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Abstract

We seek to estimate and predict treatment-effect heterogeneity across sites, in multi-

site randomized controlled trials, with a large number of sites but few randomization units

per site. As is well-known, an Empirical-Bayes (EB) estimator can be used to estimate

the variance of the treatment effect across sites. We propose consistent estimators of the

coefficients from ridge and OLS regressions of site-level effects on site-level characteristics

that are unobserved but can be unbiasedly estimated, such as sites’ average outcome with-

out treatment, or site-specific treatment effects on mediator variables. In experiments with

imperfect compliance, we also propose a non-parametric and partly testable assumption

under which the variance of local average treatment effects (LATEs) across sites can be

estimated. We revisit Behaghel et al. (2014), who study the effect of counseling programs

on job seekers job-finding rate, in 200 job placement agencies in France. We find consider-

able treatment-effect heterogeneity, both for intention to treat and LATE effects, and the

treatment effect is negatively correlated with sites’ job-finding rate without treatment.
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1 Introduction

Research question. From 2014 to 2016, “AEJ: Applied Economics” published 12 multi-site

RCTs with treated and control units within each site, thus making it possible to estimate the

treatment effect in each site. Typically, those RCTs are conducted in dozens, and sometimes

hundreds, of different neighborhoods, villages, or regions, but they have a small number of

randomization units per site. Those RCTs also often have imperfect compliance with the initial

treatment assignment. Few of these 12 papers investigate the treatment-effect’s heterogeneity

across sites.1 Estimating the treatment-effect’s variance across sites can be helpful to assess if

the effect is context- and implementation-dependent. Regressing site-specific effects on some

predictors can be helpful to provide suggestive evidence as to the mechanisms underlying the

treatment’s effect. For instance, in a multi-site job-search counseling RCT, it can be interesting

to study whether sites that have the largest effects on job-seekers’ job finding rate are also the

sites that have the largest effect on their search effort, as a “predictive mediation analysis” of

whether the job-finding effect can be “explained” by the job-search effect.

Set-up. We consider an RCT stratified at the site level. We allow for imperfect compliance

with treatment assignment, and consider both the heterogeneity of intention-to-treat effects

(ITTs) and local-average-treatment-effects (LATEs) across sites. We assume that each site has

at least two treated and two control units, so that ITTs, the ITT effect of site s, can be unbiasedly

estimated, using an estimator ÎTTs whose variance can also be unbiasedly estimated. Finally,

in our asymptotic analysis, we assume that the number of randomization units in each site ns is

fixed, while the number of sites S goes to infinity, hereafter referred to as a “large S small ns”

sequence. This thought experiment seems well suited to the multi-site RCTs in our survey: 10

out of 12 have at least 40 sites, while the median number of units per site is 12.5.

Estimating the variance of ITTs across sites. As is well-known, to non-parametrically

estimate the ITTs’ variance across sites, one can use the Empirical Bayes (EB) variance estimator

(Morris, 1983). In a multi-site RCT, the EB estimator is equal the variance of ÎTTs across sites,
1One paper estimates the treatment-effect’s variance across sites, and two more estimate the average treatment

effect separately for different subgroups of geographical locations.

2



minus the average of robust variance estimators of the ÎTTs estimators.

Predicting site-specific ITT effects. Then, we turn attention to βITT
X (λ), the coefficient

from a ridge regression of the site-specific ITTs on Xs, a vector of covariates, with hyper-

parameter λ. OLS is a special case of a ridge regression, with λ = 0. Ridge regressions lead

to more precisely estimated regression coefficients than OLS when the number of regressors is

not negligible with respect to the sample size. This makes them an appealing alternative to

OLS in multi-site RCTs, where one typically has a few dozens to a few hundreds of sites. Some

of the elements of Xs might be unobserved variables that can be unbiasedly estimated. For

instance, one may want to regress sites’ ITTs on sites’ outcomes without a treatment offer, to

assess if treatment offers reduce or increase inequalities across sites. One could also be interested

in regressing the ITTs for the main outcome variable on sites’ ITTs for mediator variables, like

in the aforementioned job finding/job search example. To consistently estimate βITT
X (λ), one

cannot simply regress the estimated ITTs on the estimated covariates X̂s: one needs to account

for the fact that the regression’s dependent and explanatory variables are estimators. This can

be achieved easily, given that in an RCT one can estimate the variances of those estimators, and

the covariances between them (Li and Ding, 2017). We show that the resulting estimator β̂ITT
X (λ)

is asymptotically normal, and we provide a conservative estimator of its asymptotic variance.

We also show that the “optimal” hyper-parameter, based on the generalized cross-validation

method of Golub et al. (1979), can be consistently estimated.

