–Sprint merger are seven times greater when employing

a constant elasticity of substitution (CES ) demand system compared to a linear demand

system.

We focus on discrete-choice demand models and examine the connection between

preference specification and the set of feasible substitution and pass-through combinations

accommodated by the demand model. The mixed-logit (ML) model, in particular, can

capture realistic substitution patterns across heterogeneous consumers. This flexibility is

key to measuring the closeness of competition between products, predicting diversion in

response to a merger-induced price change, or identifying collusion among firms. However,

understanding the determinants of pass-through (demand curvature) in discrete choice mod-

els is less developed, as is the interaction between substitution and pass-through. Berry and

Haile (2021), for example, state:

1 Such price effects depend on the concavity of the profit function and thus demand curvature. Jaffe andWeyl
(2013) suggest that for small merger-induced price increases, observed pass-through rates allow inference of
the concavity of profit. For large price changes, Miller, Remer, Ryan and Sheu (2015) suggest conducting
a merger simulation with a demand system constrained to mimic observed pass-through.
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...[S]ubstitution patterns drive answers to many questions of interest—e.g., the sizes of

markups or outcomes under a counterfactual merger. However, other kinds of counter-

factuals can require flexibility in other dimensions. For example, “pass-through” (e.g.,

of a tariff, tax, or technologically driven reduction in marginal cost) depends critically

on second derivatives of demand. It is not clear that a mixed-logit model is very flexible

in this dimension.

We aim to highlight the implications of modeling choices for representing consumer

preference heterogeneity in answering questions such as: When do assumptions on preference

heterogeneity restrict feasible curvature estimates and pass-through? How can we model

preference heterogeneity flexibly to simultaneously allow for the estimation of realistic market

power and substitution (elasticity) and pass-through (curvature)?

Motivating Examples. We begin by illustrating the consequences of preference het-

erogeneity on elasticity and demand curvature estimates using the well-known simulated

ready-to-eat cereal data from Nevo (2000) and US new automobile purchase data from

Berry, Levinsohn and Pakes (1999). We focus on elasticity and curvature pairs as descriptive

statistics for the shape of demand. While using (own-price) elasticity as a simple measure of

market power will likely be familiar to the reader, demand curvature as a simple measure of

cost pass-through is likely new. In Section 2, we formally define demand curvature and its

connection to cost pass-through. For now, the reader should take substitution estimates “as

given” and to simplify, think of curvature and pass-through as equivalent; i.e., if a product’s

estimated demand curvature is 0.9, the model predicts the firm will increase price 90 cents

when marginal cost increases by one dollar. Of course, the actual pass-through rate will also

depend on the substitution patterns of the estimated demand, something that we explicitly

addres later in the paper.

Figure 1 Panel A summarizes estimation results for a simple multinomial logit (MNL)

model of cereal demand that represents preferences as a common linear function of cereal

attributes and price. Each dot represents the estimated own-price elasticity (ε) and curvature

(ρ) pair of a single product evaluated at observed prices. We find that estimated product

demands are elastic and that estimated curvature is less than – and truncated at – one.

In Panel B, we present the results for the same data using Nevo’s (2000) mixed-logit

(ML) specification which adds normally distributed heterogeneity in both price sensitivity
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Figure 1: Example Elasticity and Curvature Estimates

A: Multinomial Logit (Nevo, 2000) B: Full Model (Nevo, 2000)
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B: Multinomial Logit
Estimates
Avg. Curvature (0.98)
Avg. Elasticity (3.71)
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A: Full Model
Estimates
Avg. Curvature (1.06)
Avg. Elasticity (3.62)

C: Multinomial Logit (Berry et al., 1999) D: Full Model (Berry et al., 1999)
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Multinomial Logit Model
Estimates
Avg. Curvature (0.99)
Avg. Elasticity (2.75)
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Full Model
Estimates
Avg. Curvature (1.35)
Avg. Elasticity (2.83)

Figure Notes: Black dots represent the estimated own-price elasticity and curvature for a sample product.
The gray dot corresponds to the average elasticity and curvature. Demand estimates in the top panels are
based on the simulated ready-to-eat cereal data from Nevo (2000), while the bottom panels use data from
Berry et al. (1999). All estimates use best practices for mixed logit estimation (Conlon and Gortmaker,
2020).

and valuation of product attributes to the MNL model.2 We observe that estimated demand

curvatures in the ML model exceed one for the majority of the products, which indicates

that demand is “overshifted”: a one-dollar increase in cost results in more than a one-dollar

increase in price for these products. While the two specifications deliver similar average

elasticities – a statistic often reported by researchers in the literature – the MNL model

predicts near complete pass-through for the modal product, as in perfectly competitive

settings. As the ML model nests the MNL model, this points to the importance of preference

heterogeneity in generating these discrepancies.

2 We estimate each model using Nevo’s (2000) original set of Hausman-style price instruments. We also
considered other demand specifications that rely on only an idiosyncratic price random coefficient or on
only price-demographic interactions to represent heterogeneity in price sensitivity. The full description of
the different specifications and the relevant estimates are reported in Online Appendix B.
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We repeat the exercise for new automobile purchases in panels (C) and (D). We

observe that ML demand again implies greater diversity of demand curvature and, therefore,

also a greater diversity of pass-through. As a foreshadowing of later results, the shape of the

dots in panel (D) reflects the underlying Cobb-Douglas utility specification, which connects

the distribution of price sensitivity with the distribution of income via the budget constraint.

As demand curvature plays a key role in determining firm price responses to a change in

marginal cost in settings with market power (Cournot, 1838;Weyl and Fabinger, 2013), these

examples suggest that careful modeling of preference heterogeneity and the shape of demand

is an important ingredient in building a model that delivers robust empirical predictions.

Contributions. Our goal in this paper is to identify the sources for the differences between

the left-hand and right-hand side panels of Figure 1. We empirically assess the substantive

implications of these differences and highlight when and how to include flexibility in such

models. As the discrete choice model is a workhorse in empirical work, adding such flexibility

in a tractable way is useful in addressing a wide variety of important questions in academic

and policy settings. We make several theoretical and empirical contributions toward achiev-

ing this objective.

First, we identify how different components of customer preferences influence the

shape of mixed-logit demand. We do so by adopting the “demand manifold” approach of

Mrázová and Neary (2017) and focusing on the set of achievable demand elasticity and

curvature pairs as sufficient statistics for the shape of demand.3 We show that the shape

of the mixing distribution in ML – how the researcher models preference heterogeneity

– determines the set of achievable elasticity-curvature pairs and, therefore, the shape of

demand. Using a simple single-product monopoly model, we show that curvature of demand

is the outcome of a tug-of-war between heterogeneity of consumer preference over product

attributes and heterogeneity in price sensitivity.

When consumers have heterogeneous tastes over product attributes, we show that

demand curvature and pass-through decrease at all prices relative to the simple MNL model.

Thus, by incorporating heterogeneity in tastes for product attributes, pass-through remains

at most complete. This result builds on Caplin and Nalebuff (1991b), who show that a

3 While Mrázová and Neary (2017) address the behavior of elasticity and curvature for different continuous
demand systems (e.g., CES , Pollak, translog) in a single-product monopoly model, we instead evaluate
how components of mixed logit demand influence the relationship between elasticity and curvature in a
discrete choice framework suitable for differentiated products oligopoly models.
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MNL model with heterogeneous valuations of product attributes preserves the curvature

properties of the MNL model. Intuitively, while consumers have heterogeneous tastes over

characteristics, their demand response to a change in price is uniform, which leads a firm

with market power to absorb some changes in marginal cost.

Incorporating heterogeneity in price sensitivity increases demand curvature and pass-

through. Here, the shape of the price mixing distribution plays a vital role. Idiosyncratic

price responsiveness thus accommodates but does not impose more than complete pass-

through. We consider three ways of specifying idiosyncratic price responsiveness: distribu-

tional assumptions for unobserved heterogeneity in price sensitivity, observable consumer

heterogeneity via demographic-price interactions, and heterogeneous income effects.

We demonstrate that depicting estimated product-level demand in elasticity-curvature

space for empirical applications – as in the motivating example above – is useful in visual-

izing this tug-of-war. It also amounts to a useful presentation of heterogeneous estimated

demands by providing insight into possible restrictions imposed by the researcher’s preference

specification on the shape of demand (e.g., Figure 1, Panels A and C).

Our second contribution is connecting ML demand with CES demand – the dominant

framework in the macro and international trade literature. Here, we demonstrate that

discrete choice not only nests CES in the case of continuous demand (Anderson, de Palma

and Thisse, 1992) but also in the case of the unit-demand discrete choice models commonly

used in the Industrial Organization literature. However, where CES and ML differ is in

equilibrium pass-through under oligopoly. Since its curvature exceeds one, CES demand

implies a pass-through that is always over-shifted, and this pass-through does not vary with

the number of competitors. In contrast, we show that competition reduces pass-through

relative to the single-product monopoly case in ML models for such curvatures. Hence,

while the ML framework provides a natural and intuitive foundation for CES demand and

may generate identical estimates of demand elasticity and curvature, the CES model predicts

larger counterfactual price responses to cost changes.

As a third contribution, we highlight the key modeling choices of the mixing distribu-

tions governing preference for price and product characteristics. As theory provides limited

guidance on sources of preference heterogeneity, particularly for quasi-linear utility specifica-

tions, researchers often impose shape restrictions on these mixing distributions ex-ante. We

offer an easy and parsimonious way of modulating how correlates of demand heterogeneity,
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such as consumer demographics, interact with product characteristics and price to increase

the range of feasible elasticity and demand curvature pairs. An appealing feature of our

approach is that it nests a ML model with standard distributional assumptions and that

parameters can be recovered using a generalized method of moments estimator. Identification

derives from data moments that trace price responses and consumption patterns across

distributions of customer demographics.

We suggest an instrumentation strategy that recovers the nonlinear distribution of

price sensitivity by connecting the price responses to cost shifts at different price points to the

empirical distribution of demographics through a simple and parsimonious formulation. We

demonstrate our identification strategy and the consequences of misspecification via Monte

Carlo simulation of two discrete choice demand models: one with income effects and one with

quasilinear demand. Consistent with our motivating examples in Figure 1, we show that

elasticity and pass-through misspecification bias can be large even when demand elasticities

are identical. Moreover, we show that common specifications of price sensitivity are unlikely

to correctly estimate the distribution of price sensitivity among customers. Thus, a researcher

interested in understanding the distributional consequences of a particular government policy

(e.g., , tariffs, subsidies, health insurance) or an exogenous cost shock, will grossly under- or

over-estimate the welfare effects if they impose income or log-income ex ante.

Using the data from Berry et al. (1999), we estimate automobile demand under

alternative assumptions on the strength of income effects that introduce heterogeneity into

price sensitivities. We evaluate a hypothetical $1,000 subsidy for consumers who buy a

new US vehicle. The average estimated cost pass-through ranges from 0.99 to 1.79 at the

vehicle level, depending on how income effects modulate the price sensitivity distribution.

When price sensitivity is inversely proportional to consumer income, subsidy pass-through

and hence predicted price declines of domestic cars are most pronounced, likely overstating

the true effectiveness of the trade policy. While our empirical exercise explicitly evaluates

trade policy, the insight extends naturally to the case of electric vehicle subsidies introduced

in the Inflation Reduction Act of 2022. This example focuses on the empirical specification

of income effects, which is likely important for large purchases of durable goods such as cars.

We note, however, that demand curvature and cost pass-through are determined by the shape

of the distributions that define customer preferences more generally, be these connected to

observable demographics or unobservable random taste variation. How to best specify these

in any particular application is a function of the identifying variation available in the data.
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Alternative Approaches. Our focus in this paper is to address the role of distributional

assumptions in determining the shape of discrete choice demand. Our work complements

Compiani (2022) who also focuses on estimating demand flexibly but uses a non-parametric

approach. This attractive solution places even fewer restrictions on the shape of demand

than our environment but it easily suffers from a curse of dimensionality. Our work suggests

a tractable approach to modeling demand flexibly for a broad range of empirical settings.

Alternative demand-side approaches have extended the range of feasible curvatures by

adopting a discrete-continuous choice framework where heterogeneous consumers choose ei-

ther a budget allocation for a given product (Adão, Costinot and Donaldson, 2017; Björnerstedt

and Verboven, 2016) or fractional units of the same product (Anderson and de Palma, 2020;

Birchall and Verboven, 2022).

Finally, our focus on demand specification ignores the effect of supply-side frictions on

cost pass-through. We do not consider supply moments as supply-side misspecification may

bias estimation results (Conlon and Gortmaker, 2020). Such considerations, for example,

the presence of menu costs in adjusting price, may increase or decrease the pass-through

implied by demand curvature under static Nash-Bertrand pricing alone (Conlon and Rao,

2020). However, accurately capturing the shape of demand is a necessary condition for

understanding many aspects of modern empirical work, such as analyses of mergers, taxation,

tariffs, cost shocks, exchange rates, and price discrimination.

Outline. We introduce the demand manifold framework in Section 2 and characterize the

demand manifold for the general ML model in Section 3. We show mathematically how

features of the mixing distributions used in consumer preferences determine the shape of

consumer demand, which we represent via the relationship between elasticity and curvature.

We then evaluate the implications of different quasi-linear preference specifications for curva-

ture and elasticity in Section 4. Section 5 addresses estimating and identifying heterogeneity

in price sensitivity and non-price characteristics. Here, we describe our proposed instrumen-

tation strategy and investigate its properties in Monte Carlo analyses before turning to our

empirical application of evaluating a trade policy in automobiles. Section 6 concludes by

summarizing our contributions and discussing empirical settings beyond trade policy and

electric vehicle subsidies where we think adding demand flexibility is important. Additional

results and derivations are reported in the Appendices.
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2 A Primer on Demand Manifolds

In this section, we introduce the concept of a demand manifold, a smooth relationship

between demand elasticity and curvature consistent with profit maximization. Mrázová and

Neary (2017) provide an excellent formal derivation of demand manifolds and their properties

for a wide range of continuous demand specifications. We employ demand manifolds to

assess the flexibility of alternative preference specifications in the context of discrete-choice

demand, highlighting relevant issues that relate to the estimation of mixed-logit demand

from an applied perspective.

We begin with a discussion of the demand manifold for a single-product monopolist,

as we rely on this setup in Sections 3-4 to illustrate graphically the properties of common

discrete-choice demand specifications. Next, we discuss demand sub-convexity, which we

impose on the demand systems in these analyses to ensure the existence of well-behaved

equilibria and comparative statics. Demand sub-convexity weakly limits the feasible elastic-

ity and curvature combinations by ensuring demand becomes more elastic at higher prices.

2.1 Single-Product Monopoly

For simplicity, consider the case of a single-product monopolist with constant marginal cost

c. The monopolist sets the price p that maximizes profits Π(p) = (p − c) · q(p) and the

following necessary condition holds:

Πp(p) = q(p) + (p− c)·qp(p) = 1− p− c

p
ε(p) = 0 ⇐⇒ ε(p) ≡ −p·qp(p)

q(p)
> 1 , (1)

where ε denotes the elasticity of demand. Similarly, the sufficient condition for price p to

maximize monopoly profits is:

Πpp(p) = 2qp(p) + (p− c)·qpp(p) < 0 ⇐⇒ ρ(p) ≡ q(p)·qpp(p)
[qp(p)]

2 < 2 , (2)

letting ρ denote the curvature of inverse demand. While demand can be concave (ρ < 0),

linear (ρ = 0), or convex (ρ > 0), concavity of the profit function rules out excessively convex

demands.

– 8 –



Mrázová and Neary (2017) prove that a well-defined smooth equilibrium relationship

connecting elasticity ε and curvature ρ exists for continuous demands that are decreasing

(qp(p) < 0 and pq(q) < 0) and three times differentiable. This allows us to invert the elasticity

in Equation (1), and substituting into Equation (2), we obtain the demand manifold:

ρ[ε(p)] =
p2 ·qpp(p)
ε2(p)·q(p)

. (3)

The slope of demand plays a central role in the profit maximization necessary con-

dition (1); in equilibrium, demand must be elastic whenever firms have market power.

Economists frequently rewrite the necessary profit maximization condition regarding markups

or the Lerner Index.

The sufficient condition for profit maximization further requires that at the equilib-

rium price, the monopolist’s marginal revenue function is non-increasing, which we rewrite

in turn in Equation (2) as a constraint on the equilibrium curvature of demand. Cournot

(1838) first established the connection between demand curvature and pass-through for a

monopolist with constant marginal costs:

dp

dc
=

1

2− ρ
> 0 , (4)

Hence, when the monopolist faces log-concave demand with ρ < 1, its pass-through of cost

shocks is incomplete, while it is more than complete in the case of log-convex demand with

ρ > 1. Complete pass-through occurs when ρ = 1. Our representation of the manifold in

terms of (ε, ρ) therefore directly relates to economic outcomes of interest, namely markups

and pass-through.

Oligopoly. The monopoly case is useful to establish the connection between demand

curvature and pass-through rate. We will use graphical analysis repeatedly to convey the

intuition of how distributional assumptions of discrete choice models affect the relationship

between own-elasticity and curvature by plotting demand manifolds corresponding to a

single product monopoly case. Obviously in practical applications oligopolists sell multiple

products and this graphical representation should be understood as a tool, representing,

at best, the relationship between elasticity and curvature over the residual demand of a

particular product taking all other substitution estimates as given.
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In oligopoly markets, however, the pass-through rate depends not only on demand

curvature, but also on substitution between products affected by a common cost shock. We

take into account all these substitution effects when plotting the clouds of Figure 1 for each

preference specification. To convey the intuition of how substitution affects the pass-through

rate of a given product it is necessary to simplify these substitution patterns. Weyl and

Fabinger (2013, §IV.1) focus on the homogeneous product oligopoly version of equation (4):

dp

dc
=

1

1 + θ(1− ρ)
> 0 , (5)

where θ is a conduct parameter ranging from θ = 0 for perfectly competitive to θ = 1 for

monopoly. The case of θ = 1/n corresponds to the Cournot solution. Thus, the larger

the number of firms, the importance of demand curvature diminishes and pass-through gets

closer to complete.

Weyl and Fabinger (2013, §IV.2) also consider a particular case of symmetric price

Bertrand-Nash equilibrium. For this particular case the conduct parameter as an intuitive

interpretation connected to substitution patterns:

θ = 1 +
∑
j ̸=i

∂qi(p)

∂pj

/
∂qi(p)

∂pi
, (6)

where the second term on the right hand side corresponds to the aggregate diversion ratio

of Shapiro (1996). Thus, if a product has nearly no close substitutes, the firm can charge

higher markups and because
∑

j ̸=i /∂qi(p)∂pj → 0 and θ → 1, its pass-through (5) coincides

with the pass-through of a monopolist (4). If, on the other hand, a product has several

close substitutes,
∑

j ̸=i /∂qi(p)∂pj > 0 and θ < 1. Thus, the manufacturer faces a more

competitive environment not only limiting her ability to increase price over marginal cost

but also her ability to pass any cost increase to consumers.

The “monopolist” pass-through of equation (4) that ignores substitution effects could

thus be understood as a rough upper-bound estimate of pass-through of any firm in oligopoly.

Of course, in practice oligopoly equilibrium is not symmetric and different products are sold

at different prices but statements of how the effective pass-through responds to general

substitution patterns are difficult to characterize analytically. We evaluate the quantitative

relationship between (4) and (5) in the context of our Monte Carlo study in Appendix E.
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2.2 Demand sub-convexity

Demand is sub-convex (super-convex) if log[q(p)] is concave (convex) in log(p). In the

monopoly manifold examples we consider in Sections 3 and4, we focus attention on sub-

convex demand or instances when the demand elasticity increases in price; i.e.,

εp(p) =
ε2(p)

p
·
[
1 +

1

ε(p)
− ρ(p)

]
> 0 ⇐⇒ ρ(p) < 1 +

1

ε(p)
= ρ(p)CES . (7)

Equation (7) establishes a cutoff condition for the curvature of sub-convex demand. For a

given elasticity price, this cutoff is the curvature of the Constant Elasticity of Substitution

(CES ) inverse demand, p(p) = βp−1/σ. CES demand is the only demand system where

a single parameter determines both elasticity and curvature: εCES = σ and ρCES = (σ +

1)σ−1 > 1. Thus, εp(p) = 0, which implies the well-known result that CES markups and

pass-through are invariant to price.

There is empirical evidence supporting the so-called Marshall’s (1920) Second Law

of Demand of demand becoming more elastic as prices rise.4 More importantly, it is key

to the equilibrium existence results for oligopoly models with differentiated products in

Caplin and Nalebuff (1991a) for single-product firms and in Nocke and Schutz (2018) for

multi-product aggregative games. Our analysis below also shows that sub-convexity helps

generate well-behaved comparative statics and equilibria: as price rises, the firm no longer

has the incentive to continue raising the price and garner increasing markups.

3 Demand Elasticity and Curvature for Discrete Choice Models

In this section, we rely on demand manifolds to explore the relationship between curvature

and elasticity in the context of the discrete choice demand model, which forms the backbone

of much empirical work in IO: mixed logit demand. We characterize the demand manifold,

in general, for arbitrary specifications of preference heterogeneity, which we refine in the

following sections.

4 This includes evidence on the relationship between markups and the scale of production in macroeco-
nomics (see Mrázová, Neary and Parenti, 2021, and references therein), markup adjustments after trade
liberalization (De Loecker, Goldberg, Khandelwal and Pavcnik, 2016), pass-through of exchange rates for
coffee and beer in trade (Nakamura and Zerom, 2010; Hellerstein and Goldberg, 2013), as well as tax
pass-through in the legal marijuana market (Hollenbeck and Uetake, 2021) and markup adjustments to
changes in commodity taxation in IO (Miravete, Seim and Thurk, 2018).
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We define the indirect utility of consumer i from purchasing product j as:

uij = hi(di, xj) + fi(yi, pj) + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (8)

where (xj, ξj) denote observed and unobserved characteristics of product j, respectively, pj

its price, and yi consumer i’s income. Mixed logit allows for heterogeneity in consumers’

valuation of the product characteristics x, which we represent via the characteristic sub-

function hi(di, xj). This sub-function takes demographics di as an argument reflecting a

possible correlation between consumer demographics and taste heterogeneity over product

characteristics. Lastly, we normalize the value of the outside option to zero.

The sub-function fi represents how spending on the outside good, yi − pj, affects

indirect utility. The effect of outside good spending varies by individual i, because income

varies across consumers and because consumers differ in price sensitivities. To simplify

notation, we write:

f ′
ij =

∂fi(yi, pj)

∂pj
, and f ′′

ij =
∂2fi(yi, pj)

∂p2j
. (9)

Thus, f ′
ij represents the marginal effect of price pj on consumer i’s indirect utility while f ′′

ij

represents how this marginal effect changes with price.

Individual i purchases product j if uij ≥ uik , ∀k ∈ {0, 1, . . . , J}. Because of the

additive i.i.d. type-I extreme value distribution of ϵij, individual i’s choice probability of

product j is:

Pij(p) =
exp

(
hi(di, xj) + fi(yi, pj) + ξj

)
1 +

J∑
k=1

exp
(
hi(di, xk) + fi(yi, pk) + ξk

) . (10)

Notice that individual i makes a dichotomous decision about purchasing product

j (i.e., “Buy j” vs. “Buy Something Else”). The purchase decision is the outcome of a

Bernoulli random process with a probability of success Pij, which varies with the vector of

prices and characteristics of the different alternatives. The Bernoulli random variable has

mean µij = Pij, variance σ2
ij = Pij(1 − Pij), and (non-standardized) skewness of skij =

σ2
ij(1 − 2Pij). Aggregating over the measure of heterogeneous individuals summarized by

G(i), total demand for product j becomes:
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Qj(p) =

∫
i∈I

Pij(p) dG(i) . (11)

We can now write the elements defining the demand manifold, elasticity, and curva-

ture of product j, relegating the detailed derivations to Appendix C. The own-price demand

elasticity of product j amounts to a scale-free measure that aggregates individual price

responses (demand slopes) weighted by their choice variance:

εj(p) = − pj
Qj(p)

∫
i∈I

f ′
ij ·σ2

ij dG(i) , (12)

Similarly, the demand curvature of our discrete choice model is:

ρj(p) =

∫
i∈I

µij dG(i)×

∫
f ′′
ij · σ2

ij dG(i) +

∫ (
f ′
ij

)2 · skij dG(i)[∫
f ′
ij · σ2

ij dG(i)

]2 . (13)

Combining elasticity (12) and curvature (13), we obtain the general expression for the mixed

logit demand manifold:

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
[∫

f ′′
ij ·σ2

ij dG(i) +

∫ (
f ′
ij

)2 ·skij dG(i)

]
︸ ︷︷ ︸

Mixing Distributions

. (14)

From (14) we observe that the link between elasticity and curvature is driven by the

mixing distributions (right-most terms) in the underlying distribution of customers. While

these are best understood as primitives of customer demand, they are most often chosen by

the researcher ex-ante. Our objective is to show how these choices impact the connection

between not only estimated elasticity (market power) and curvature (pass-through) but also

the counterfactual implications of common assumptions.

How the researcher defines the distribution of taste heterogeneity G and the sub-

functions f(·) and h(·) plays a fundamental role in determining demand elasticity and

curvature. Non-price tastes through h(·) are almost always assumed linear in customer de-

mographics, and non-observed heterogeneity is captured via a standard normal distribution.

These choices implicitly restrict {σ2
ij, skij}, restricting the relationship between elasticity

and curvature.
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A common empirical pricing sub-function is simply the linear function of outside good

spending, i.e., fij(yi, pj) = α⋆
i (yi − pj), resulting in quasi-linear demand. The curvature is

now driven by heterogeneity in the idiosyncratic price sensitivity α⋆
i for a given elasticity.

Alternatively, the researcher could impose a non-linear sub-function (Griffith, Nesheim and

O’Connell, 2018) with different implications for curvature and pass-through which will be-

come apparent later. Our setup, however, consist of discrete choice unit demands consistent

with utility maximization, i.e., where Roy’s identity hold for qij1. We illustrate graphically

how choices of taste heterogeneityG and the pricing sub-function f(·) impact the shape of the

demand manifold using this monopoly model as a simple example. This is two dimensional

representation of a single-product monopoly discrete choice model used exclusively to convey

the intuition of the relationship between demand elasticity and curvature estimates. Mrázová

and Neary (2017, §3) show how demand manifolds could be used in a monopolistic compe-

tition oligopoly. After our Monte Carlo evaluation of the model we show in Section E how

the insights of this graphical analysis extend to multi-product oligopoly settings including

both direct own-price effects and indirect cross-price effects through the dependence of choice

probabilities in Equation (10) on the vector of all prices p. Equation (14) should thus be

better understood as the manifold of residual demand for product j.

4 Demand Manifolds of Common Demand Specifications

This section begins by considering demand manifolds for discrete choice demand models with

quasi-linear preferences, which researchers commonly rely on for inexpensive products like

the cereal varieties considered in Nevo (2000), before moving to the case of income effects.

4.1 Quasi-linear Preferences

In the case of quasi-linear preferences, the pricing subfunction f simplifies to fi(yi, pj) =

α⋆
i (yi − pj) where αi = α+ σpϕi and hi(di, xj) = βixj where βi = β + σxνi. These functional

form decisions imply the distribution of price sensitivity has a mean of α with deviations

driven by the shape of the mean-zero distribution Φ of ϕi, scaled by σp. Similarly, β denotes

the mean valuation while νi captures the idiosyncratic heterogeneity in the valuation of

the observed product characteristic, which we assume takes the form of a standard normal

random variable scaled by σx.
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Note that purchase decisions based on indirect utility comparisons do not depend on

individual income yi, which shifts the indirect utility of all products by α⋆
i yi, so there are

no income effects. Furthermore, with fi(yi, pj) linear in price, f ′
ij = −α⋆

i and f ′′
ij = 0 so the

demand manifold simplifies to:

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
∫
(α⋆

i )
2 ·skij dG(i) . (15)

Curvature and elasticity are thus inversely related for any price-quantity pair as long as

skij = σ2
ij(1− 2Pij) > 0 when the probability Pij of choosing product j is sufficiently small.

We employ Equation (15) to explore the demand manifolds of several workhorse

discrete choice specifications from the empirical literature: MNL, CES , ML with random

coefficients on product attributes, and ML with a random coefficient on price. The extent

and manner in which these specifications introduce flexibility in the preference specification

vary, enabling us to demonstrate how the demand model’s capacity to accommodate feasible

combinations of elasticity and curvature changes as we relax these restrictions.

Multinomial Logit Preferences. In the MNL model, there is no unobserved heterogene-

ity, so σp = σx = 0 and α⋆
i = α and β⋆

i = β. Hence, Pij = Pj = sj(p) is the market share of

product j. Elasticity and curvature reduce to:

εj(p) = αpj
(
1− Pj

)
, (16a)

ρj(p) =
1− 2Pj

1− Pj

< 1 . (16b)

Equation (16b) shows that MNL demand is concave with negative curvature only in

very concentrated markets where the product’s market share exceeds 50% of sales. Irrespec-

tive of market shares, MNL restricts demand to be log-concave and ρj(p)<1 for all possible

prices. Thus, pass-through in any MNL demand model is necessarily incomplete regardless

of setting and identification strategy. Furthermore, since MNL demand curvature (16b) de-

creases in Pj, pass-through grows arbitrarily close to complete when the product is atomistic.

The left panel of Figure 2 depicts several demand manifolds for a single-product

monopoly MNL model. We fix the product attribute to take a value of X = 1 and allow

consumer valuations for the attribute β to range from {β, β + 1 . . . , β + 5}, with β = 1. For
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Figure 2: Multinomial and Mixed Logit Manifolds
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Figure Notes: The left panel shows six alternative MNL demand manifolds with one inside good assuming
α = 0.5, X = 1, and β ∈ {1, ..., 6}. The right panel shows manifolds for a ML model with a random
coefficient on the product characteristic under alternative standard deviations σx and β = 1.

each attribute valuation β, the manifold of the MNL is increasing as proven by Mrázová

and Neary (2017, Appendix B.5). We set the price response coefficient α = 0.5 and consider

elasticity-curvature combinations at different price levels. Each manifold is color-coded by

level of price, ranging from pj = 0 (darkest) to pj = 10 (lightest). Note that higher prices

always correspond to more elastic demands and lower equilibrium markups.

Increasing the average valuation of the product attribute, β, to β + 1, β + 2,. . . ,

shifts demand manifolds upwards from the base MNL manifold in Figure 2. Increasing mean

demand for a product thus decreases both curvature and price elasticity for a given price.

Constant Elasticity of Substitution Preferences. The decreasing and convex black

dashed curve in Figure 2 represents the (ε, ρ) combinations for CES demand under alterna-

tive values for the elasticity of substitution. Anderson, de Palma and Thisse (1987, 1992)

were the first to show that a discrete choice model where individuals spend a fraction of

their income on a continuous quantity of a single product can generate the CES utility

function of the representative consumer model (Dixit and Stiglitz, 1977). Thus, CES arises

naturally in the context of discrete-continuous models (Hanemann, 1984), whileMNL is most

appropriate when consumers have unit demand. However, like the MNL model, CES choice

probabilities suffer from the IIA property in producing unrealistic substitution patterns.

Figure 2 also illustrates that for the same elasticity, the CES andMNLmodels imply different

demand curvatures (and pass-through). The researcher’s choice of one of these two demand

models thus restricts pass-through in stark ways, accommodating only over- or under-shifted

pass-through, which may not be consistent with the underlying data.
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ML with Characteristic Random Coefficients. The literature has highlighted that

accounting for idiosyncratic preferences for product attributes can relax the restricted substi-

tution patterns generated byMNL demand. We thus consider whether introducing individual

heterogeneity in the valuation of the product attribute while continuing to assume that all

consumers have the same price responsiveness similarly addresses the limitations of MNL in

ex-ante restricting curvature.

The right panel of Figure 2 shows several demand manifolds for such a ML model,

allowing the standard deviation of the random coefficient on the product attribute to increase

from σx = 1 to σx = 2, while holding fixed the mean product valuation at β = 1. Adding

individual preference heterogeneity “rotates” manifolds: for a given demand elasticity, pref-

erence heterogeneity reduces demand curvature and, hence, pass-through. The firm now

faces a segment of consumers with high valuations for its attribute over whom it has market

power locally, and it reduces its pass-through relative to the case of uniform preferences.

The light-red shaded area denotes the combinations of elasticity and curvature that

a ML model with heterogeneity in the valuation of the product characteristic can generate

for mean valuations of β ≥ 1. The figure illustrates that the ML model with normally

distributed attribute preferences continues to generate log-concave demand. Caplin and

Nalebuff (1991b) show that ML demand remains log-concave under any other log-concave

distribution of idiosyncratic preferences, comprising the vast majority of distributions used

in economics (Bagnoli and Bergstrom, 2005). Further, this result extends naturally to the

nested logit – a demand system commonly employed in antitrust economics – because it

provides for more reasonable substitution patterns with a small computational burden.5

Mathematically, Equation 14 demonstrates that curvature can only come through the shape

of the choice probability distribution (Pij), particularly the skew.

It is evident that this version of a ML model has inherent limitations when used to

study pass-through in non-competitive environments empirically: pass-through is necessarily

restricted to be incomplete.6 In empirical settings with log-convex demand, firms with market

power aim to over-shift cost shocks. Employing a MNL or a ML model with idiosyncratic

5 McFadden and Train (2000) demonstrate that a ML specification with random coefficients on product
characteristics can generate equivalent substitution patterns to the nested logit model.

6 This is at odds with evidence of pass-through rates exceeding 100% in horizontally differentiated prod-
ucts industries such as groceries (Besley and Rosen, 1999); clothing and personal care items (Poterba,
1996); branded retail products (Besanko, Dubé and Gupta, 2005); gasoline and diesel fuel (Marion and
Muehlegger, 2011); as well as beer, wine, and spirits (Kenkel, 2005) among others.
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preferences over attributes in such instances would result in biased preference estimates that

generate the closest demand curvature to the true data-generating process that these models

can produce, a curvature of effectively one. Figure 2 illustrates that to exhibit such demand

curvature, the estimated model would either understate the true degree of idiosyncratic

product attribute preferences or overstate consumers’ true price sensitivity, generating the

appearance of a competitive environment with full pass-through.

ML with Price Random Coefficients. How can we expand the range of curvatures that

the ML estimates can accommodate to allow for log-convex demand and thus over-shifting of

pass-through? The only element of preferences that remains to be considered is idiosyncratic

price responsiveness. Substituting α⋆
i = α + σpϕi into the demand manifold for quasi-linear

preferences (15) results in:

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
∫
(α + σpϕ)

2 ·skij dΦ(i) (17)

In the absence of idiosyncratic price heterogeneity, σp = 0, this demand manifold coincides

with the manifold of the MNL in Equations (16a) and (16b). Thus, for any given demand

elasticity and price-quantity pair, an increase in the spread of the distribution of idiosyncratic

price heterogeneity via σp expands the range of demand curvatures that the model can

generate. Indeed, the shift of each manifold to the right is proportional to the second-

order moment of the distribution Φi. With a sufficiently large σp relative to the mean

price coefficient α, the manifolds cross the unit curvature threshold, allowing discrete choice

demand to accommodate pass-through rates above 100%. We illustrate this argument next

by considering particular price mixing distributions.

Normal and Log-normal Price Random Coefficients. We now consider the choice of

price mixing distribution, focusing on the range of feasible elasticity and curvature combina-

tions up to the CES boundary that a candidate price mixing distribution can generate. We

begin with two price mixing distributions common in empirical work: normal and log-normal

distributions. Figure 3 depicts the demand manifolds when price random coefficients are

normally and log-normally distributed for alternative values of σp. The light-red shaded

area identifies all combinations of (ε, ρ) within the sub-convex region of demand that are

feasible under each model for any combination of the structural parameters (α, σp, β). Both
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Figure 3: Normal and Log-Normal Price Mixing Distributions
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Figure Notes: Panels present demand manifolds in the (ε, ρ) plane under standard normal and log-normal
price mixing distribution, respectively. Light-shaded regions represent all feasible (ε, ρ) pairs conditional on
the price-mixing distribution. We define “feasible” as manifolds for demand that is sub-convex for all prices.
We identify this region via grid search across all parameters conditional on the utility specification, including
price mixing distribution.

panels show that increasing the variation in idiosyncratic price responsiveness σp increases

the feasible curvatures theMLmodel can accommodate for a given elasticity value. Manifolds

now cross into the log-convex region of demand with more than complete pass-through, a

result that is consistent with many of the (ε̂, ρ̂) estimates in Figure 1.

In the left panel, we depict, among others, the demand manifold corresponding to the

particular demand specification with a normally distributed price coefficient with σp = 0.15.

The figure shows that for this value of σp, the maximum elasticity is reached precisely at the

price level where the demand manifold intersects the CES locus. For higher prices, elasticity

decreases in price, violating Marshall’s Second Law. For demand to be sub-convex for all

price levels, we thus require less heterogeneity in price sensitivity among consumers, and

the feasible elasticity-curvature pairs do not cover the full space up to the CES boundary:

achieving pass-through greater than one requires relatively elastic demand.

Utilizing a one-tailed log-normal distribution for price sensitivity introduces skewness

(Equation 17). Beyond ensuring that the demand of all simulated consumers is downward

sloping (Train, 2009), it expands the scope for more prominent differences in price sensitivity

and curvature; the right panel in Figure 3 shows larger values of σp continue to generate

sub-convex demand. This results in a much larger range of feasible curvatures for a given

demand elasticity, particularly for less elastic demands where firms enjoy more market power.

Figure 3 hence shows that a model with a log-normal price random coefficient can admit the

majority of curvature-elasticity pairs in the sub-convex region of demand.
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Figure 4: Covering the Space with a Flexible Price Mixing Distribution

(a) Price Mixing Distributions
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(b) Generalized Normal Manifolds
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Figure Notes: The left panel shows three specifications of the price random coefficient distribution for
different values of shape parameter κ with the Asymmetric Generalized Normal distribution. The right
panel shows the combinations of all structural parameters generating well-behaved solutions for (ε, ρ) in
the sub-convex region. The model is capable of covering the sub-convex region in Panel (b) because of the
flexibility provided by the Asymmetric Generalized Normal as the pricing mixing distribution.

Incorporating a Flexible Mixing Distribution. While log-normality increases the set

of achievable elasticity-curvature pairs, there are still small gaps in coverage. Here, we

consider a more flexible mixing distribution – the three-parameter Asymmetric Generalized

Normal distribution (Nadarajah, 2005) which collapses to a one-parameter distribution in

the case of mixed logit demand summarized by the shape parameter κ.7 Figure 4 explores

the implications of using this flexible mixing distribution for the price random coefficient.

In panel A we present three different variants of how the price mixing distribution

may look using different values of κ: ranging from standard normal to log-normal. We

also consider an intermediate case that might represent a particular mixture of these two

distributions. Panel (a) therefore provides intuition of how the Asymmetric Generalized

Normal modulates the shape of the price mixing distribution to cover (ε, ρ) space in panels A

and B in Figures 3 as well as the space between. We confirm this intuition in panel B where

we see the Asymmetric Generalized Normal does indeed cover (ε, ρ) space conditional on

maintaining demand sub-convexity (light-shaded region). This result indicates that flexibility

in the price mixing distribution can be achieved parsimoniously.

Demographics as Mixing Distributions. In empirical applications, researchers fre-

quently rely on the fact that idiosyncratic price responsiveness is correlated with demo-

7 See Appendix for technical details.
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graphics. Rather than imposing a distribution on idiosyncratic price sensitivities, as we did

above, one might therefore specify the idiosyncratic price sensitivity αi as a function of an

observable demographic di, i.e., α
⋆
i = α+ πddi. The equivalence to the analysis of Section 3

is apparent: it is now the empirical distribution of demographic di that underlies measure

G(i) in the manifold expression (3) and that determines the feasible combinations of (ε, ρ)

pairs that the demand system can accommodate.

4.2 Preferences with Income Effects

In contrast to the quasi-linear case where outside good spending enters consumers’ indirect

utility linearly, BLP specifies the preferences in Equation (8) with the following price sub-

function:

fi(yi, pj) = α ln
(
yi − pj

)
. (18)

Both the quasi-linear price sub-function and BLP ’s alternative are, however, special cases

of a Box-Cox power transformation (Box and Cox, 1964) of outside good spending, which is

consistent with utility maximization in discrete choice contexts for any value of the power

parameter λ ∈ R driving the convexity or concavity of the transformation. We, therefore,

specify the generalized price sub-function:8

fi(yi, pj) = α⋆
i

(
yi − pj

)(λ)
=


α⋆
i

(
yi − pj

)λ − 1

λ
, if λ ̸= 0 ,

α⋆
i ln
(
yi − pj

)
, if λ = 0 ,

(19)

and explore how the value of the power parameter λ affects demand elasticity (12), curvature

(13), and the shape and position of the manifold (14) through its effect on f ′
ij and f ′′

ij

in Equation (9). In line with the BLP specification, we abstract from heterogeneity in

price sensitivity and consider the case of α⋆
i = α. A power parameter of λ = 0 thus

yields the BLP model, while a power parameter of λ = 1 results in a MNL model. This

8 Using a multi-unit demand model, Birchall and Verboven (2022) rely on a price sub-function with a
different Box-Cox transformation, f(yi, pj) = γλ−1

(
yλi − 1

)
λ −

(
pλj − 1

)
λ that depends on the share of

income, γ, spent on a chosen product and is well behaved for λ ∈ (0, 1) (Anderson and de Palma, 2020).
Their transformation is an h-function bridging MNL and CES demands (Nocke and Schutz, 2018). The
resulting curvature flexibility disappears for λ = 1, when the specification reduces to the quasi-linear
unit-demand case. Our goal in specifying sub-function (19) is instead to allow for curvature flexibility
through an unconstrained Box-Cox power parameter that modulates income effects within the confines of
a unit-demand setup consistent with utility maximization (e.g., Roy’s identity holds for qij = 1).
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means that the income distribution captures any idiosyncratic price responsiveness across

individuals, modulated byλ. As in Berry et al. (1999), we adopt a first-order Maclaurin

series approximation (at pj = 0) of the Box-Cox transformation:9

fi(yi, pj) = α
(
yi − pj

)(λ) ≃ αy
(λ)
i − αpj

y1−λ
i

. (20)

yielding a demand manifold of:10

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·

∫
i∈I

α2 ·
[
(1− λ)y−λ

i ·σ2
ij + skij

]
y
2(1−λ)
i

dG(i) . (21)

Figure 5 presents demand manifolds under various λ values in [0, 1] when the charac-

teristic sub-function is βXj and income yi is a log-normal approximation to the U.S. income

distribution. The figure illustrates that accommodating income effects via the approximate

Box-Cox transformation of outside good spending yields preferences that can accommodate

curvatures close to those of the CES boundary as λ approaches zero; i.e., when the pricing

sub-function is fij = log(yi − pj).
11 This suggests the motivating elasticity-curvature pairs

in Figure 1 for Berry et al. (1999) are driven by the demand specification.

4.3 Discussion

The preceding sections demonstrate that the ML model exhibits significant flexibility in

capturing realistic substitution patterns and generating a wide range of cost pass-through

when we allow for (a) heterogeneity in consumer valuations for product attributes and (b)

flexible distributions of price sensitivity. The former basically expands the set of estimable

elasticity-curvature combinations within the logconcave region of demand while the latter

9 Note that for λ = 0, the price sub-function becomes α ln yi − αpj/yi, which only coincides with Equation
(19) for yi = 1. Hence, the preference specification based on Equation (20) is only approximately consistent
with utility maximization.

10This is the particular solution of the demand manifold derived in Online Appendix C.9 for the case of the
Maclauring approximation of the Box-Cox price sub-function (19).

11While we consider a power parameter λ ∈ [0, 1], in line with the empirical literature, Box and Cox (1964)
consider λ ∈ [−5, 5], which would expand the range of feasible curvature elasticity pairs beyond the ones
depicted in Figure 5. Note that using the convenient Maclauring approximation leads to some estimation
bias and thus BLP estimates sit on the CES boundary which should correspond to λ = 0. Using the
approximation will produce estimates of λ smaller than zero, corresponding to a more concave function
than ln(yi − pj).
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Figure 5: Demand Manifolds & Income Effects
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Figure Notes: Demand manifolds for different values of the Box-Cox transform parameter λ using the
U.S. income distribution and the rest of the model specification of Berry et al. (1999). The dot identified as
”BLP (95/99)” corresponds to the average estimated curvature and elasticity value using the BLP automobile
data and estimation best practices as outlined in Conlon and Gortmaker (2020).

extends this set to the logconvex region. Moreover, the interaction between (a) and (b) is non-

trivial and is likely unknown before estimation. The intuition is that idiosyncratic attribute

valuations give firms localized market power, leading to under-shifted pass-through. At

the same time, consumer heterogeneity in price sensitivity entails over-shifted pass-through

because the firm focuses on different customer types in response to cost changes. The

combined effect of these two forces drives a given product’s pass-through.

To make this intuition concrete, we present a simple example of pricing by a monopo-

list who caters to two consumers with linear demands of different slopes in Figure 6, Panel A.

The monopolist sets prices for each customer and responds to an increase in cost (red lines) by

increasing equilibrium prices by half of the cost increase; i.e., pass-through is “under-shifted.”

In many empirical settings, firms do not practice such perfect price discrimination.12

In Panel B, we show that in setting a uniform price, the monopolist now faces a kinked

12A subtle but important point is that the shape of demand depends on the markets firms choose to compete
in because such decisions imply consumer preference heterogeneity.
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Figure 6: Heterogeneous Customers and the Shape of Demand
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Figure Notes: Top panels present pass-through for linear demand under targeted and uniform pricing given data points
(p1, q1) and (p2, q2). Bottom panels present discrete choice and CES rationalizations of the same data points.

demand.13 At the initial marginal cost and implied optimal price, the monopolist serves both

customer types. Once marginal cost increases, the firm maximizes profit by increasing the

price to a level that serves only the price-insensitive customer. Pass-through is over-shifted.

More generally, in responding to an increase in cost, a firm serving heterogeneous consumers

with a uniform price trades off the standard incentive to remain on the elastic portion of

demand and the benefits of catering to less price-sensitive customers only.

How do these theoretical points translate to empirical work? In Panel c, we observe

that the kinked demand intuition extends naturally to the ML framework since product

demand is a function of the underlying mixing distributions. If we restricted ourselves to

13Kimball (1995) first suggests a smooth, differentiable version of this kinked demand to ensure subconvexity
and markups that increase in the production scale.
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MNL demand and only observed the two price-quantity pairs in the data, our estimator would

infer incorrectly that a positive demand shock had also occurred (ξ2 > ξ1). This is because

the shape of MNL demand is not sufficiently flexible to reconcile the first-order conditions

at both points without adding a demand shift. When we add flexibility via heterogeneity

in price sensitivity, we observe that the demand function (red line) can now contain both

points on a single demand curve – just as in the kinked linear demand case.

Panel D shows that these two points are consistent with a single CES demand

function. The CES demand entails two differences from ML. First, we observe in the

figure that the difference between ML and CES demand becomes large as the price drops.

Consumers purchase discrete quantities in ML but can choose arbitrarily small quantities

in CES . Second, CES constrains curvature and pass-through to be constant. Hence, in a

neighborhood where the ML and CES demand functions have similar demand curvatures,

e.g., when price exceeds three, ML cost pass-through is far below what CES would predict.

Thus, while CES is a useful simplification of ML for estimation, its pass-through predictions

in oligopoly settings are restrictive.

5 Guidance for Empirical Work

Our work thus far addresses how to model the shape of demand via non-price characteristics

and price sensitivity flexibly to limit the impact of the utility specification on pass-through.

Now, we turn to how to identify and estimate the shape of demand in an empirical setting.

We focus on a model where demand has income effects as in Berry et al. (1999) and provide

an extension to quasilinear demand (e.g., Nevo, 2001) in the appendix. Both models generate

similar results.

We detail our identification strategy in Section 5.1. In Section 5.2, we use Monte

Carlo evidence to demonstrate that our identification strategy is effective and illustrate the

consequences of misspecification. In Section E, we provide evidence on how competition

affects pass-through relative to the earlier single-product monopolist. We then address

the empirical implications of imposing different price mixing distribution in Section 5.3

by simulating a counterfactual trade policy using alternative estimated new automobile

demands.
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5.1 Instruments to Identify Demand Manifolds

Here, we consider taking the preference specification in Equation (8) to data when allowing

for non-linear taste heterogeneity. As an example, we focus on consumers’ sensitivities

to price; similar considerations arise for taste heterogeneity for product characteristics.

Empirically, one could represent heterogeneous price sensitivities with a flexible function

of consumers’ demographics, a flexibly distributed price random coefficient, or nonlinear

income effects through e.g., a Box-Cox power transform, as in Section 4.2. How can the data

pin down such price mixing distributions?

We focus on the case of preference heterogeneity tied to observable consumer de-

mographics – income –, which empirically frequently correlate well with purchase behavior.

We model the distribution of heterogeneous price sensitivities using the Box-Cox power

transform of income (Box and Cox, 1964), hence considering nonlinear income effects. While

only one possible way of representing consumer heterogeneity, the Box-Cox transform is a

simple, one-parameter mechanism to transform data into mixing distributions consistent

with identifying data moments.

We employ an identification strategy that exploits heterogeneous consumer responses

to exogenous price changes by relying on a variant of the instruments proposed initially by

BLP and refined as “Differentiation IVs” by Gandhi and Houde (2020): the distance of the

focal product from rivals in product characteristic space. Changes in the focal product’s

isolation in characteristic space exogenously shift its demand under the assumption that

product characteristics are chosen before demand unobservables, ξ, are realized. A compari-

son between instances where there are many versus few similar products reveals the extent to

which consumers substitute between similar products, akin to observing exogenous variation

in choice sets. As the Box-Cox transformation allows for nonlinear heterogeneity in such

substitution as a function of income or other observable consumer demographics, we interact

the Differentiation IV with moments from the demographic distribution, e.g., income. This

allows us to recover the shape of the distribution of consumers’ price sensitivities and

attribute valuations and, hence, the curvature of a unit demand function.

A challenge, of course, when employing this instrument to identify price sensitivity

is the endogeneity of prices in an oligopoly equilibrium: unobserved demand shocks ξ may

confound the response in price to a change in cost ω. We follow Gandhi and Houde (2020)
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and construct exogenous price predictions via a reduced-form hedonic price regression based

on exogenous characteristics xt and cost shocks ωt:
14

pt = γ0 + γ1xt + γ2ωt + ut . (22)

We run the above regression and use the results to construct the vector of predicted (ex-

ogenous) prices p̂t. We then construct differences in price-space between product j and its

competitors:

Zp
jt =

∑
r

(
p̂rt − p̂jt

)2

. (23)

Equation (22) enables us to construct exogenous prices by separating price effects due to

changes in demand (via ξ) from changes in cost (via ω). It is also a simple pass-through

regression. Cost pass-through through γ̂2 informs the identification of demand primitives

related to curvature via the demand shocks captured in equation (23). While Gandhi and

Houde (2020) recommend relying on Zp to identify the distribution of unobserved preference

heterogeneity, interacting it with moments of the distribution of observable demographics

serves to identify the case when price sensitivity is correlated with the same demographics.

For example, when estimating demand allowing for flexible income effects, we include the

interactions of the above price differentiation instrument Zp with moments of the income

distribution:

ZP
jt =

∑
r

(
p̂rt − p̂jt

)2

, (24a)

ZD
jt = ZP

jt ⊗
{
inc10%t , inc50%t , inc90%t

}
. (24b)

We thus trace the demand manifolds using cost shocks, holding constant exogenous demand

shifters at different price levels. In Section 5.2, we explore the instrument’s performance

in Monte Carlo simulations. Lastly, extending the argument to quasi-linear demand is

straightforward and we cover identification in the Appendix, Section A.

14Alternatively, one could construct prices non-linearly using firm first-order conditions as in Berry et al.
(1999).
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5.2 Flexible Manifold Estimation: Monte Carlo Analysis

We conduct a Monte Carlo analysis to demonstrate the validity of our identification strategy

and evaluate the potential for misspecified demand systems to introduce biases in the

economic outcomes of interest, namely elasticity and curvature. Consider a setting with

J = 20 differentiated products sold by single-product firms competing in prices for T = 50

periods. Consumer indirect utility takes the following form:

ujlt = β0 + β1x
1
jt︸ ︷︷ ︸

Common Across
Consumers

+
K∑
k=1

(
β2,k + σX,kνik

)
x2
jt,k︸ ︷︷ ︸

Idiosyncratic
Characteristic Tastes

− α · pjt · yλ−1
it︸ ︷︷ ︸

Idiosyncratic
Price Sensitivities

+ ξjt + ϵijt , (25)

where, as above, income effects decrease as λ moves from zero to one. In this specification,

some product characteristics are observed by the researcher ({x1
jt, x

2
jt}) while others are only

observed by consumers and firms (ξjt). Valuation of the product attribute x1
jt is common

across individuals, and we draw x1 independently from a uniform distribution. We model

consumer preference heterogeneity in product characteristics via x2
jt with two elements (K=

2) including a constant and a uniformly-distributed product characteristic. As in Gandhi and

Houde (2020), product attributes (other than the constant) vary across time.15 Consumers,

therefore, have preference heterogeneity over the J inside goods as a category via the constant

random coefficient and over variation in the observable product characteristic across the J

products and T time periods. We set β2 = 1 and σX = 5 for k = 1, 2. We assume that

the unobservable characteristic ξjt is distributed standard normal. We model heterogeneous

price sensitivity using Equation 20’s approximation to the Box-Cox transformation of outside

good spending modulated by parameter λ. We assume that consumer income yit is drawn

from a log-normal distribution and parameterize these draws following Andrews, Gentzkow

and Shapiro (2017), generating market and time variation by allowing the variance of income

to vary.

Single-product firms choose prices simultaneously each period given their constant

marginal costs cjt. In the static oligopoly Bertrand-Nash equilibrium, period t equilibrium

prices p⋆t , satisfy the set of J first-order conditions for the firms:

15In empirical applications, such as automobiles, this is due to product remodels, which the researcher treats
as exogenous to unobserved variation in demand via ξ. This is equivalent to allowing for exogenous product
entry and exit – a common assumption in the empirical literature.
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p⋆jt = cjt − sj(δt, p
⋆
t ;σX , σp)×

[
∂sj(δt, p

⋆
t ;σX , σp)

∂p⋆jt

]−1

. (26)

Marginal costs are a function of product characteristics and cost shocks:

log cjt = γ0 + γ1 log x
1
jt + γ2 log x

2
jt + ωjt + ζjt (27)

We set all γ parameters equal to 1 and draw cost shocks {ωt, ζt} from standard normal

distributions. The researcher observes ωt, which identifies the price sensitivity distribution.

We generate pricing equilibria in the true data-generating processes by selecting α and β0

so that the average own-price elasticity is 2.5 with a 20% aggregate inside share for each

simulation.

We consider the objective of a researcher who estimates consumer demand given

observed prices, quantities, and ω cost shocks following the best practices outlined in Conlon

and Gortmaker (2020). The researcher also specifies the supply side as in Berry et al.

(1999) and correctly specifies the outside option and the distribution generating the random

coefficients for product characteristics νi. The researcher, however, may incorrectly model

income effects and, hence, the distribution of price-sensitivities. This Monte Carlo analysis

aims to investigate the success of an empirical demand model with a flexible Box-Cox power

transformation of outside good spending at identifying and recovering the true demand

curvature underlying the data-generating process, relative to simpler alternatives.

We consider three data-generating processes: we simulate demand and cost data

assuming that (1) λ = 0, as in the original BLP specification; (2) λ = 1, resulting in

quasi-linear demand; and (3) λ = 0.7, an in-between case with weaker income effects than

case (1): the distribution of αi is compressed, with a coefficient of variation of only 0.56,

relative to 3.57 for the case of λ = 0. In the following, we denote case (1) as ‘log’; case (2)

as ‘linear’; and case (3) as ‘box-cox’ or ‘bc’.

With these three data sets, we then estimate seven specifications. In scenarios (1)-

(3), we specify the demand model correctly and verify that we can recover the underlying

preferences using the above instrumentation strategy. In scenarios (4) and (5), we specify

general ‘box-cox’ preferences to recover the simpler ‘log’ and ‘linear’ preferences. Lastly, in

scenarios (6) and (7) we investigate model misspecification by using either a ‘log’ or a ‘linear’

demand model in estimation to recover ‘box-cox’ preferences.
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Table 1: Monte-Carlo: Parameter Estimates

Scenario α (varies) λ (varies) σx = 5 σ0 = 5 Coeff .Var MAB Corr .

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE σα/α σ̂α/α̂ ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log 0.003 0.161 0.000 0.000 -0.006 0.072 -0.012 0.231 -3.81 -3.79 0.00 0.00 0.66 0.66

2: linear–linear 0.001 0.011 - - 0.015 0.090 -0.082 0.947 0.00 0.00 0.00 0.00 0.66 0.66

3: bc–bc 0.000 0.037 -0.001 0.024 0.006 0.079 -0.001 0.735 -0.57 -0.57 0.00 0.00 -0.47 -0.47

4: log–bc 0.331 0.379 0.005 0.006 -0.012 0.070 0.025 0.121 -3.81 -3.77 0.00 0.00 -0.47 -0.47

5: linear–bc -0.031 0.048 -0.060 0.085 0.006 0.091 0.093 1.109 0.00 -0.11 0.00 -0.01 -0.44 -0.43

6: bc–log -15.514 15.612 - - 0.851 0.947 -2.211 2.218 -0.57 -3.77 0.55 -0.69 -0.44 0.63

7: bc-linear 0.248 0.248 - - 0.015 0.091 -0.272 0.987 -0.57 0.00 -0.16 0.22 -0.44 0.43

Table Notes: The first column indicates the true data-generating process and the researcher’s assumed specification of the
price-income interactions. The next three (double) columns report the average bias (A.Bias) and root mean standard error
(RMSE) of the income parameter λ and drivers of the idiosyncratic characteristics tastes using 1, 000 replications for each
scenario. The price coefficient, α, varies for each replication to ensure that ε = 2.5. The attribute random coefficients σx

and σ0 (constant) are both set to 5. Column “Coeff .Var” reports the coefficient of variation of the distribution of price
responsiveness of the data-generating process and the estimated model. The remaining set of columns report the coefficient of
variation for idiosyncratic prices-sensitivity parameters (αi), the median average bias (MAB) for average product elasticity and
curvature (ε, ρ), and the average correlation between product-level elasticity and curvature (corr(εj , ρj)).

Discussion of Results. We present the parameter estimates in Table 1 for seven distinct

scenarios. In general, across curvature targets, the estimation succeeds at recovering the

underlying parameters when the researcher’s preference specification coincides with the true

underlying data-generating process, i.e., Scenarios (1)-(3), consistent with Gandhi and Houde

(2020) and Conlon and Gortmaker (2020). The estimates of elasticity (market power),

curvature (pass-through), and their correlation are consistent with the true quantities in the

data.

In Scenarios (4) and (5), the researcher models consumer price-sensitivities flexibly

using a Box-Cox transformation of outside expenditure and estimates the income parameter

λ. The estimates of the Box-Cox model accurately identify the true λ and the random

coefficients of product attributes when the underlying preferences include a logarithmic

function of income. However, it overestimates the average price responsiveness α. We also

observe that the the Box-Cox model accurately recovers the distribution of price sensitivity

(columns labeled ‘Coeff. Var’) and the elasticity-curvature pairs.

Scenarios (6) and (7) address misspecification biases of imposing particular price-

income interactions when the true data-generating process is Box-Cox. Scenario (6) as-

sumes the logarithmic transformation of outside good spending, while Scenario (7) assumes

quasi-linear preferences of Nevo (2001). The assumed logarithmic specification leads to a

substantial misspecification bias in all estimated parameters. The large positive average bias

for the random coefficients on the characteristic, σx, leads to greater substitution within
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inside products than the true data. In comparison, the average bias of −2.2 for the random

coefficient on the constant indicates greater substitution to the outside option than the true

data. Not surprisingly, the economic implications are significant as the average estimated

elasticity is −1.95, or 0.55 points less elastic than the true data-generating process. In

contrast, the average estimated curvature is 0.69 points above the true data-generating

process. The researcher, therefore, would overestimate both market power and pass-through.

Moreover, specifying log preferences ex-ante amounts to imposing a different rate of change

of the demand elasticity with income from the true relationship under Box-Cox preferences,

leading to much greater heterogeneity in price sensitivity than the underlying data. Such

a bias has consequences for welfare calculations, especially since solving for changes in con-

sumer surplus requires accounting for income effects. Suppose that the researcher assumed

that preferences are quasi-linear, instead, as in scenario (7). Then the estimated elasticity

of −2.66 understates firms’ true market power while the estimated curvature is 0.22 points

below the true data, indicating the estimated model also under-predict the firm pass-through.

The final two columns of Table 1 demonstrate that misspecification impacts the

distribution of estimated elasticity-curvature pairs among products. Looking across the

different data-generating processes, we observe that the shape of the distribution of price

sensitivities via the income distribution determines the demand manifold relationship be-

tween demand elasticities and curvature. Imposing specific price sensitivity distributions

– Scenarios (6) and (7) – results in a flipped sign of the correlation between product-level

elasticities and curvatures, or the slope of the manifold, leading to a mischaracterization

of the relationship between market power and pass-through among the products. This

could have large consequences for evaluating the economic effects of mergers, cost changes,

taxation, or tariffs, particularly for different consumer and firm types.

5.3 Flexible Manifold Estimation: Empirical Implications

In this section we demonstrate the sizable quantitative and, perhaps, qualitative implications

for empirical research. We rely on the automobile data from Berry, Levinsohn and Pakes

(1995) to illustrate the elasticity and curvature properties of a ML model with income effects

modulated by the power parameter λ. Using the same model specification and identification

strategy as Berry et al. (1999), we estimate four sets of preferences holding λ fixed at λ=0

(BLP preferences), λ=1 (quasi-linear preferences), λ=0.5 and λ=0.75. For all estimated
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Figure 7: Income Effects and Demand Manifolds
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Figure Notes: Each dot represents the point elasticity and curvature estimates for each observation in
the BLP automobile data, while the gray dot corresponds to the average elasticity and curvature estimates.
Point estimates are colored according to vehicle origin and we see significant overlap in (ε, ρ) space.

models, we incorporate income draws as in Andrews et al. (2017) and follow best practices

outlined in Conlon and Gortmaker (2020).

Figure 7 shows the scatter plots of (ε̂, ρ̂) for each automobile model in the BLP data

under these four alternative specifications.16 The top left panel represents the quasi-linear

case. The average estimated automobile demand elasticity is ε̂=2.75 with nearly full (single-

product) pass-through, ρ̂=0.99, as any mixed MNL without idiosyncratic price sensitivity

is necessarily log-concave, as shown in Section 4. Note also the sorting of automobiles by

price: the estimated demand is substantially more elastic for the most expensive vehicles.

The demand estimates are log-convex for all automobile models whenever we allow for

some income effects, as shown in the other three panels of Figure 7. Reducing λ increases the

importance of income effects through smaller price responses by higher-income households.

Moving from quasi-linear demand to demand with income effects does not significantly

16We report average elasticity, curvature, price markup, and pass-through rate estimates for each scenario
in Table F.1 in Appendix F.
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Figure 8: Demand Manifolds and Trade Policy
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Figure Notes: Figure present pass-through of US vehicles for a hypothetical $1,000
vehicle subsidy paid to US consumers for the purchase of domestic vehicle.

change the average estimated elasticity, reaching ε̂BLP = 2.83 when λ = 0. Despite the

similar average price elasticity, the curvature distribution (pass-through) varies substantially

across specifications. This is similar to what we observed in the motivating RTE cereal case.

Curvatures decrease monotonically with λ, with ρ̂= 0.99 when λ= 1 to ρ̂BLP = 1.35

when λ= 0 (which, in this case, coincides with the curvature of the CES model evaluated

at the average elasticity: ρ̂CES = 1 + 1/2.83 = 1.35). Average pass-through rates thus

increase from 99% in the quasi-linear specification without income effects to 179% with

the strong income effect specification of BLP demand – dramatically different predictions.

The estimated demand for all vehicles is hence sub-convex in the quasi-linear case, but only

55.8% of estimated vehicle demands are sub-convex under the original BLP specification.

The intermediate cases of λ=0.5 and λ=0.7 make clear that income effects broadly not only

restrict the range of demand elasticity (and markup) estimates but also expand the range of

demand curvature (and pass-through rate) estimates that a discrete choice model of demand

can deliver. Appendix F summarizes these results.

Do these differences matter for economic research and policy? We answer this question

by giving consumers in the four estimated equilibria a $1,000 subsidy for purchasing a new

domestic vehicle and recompute the Bertrand-Nash pricing equilibrium. We are particularly

interested in the degree to which firms adjust their prices to capture or amplify the subsidy

across the different demand specifications. We present the equilibrium pass-through rates of

the subsidy for domestic vehicles in Figure 8.
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As expected, given the Monte Carlo results, the shape of the mixing distribution

of first-order quantitative importance in evaluating this policy. Under the original BLP

specification, median pass-through is 1.39. Hence, the subsidy elicits domestic automakers

to reduce their vehicle prices by more than the subsidy to capture price-sensitive customers.

As the mixing distribution becomes less skewed, firms pass through the subsidy less until it

becomes under-shifted in the case of λ=1. We also observe a compression of the distribution

of subsidy pass-through across vehicles. For a policy maker choosing the generosity of subsidy

required to elicit a particular demand response, these differences are important, as are the

welfare implications for consumers. For example, suppose consumers’ true preferences are

quasi-linear, so that λ = 1. A researcher who specifies income effects by including the

income distribution in the price mixing distribution will overestimate the effectiveness of

subsidization.

6 Concluding Remarks

We have shown that the unit-demand mixed-logit model accommodates a wide array of em-

pirically relevant elasticity-curvature pairs, thereby providing further evidence of the power of

the mixed-logit model as a demand framework and policy tool. We have also demonstrated

how different components of the demand specification contribute to expanding the set of

attainable elasticity-curvature pairs to better approximate the true shape of demand. This

is useful as it both aids in the identification of the mixed-logit model and demystifies the

mixed-logit model by enabling the researcher to articulate the path from data to model to

empirical results. In particular, our theoretical and empirical results highlight the importance

of modeling mixing distributions flexibly to keep a healthy distance between assumptions

and results. As the Box-Cox transformation we rely on is simple to incorporate and the

estimation can be done with standard econometric techniques, allowing for this flexibility

has a high substantive return with only minor additional cost.

Our empirical setting demonstrated that modeling the distribution of customer pref-

erences flexibly is important for designing and evaluating trade policy but we think there

are a variety of empirical settings where our work will be valuable. First, cost pass-through

in the international trade and macroeconomic literature is pinned-down ex ante via CES

demand. Our results indicate this assumption leads to over-estimates of cost pass-through,

including exchange rates. Second, the trade subsidy we offered customers in our empirical
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exercise is similar to subsidies given to consumers who buy an electric vehicle (EV) under

the Inflation Reduction Act of 2022.17 Our results indicate that robust estimates of how

effective this policy has been at generating incremental EV purchases requires modelling the

distribution of customer preferences flexibly.

Finally, we know from Aguirre, Cowan and Vickers (2010) that estimating the welfare

effects of uniform pricing requires estimates of both demand curvature and demand elastic-

ity. Recent work by Adams and Williams (2019), DellaVigna and Gentzkow (2019), and

Hitsch, Hortaçsu and Lin (2021) have demonstrated that such pricing policies are common

in industry. Meanwhile, uniform pricing is often mandated by government in health care

markets. For example, the 2010 Affordable Care Act (ACA) requires health insurers to

set uniform prices within predefined “rating areas,” covering a collection of counties or zip

codes with a variety of customer types.18,19 Our work demonstrates the importance of the

preferences specification in recovering robust estimates of the distributional consequences of

these policies. Adding supply-side considerations to our framework – such as menu costs

or allowing marginal cost to be correlated with demand, as in the case of healthcare – is

another exciting area for further research.

17Specifically, consumers are given a subsidy between $2,500 and $7,500 when they purchased a electric
vehicle that meets certain domestic sourcing requirements.

18Within each rating area, insurers can only charge different prices based on age, the number of people on
the plan, and the health plan tier. Geddes (2022) demonstrates that while insurers are constrained to offer
plans based on actuarial values, insurers mitigate these constraints by selectively entering rating areas.
Moreover, these entry decisions correlate with the people’s characteristics in those areas.

19Recent studies of insurance demand under the ACA, such as Saltzman (2019) and Tebaldi (2022), incor-
porate customer heterogeneity in the underlying demand model, but both use shape restrictions that are
common in the literature.
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Appendix

A Flexibly Estimating Quasi-linear Demand

The main text demonstrated the importance of modeling the distribution of heterogenous

preferences flexibly using preferences which generated income effects. In this appendix we

demonstrate the same ideas – including identification and monte carlo results – extend

to customer preferences which generate quasilinear demand. Quasi-linearity is a popular

empirical choice of researchers even in settings with high-dollar goods where income effects

are likely important (e.g., Grieco, Murry and Yurukoglu, 2021). This is because quasi-

linearity provides the researcher added flexibility; i.e., it does not impose how they include

income in the specification, nor does it require accounting for income effects in counterfactual

welfare calculations. Quasi-linear preferences also imply simpler curvature derivations since

f ′′
ij=0.

As should be apparent by now, the choice of price mixing distribution nonetheless may

materially impact answers to important empirical questions posed by researchers. Applying

the Box-Cox transformation in the case of quasi-linear demand is straightforward and can be

done to any mixing distribution, provided the researcher has access to identifying moments

which connect changes in consumption across a distribution of individual (or household)

characteristics. We consider the following variant of equation (8):

uij = xjβ
⋆
i + α⋆

i

(
yi − pj

)
+ ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (A.1)

where we include α⋆
i to capture consumers’ heterogeneous price sensitivity.

A researcher could allow demographics to flexibly enter the price coefficient α⋆
i in

a variety of ways. Nevo (2001) accommodates a non-linear effect of household income on

price sensitivity, as prior work has found sizable differences in price elasticities across low-

and high-income consumers in a wide variety of markets. It is important to note, however,

that in a quasi-linear model, such patterns do not actually represent income effects; they

simply capture differences in purchase behavior by consumers of different income levels.

There are several ways of introducing such flexibility in α⋆
i . The monte carlo analysis of

Section 5.2 demonstrates, however, that leveraging the Box-Cox transformation provides

greater flexibility with minimal computational burden. One might allow price sensitivity to
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differing by income bin or sieve estimation ( e.g. Wang, 2022). We found that both approaches

implicitly introduced discrete customer types into the mixing distribution, thereby limiting

the shape of the mixing distributions and leading to elasticity-curvature pairs, which deviated

substantially from the true shape of demand. We therefore focus on Box-Cox transformations

of continuous rather than discrete distribution, and use the power parameter λ to reflect

differences in price sensitivity between low- and high-income consumers. We therefore model

price-sensitivity as follows:

αi = − exp
(
α + πy

(λ)
i

)
, where y

(λ)
i ≡


yλi − 1

λ
, if λ > 0 ,

ln
(
yi
)
, if λ = 0

(A.2)

This specification of αi has the nice feature of guaranteeing that all customers have down-

ward sloping demand.

A nice feature of the Box-Cox transformation is that it nests common empirical

applications. A power parameter of λ = 1 corresponds to a linear effect of income on price

sensitivity, and λ = 0 denotes the case of log income, but the transform can also accommodate

a convex relationship between income and price sensitivity with λ > 1. While our focus above

is on allowing flexibility in the price mixing distribution, we could also introduce flexibility

via a Box-Cox transformation on demographics for non-price characteristics.

How exactly does the transform influence customer behavior in the model, and what

are the implications for the distribution of αi? Figure A.1 depicts examples of the Box-Cox

transformation for three values of λ. In Panel (a), we show the transformation for each value

of yi, while in Panel (b), we illustrate the distributional implications for the price sensitivity

parameter αi. For small values of λ, the transform generates most of the variation in price

sensitivity among low-income consumers (Panel a), and these low-income consumers drive

skewness in the distribution of price sensitivity. As λ increases, variation in price sensitivity

increasingly shifts to higher-income consumers.

Identification. As λ regulates the distribution of price-sensitivity across consumers and,

therefore, consumption patterns among low- and high-income consumers, identification comes

from the likelihood that consumers buy inexpensive versus expensive varieties conditional on

income. For example, when λ=1, marginal differences in price sensitivity across income levels
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Figure A.1: Visualizing the Box-Cox Transform
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are uniform. Hence, the predicted average price of the chosen product changes uniformly

across income groups, all-else-equal. When λ=0, we observe that small differences in income

will yield very different consumption sensitivities to price. We would, therefore, observe in

the data that the average price paid between consumers across the lowest income groups

would look very different while the average price paid among the highest income groups

would change little. The opposite is true for the case when λ > 1 as the gradient in the

average price paid across low-income consumers is flat while we observe a large gradient

across high-income consumers. A similar argument holds for the Box-Cox transform of

demographics related with non-price product characteristics.

Monte Carlo Simulation. We follow a similar process as the Monte Carlo simulation as

described in Section 5.2 but now applied to (indirect) utility specification (A.1). We specify

π=−0.2 so high-income agents less sensitive to changes in price and therefore their demand

is less elastic than low-income consumers. We set λ=−1 to demonstrate an interesting case

which aligns with the BLP specification we studied earlier. In the results section we discuss

what happens when we choose, for example, λ=2.

All other parameters are specified – or solved for – as described in Section 5.2. Simi-

larly, estimation and identification is no different with the exception of adding instruments

to separately identify mean price sensitivity (α) from heterogenous price sensitivity (π). We

identify α by including p̂ as an instrument (or equivalently cost shocks ω). Movement in

these cost shocks drive exogenous shifts in prices which elicit a common demand response.
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Table A.1: Quaslinear Monte-Carlo: Parameter Estimates

Scenario α (varies) σx = 5 σ0 = 5 π = −0.2 λ (varies)

True-Specification A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE A.Bias RMSE

1: log–log -0.014 0.016 -0.003 0.056 -0.772 0.787 0.022 0.022 -0.010 0.010

2: linear–linear -0.043 0.044 -0.003 0.055 -0.671 0.693 0.015 0.016 - -

3: bc–bc -0.024 0.025 -0.013 0.055 -0.276 0.293 0.012 0.013 -0.031 0.034

4: log–bc 0.057 0.132 -0.009 0.058 -0.695 0.725 0.040 0.057 0.267 0.556

5: linear–bc -0.011 0.019 -0.005 0.055 -0.612 0.637 0.032 0.034 0.167 0.194

6: bc–log -0.562 0.564 -0.189 0.204 -1.761 1.768 -0.292 0.292 - -

7: bc-linear -1.015 1.019 -0.402 0.405 0.095 0.286 -1.369 1.375 - -

Table Notes: The first column indicates the true data-generating process and the researcher’s assumed specification of the
price-income interactions. The next four (double) columns report the average bias (A.Bias) and root mean standard error
(RMSE) of different model parameters. Each scenario involves 1, 000 pricing equilibrium and estimation simulations. The price
coefficient, α, varies for each replication to ensure that ε = 2.5. The attribute random coefficients σx and σ0 (constant) are
both set to 5, the income price coefficient is set to π = −0.2, and the Box-Cox parameter is set to λ = −1 for all simulations,
where applicable.

We identify π by via aggregate income shocks which vary by market t. Specifically,

we solve for the average income for each market (or period) t and generate the income

distribution across markets. We then construct three indicator variables which is equal to

one if a market t is in the bottom ten percent, top ten percent, or between 40th and 60th

percentiles. We create the identifying instruments for π by interacting p̂ (or equivalently

cost shocks ω) this these indicator variables. The identifying assumption then follows the

logic of Figure A.1; i.e., the instruments trace out how common cost shocks impact different

income groups at different rates. For example, if prices increase exogenously and the demand

response is largest among markets in bottom ten percent, the estimator will choose λ values

closer to negative one (and vice-versa). We use these instruments for all specifications since

these are commonly used in the existing literature and therefore provide a useful example.

Results. We present Monte Carlo estimation results in Table A.1. As before, we find that

we are able to recover the λ parameter when the true data are generated from the flexible

Box-Cox model and we also allow for flexibility. We are also able to capture nested models

popular in the literature which use either income or log-income when we allow for flexibility.

Bad things happen, however, when the researcher imposes the relationship between income

and price-sensitivity but the true data-generating process is different.

The implications of imposing the relationship between income and price-sensitivity is

demonstrated in Table A.2, particularly scenarios 6 and 7. The first two columns demonstrate

that imposing log-income or income as the price interaction leads to estimated distributions

of price sensitivity (summarized by their respective coefficients of variation) which are very

– 43 –



Table A.2: Quasi-linear Monte-Carlo:
Implications for the Estimated Shape of Demand

True-Specification σα/α σ̂α/α̂ ε ρ (ε, ρ) (ε̂, ρ̂)

1: log–log -0.256 -0.229 -0.143 0.009 -0.410 -0.371

2: linear–linear -0.115 -0.109 -0.125 -0.002 -0.379 -0.362

3: bc–bc -9.927 -10.631 -0.092 0.004 -0.251 -0.263

4: log–bc -0.256 -0.190 -0.148 0.019 -0.410 -0.374

5: linear–bc -0.115 -0.105 -0.124 -0.001 -0.379 -0.361

6: bc–log -9.927 -0.713 -0.525 -0.005 -0.252 0.202

7: bc-linear -9.927 -0.489 -0.692 0.172 -0.251 -0.311

Table Notes: The first column indicates the true data-generating process and the researcher’s
assumed specification of the price-income interactions. Column “Coeff .Var” reports the coefficient
of variation of the distribution of price responsiveness of the data-generating process and the es-
timated model. The remaining set of columns report the coefficient of variation for idiosyncratic
prices-sensitivity parameters (αi), the median average bias (MAB) for average product elasticity
and curvature (ε, ρ), and the average correlation between product-level elasticity and curvature
(corr(εj , ρj)).

different from the true data. This indicates that a researcher interested in understanding dis-

tributional consequences of a government policy, cost shock, etc. will grossly underestimate

the welfare effects if they impose income or log-income ex ante. We observe that in both 6 and

7, the researcher over-estimates demand elasticity, or equivalently under-estimates the firms’

market power. When the researcher imposes income interacted with price and the true DGP

is the flexible Box-Cox specification with λ=−1, they under-estimate demand curvature. We

find the mis-specification bias when the researcher assume log-income on estimated demand

curvature is small, however. This stems from the fact that our experiments assumed λ = −1.

When we switch and set λ=2, we get the opposite result where assuming log-income distorts

the curvature estimate more than assuming income. In all cases, our results indicate that

we can recover the transform parameter (λ) and accurately estimate average elasticity (ε),

demand curvature (ρ), and the distribution of price sensitivities using the Box-Cox model

using commonly-used instruments.
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Online Appendix

B Elasticity and Curvature of Demand for Breakfast Cereal

This appendix describes the estimation of Figure 1 for ready-to-eat breakfast cereal. As we

note in the main test, the specification for Berry et al. (1999) presented in Panel D follows

Conlon and Gortmaker (2020) using income data as presente in . Nevo (2000) specifies

preferences as follows (ignoring market location and time indices):

uij = xjβ
⋆
i + α⋆

i pj + ξj + ϵij , i ∈ I, j ∈ J , ϵij ∼ EV1 , (B.1a)(
α⋆
i

β⋆
i

)
=

(
α

β

)
+ΠDi + Σνi , νi ∼ N(0, In+1) , (B.1b)

where xj is the (n×1) vector of observed product characteristics and pj is the price of (inside)

product j available in each market, J , with J = |J |. Payoff of the outside good is ui0 = ϵi0.

There are random coefficients of product characteristics, β∗
i and price responsiveness, α∗

i .

Preferences might be correlated with a d-vector of demographic traitsDi through the (n+1)×
d matrix Π of interaction estimates that allow for cross-price elasticity to vary across markets

with different demographic composition. To further account for individual preferences over

unobservable product attributes, νi captures mean-zero, unobserved preference shifters with

a diagonal variance-covariance matrix Σ. Lastly, the idiosyncratic unobserved preference

by consumer i for product j, ϵij, follows the Type-I extreme value distribution across all

products in J .

We consider four alternative specifications. The estimation results of Model A are

represented graphically in Panel B of Figure 1. Each specification also includes the product

characteristics product characteristics following Nevo (2001) but are not reported. Robust

standard errors are in parentheses.

Where does curvature come from in this model? In Model B we removed the price-

interactions with demographics, while in Model C we remove the normally-distributed price

random coefficient. We observe that curvature is driven by the shape of the price mixing
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Table B.1: Breakfast Cereal: Price Related Estimates

Means Std. Dev. Demographic Interactions (πp) Manifold

Specification (α) (σp) log(Income) log(Income)2 Child ε ρ

[A] -62.7299 3.3125 588.3252 -30.1920 11.0546 3.62 1.06
(14.8032) (1.3402) (270.4410) (14.1012) (4.1226)

[B] -30.9982 2.0216 — — — 3.74 0.96
(0.9674) (0.9367) — — —

[C] -53.1367 — 444.7281 -22.3987 16.3664 3.60 1.08
(12.1023) — (209.6548) (10.7282) (4.7824)

[D] -30.8902 — — — — 3.74 0.96
(0.9944) — — — —

Table Notes: GMM estimates of parameters related to price sensitivity using simulated breakfast cereal data estimated
via “best practices” described in Conlon and Gortmaker (2020). The remaining parameters for product characteristics
follow Nevo (2001) and are included in each demand specification but are not reported. Robust standard errors are in
parentheses.

distribution connect to demographics. This finding is supported in Model D where we observe

no heterogeneity in price sensitivity leads to log-concave estimated demand.

[A] α⋆
i = α +

d∑
k=1

παkDi + σανi , (Nevo – Full Model) (B.2a)

[B] α⋆
i = α + σανi , (Only Price Random Coefficient) (B.2b)

[C] α⋆
i = α +

d∑
k=1

παkDi , (Only Demographic Price Interactions) (B.2c)

[D] α⋆
i = α , (No Price Interactions) (B.2d)

C Probability Distributions and Demand Manifolds

In this section we provide detail behind the derivations in the main text. Because of the

additive i.i.d. type-I extreme value distribution of ϵij, the individual i’s choice probability of

product j given by (10) is also the mean of an individual-specific Bernoulli distribution:

µij = Pij , (C.1)

which are functions of the vector of prices p that we omit to reduce clutter. The variance is:

σ2
ij = Pij(1− Pij) . (C.2)
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And finally, the third central moment or non-standardized skewness is:

skij = Pij(1− Pij)
2 − P2

ij(1− Pij) = Pij(1− Pij)(1− 2Pij) , (C.3)

from where we obtain standardized moment or skewness (MacGillivray, 1986) as:

µ̃ij,3 =
skij
σ3
ij

=
Pij(1− Pij)(1− 2Pij)√

[Pij(1− Pij)]3
=

1− 2Pij√
Pij(1− Pij)

, (C.4)

where σ3
ij is the third raw moment of the individual choice probability distribution.

Moment Derivatives. We use the derivative of the choice probability (10) with respect

to price repeatedly:

P′
ij =

∂Pij

∂pj
= f ′

ij · Pij(1− Pij) . (C.5)

The derivative of the variance with respect to price is:

∂σ2
ij

∂pj
=

∂Pij(1− Pij)

∂pj
= P′

ij(1− Pij)− PijP′
ij = f ′

ij · Pij(1− Pij)(1− 2Pij) = f ′
ij · skij . (C.6)

To conclude, we obtain the price derivative of skewness by differentiating the first equality

in (C.3):

sk′
ij =

[
(1− Pij)

2 − 4Pij(1− Pij) + P2
ij

]
·P′

ij =
[
(1− 2Pij)

2 − 2Pij(1− Pij)
]
·f ′

ij ·Pij(1−Pij) .

(C.7)

Demand Manifold. Price differentiate (11) and substitute (C.5) to obtain demand elas-

ticity of product j with respect to p:

εj(p) ≡ − pj
Qj(p)

· ∂Qj(p)

∂pj
= − pj

Qj(p)

∫
i∈I

f ′
ij ·Pij (1− Pij) dG(i) . (C.8)

Similarly, the inverse demand curvature of product j is:
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ρj(p) ≡ Qj(p) ·
∂2Qj(p)/∂p

2
j

[∂Qj(p)/∂pj]2
=

∫
i∈I

PijdG(i)×


∫

f ′′
ij ·Pij (1− Pij) dG(i)+∫ (

f ′
ij

)2 ·[Pij (1− Pij) (1− 2Pij)] dG(i)


[∫

f ′
ij · Pij (1− Pij) dG(i)

]2 .

(C.9)

Equations (12) and (13) follow after substituting (11), (C.2) and (C.3) into these expressions.

Combining elasticity and curvature we obtain the expression for the demand manifold (14):

ρj[εj(p)] =
p2j

ε2j(p) ·Qj(p)
·
[∫

f ′′
ij ·Pij (1− Pij) dG(i) +

∫ (
f ′
ij

)2 ·[Pij (1− Pij) (1− 2Pij)] dG(i)

]
.

(C.10)

D A General Mixing Distribution

Without loss of generality, suppose idiosyncratic demand sensitivity is modeled as α⋆
i =

α+πϕi, where α is the mean slope of demand and π captures the effect on price heterogeneity

of preferences across individuals. We model draws of individual types ϕi after the following

three-parameter Asymmetric Generalized Normal distribution (Nadarajah, 2005):

Prob
(
ϕ < x; ι, ζ, κ

)
= ΦN(y) where =


−1

κ
log

(
1− κ(x− ι)

ζ

)
, if κ ̸= 0 ,

x− ι

ζ
, if κ = 0 ,

(D.1)

and where ΦN(·) denotes the cumulative distribution function of a standard normal. To

avoid an overparameterized model, we normalize the scale parameter ζ = 1, and κ < 0

so that the support of the distribution is (ι + 1/κ,∞). The distribution is right-skewed,

mimicking a log-normal distribution for κ = −1 and converging to a normal distribution as

κ −→ 0. Furthermore, we center the distribution around the mean slope:

E[ϕ] = ι− ζ

κ

(
eκ

2/2 − 1

)
= 0 , (D.2)

so that:

ι =
1

κ

(
eκ

2/2 − 1

)
. (D.3)
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The one-parameter (κ) Asymmetric Generalized Normal distribution can then be written as:

Prob
(
ϕ < x;κ

)
= ΦN(y) where =


−
log
(
eκ

2/2 − κx
)

κ
, if κ ̸= 0 ,

x− ι

ζ
, if κ = 0 ,

(D.4)

with ι and ζ defined above. The mean, variance, and skewness are:

µ[ϕ;κ] = 0 , (D.5)

σ2[ϕ;κ] =
eκ

2/2
(
eκ

2/2 − 1
)

κ2
, (D.6)

µ̃3[ϕ;κ] =
3eκ

2/2 − e3κ
2/2 − 2(

eκ2/2 − 1
)3/2 . (D.7)

E Competition, Demand Curvature, and Pass-through

Our analysis of pass-through in the main text focused on demand curvature (i.e., the shape

of demand) and ignored the impact of competition (i.e., shifts of the demand curve). We

address the interaction of curvature and competition in our Monte Carlo environment by

varying λ to generate equilibria of varying degrees of demand curvature. We then shock

each simulated equilibrium with a common 10% increase in marginal costs and consider two

alternate counterfactual equilibria. First, we assume each firm operates as a single-product

monopolist. We call this scenario “Monopoly.” Second, we assume firms internalize the

price choices of their competitors and we therefore solve for new Bertrand-Nash pricing

equilibrium. We call this scenario “Oligopoly.” We present the median Monopoly (solid

line) and Oligopoly (dashed-line) pass-through rates for different levels of demand curvature

in Figure E.1.

We find that competition pushes equilibrium pass-through towards one, thereby

muting the upward pricing pressure generated by the change in marginal costs. The increase

in the common cost leads to both direct and indirect pass-through effects. The price of a

product always increases with its own cost. This is the direct effect captured by Monopoly

pass-through. The indirect effect collects substitution effects induced by price changes of
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Figure E.1: Competition and Pass-Through Rates
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Figure Notes: Figure presents Monte Carlo results across equilibria of median demand curvature. We
generate each equilibrium following the environment discussed in Section 5.2 for the Box-Cox utility specifi-
cation where λ∈ [0, 1]. For each market t in each equilibrium, we solve for the median (across 20 products)
demand curvature. “Monopoly” represents the pass-through rate of a single-product monopolist, e.g., (4).
“Oligopoly” is the median pass-through rate for each market t in each equilibrium generated by a 10%
increase in marginal costs. The shaded region reflects the 95% confidence interval.

other products similarly affected by the cost increase. The net effect thus depends on “how

far” a particular product is from its closest substitutes in product space.

Many empirical questions depend critically on the relative importance of the “direct

effect” and “net effect.” The literature has thus far focused on doing this by getting

substitution patterns right. Our work highlights the importance of also getting the shape

of demand right. We turn now to demonstrating that this focus on the shape of demand is

important for designing and evaluating trade policy.

F Additional Results

Table F.1: Income Effects, Markups, and Pass-Through Rates

λ = 0 λ = 0.5 λ = 0.75 λ = 1

Elasticity (ε) 2.83 (0.26) 2.34 (0.48) 2.77 (1.01) 2.75 (2.05)

Curvature (ρ) 1.35 (0.08) 1.19 (0.07) 1.13 (0.05) 0.99 (0.01)

Markup (%) 44.41 (5.26) 46.25 (8.77) 44.48 (13.77) 48.12 (20.55)

Pass-Through (%) 178.99 (18.33) 145.91 (16.38) 117.90 (7.27) 99.41 (0.01)

Table Notes: Mean and standard deviations (in parentheses) of demand elasticity and curvature plus their implied price
markup and pass-through rate.
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