Estimating and predicting LATEs’ heterogeneity. As shown by Walters (2015), in multi-

site RCTs with imperfect compliance, a naive EB estimator using site-specific 2SLS estimators

as building blocks is often negative and therefore uninformative on the LATEs’ variance, because

sites with first-stages (FSs) close to zero have large variances. Moreover, as the site-specific LATE

estimators are not unbiased, this naive EB estimator is not necessarily consistent in the “large

S small ns” sequence we consider. To bypass this issue, we propose a testable non-parametric

assumption under which the LATEs’ variance can be written as a function of sites’ ITTs and FSs,

thus allowing us to use an EB estimator leveraging only unbiased ITTs and FSs estimators. This

non-parametric assumption requires that sites’ FSs and LATEs are independent. Its testable

implication is that the LATE is equal to the coefficient from a regression of sites’ ITTs on their

3



FSs. Finally, we show that for a binary covariate Xs, the coefficient βLATE
X from a regression of

the site-specific LATEs on Xs can be consistently estimated, again under our assumption that

LATEs and FSs are independent. Thus, techniques to estimate and predict ITTs heterogeneity

can be parly extended to estimate and predict LATEs heterogeneity, at the expense of imposing

a strong but partly testable assumption.

Extensions to other RCT designs. While the estimators described above assume that the

RCT is stratified at the site level, they readily extend to multi-site RCTs stratified at a finer

level. On the other hand, and though this may still be a feasible extension, it is less immediate

to extend them to RCTs where the site-specific estimators are correlated, as can for instance

happen in unstratified multi-site RCTs or in RCTs stratified at a coarser level than the sites.

Application We use our results to revisit Behaghel et al. (2014), who conducted an RCT to

study the effect of intensive counseling programs on job seekers’ employment, in more than 200

local public employment offices in France. In each site, job seekers are randomly assigned to

either the control group, or to a program ran by the local public employment service, or to a

program ran by a local private provider. Both programs increase job seekers’ job finding rate

by around 2 percentage points. Using the EB estimator, we find that the standard deviation

of the ITT effects across sites is equal to 469% of the ITT estimate for the public program,

and to 389% of the ITT estimate for the private one. Assuming for illustrative purposes that

site-specific ITTs follow a normal distribution, the public and private programs respectively have

a negative effect in 42% and 40% of the sites. Surprisingly, sites ITT effects are not significantly

correlated with their FS effects. On the other hand, ITT effects are negatively correlated with

sites’ average job-finding rate without treatment. Thus, to increase the programs’ effectiveness,

one could target them to the sites where earlier cohorts of job seekers had the lowest job finding

rate. Finally, we find that the ITTs of the public and private programs are strongly positively

correlated, and we can actually not rule out a perfect positive correlation. In the same site,

the public and private programs are delivered by different providers. Thus, this suggests that

effects’ heterogeneity is not entirely driven by providers’ effects. Turning to LATEs, our test of

the assumption that FSs and LATEs are independent is not rejected. Under that assumption,

we estimate that the standard deviation of the effects across sites is equal to 314% of the LATE
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estimate for the public program, and to 377% for the private one.

1.1 Related literature and contributions

Estimating the variance of ITTs across sites. In the evaluation literature, the EB variance

estimator has already been put forward as a tool to estimate the variance of ITT effects across

sites in multi-site RCTs (see Equation (16) in Raudenbush and Bloom, 2015).

Predicting site-specific ITT effects. In the literature on multi-site RCTs, the most closely

related paper is again Raudenbush and Bloom (2015), who propose an estimator of the covari-

ance between sites’ ITTs and their average outcome without treatment (see their Equation (18)).

Here, our contribution is to propose an estimator of coefficients from multivariate ridge or OLS

regressions of ITTs on a vector of estimated variables, and to study its asymptotic distribution.

On the applied side, the idea of correlating site-specific ITT effects on a main outcome and on

mediators might also be a contribution of this paper. Ideas similar to those we use to predict

site-specific ITTs have appeared in the teacher value-added literature, see in particular Kline

et al. (2020) and Rose et al. (2022). In that literature, the most closely related paper is Rose

et al. (2022), who propose an estimator of coefficients from a multivariate OLS regression of

teachers’ long-run value added on their value-added on a vector of short-run outcomes. There as

well, one can account for the fact that the regression’s dependent and explanatory variables are

estimators, by using unbiased estimators of their variances and covariances, but those variances

and covariances estimators differ in multi-site RCTs and in teacher value-added models (see

the discussion surrounding Equations (5) and (8) in Rose et al., 2022), so estimators are not

numerically equivalent after some relabeling.2 More generally, note that in the setting we con-

sider, standard results on two-steps estimators cannot be used to propose a consistent estimator

of βITT
X (λ), because those results assume that the first-step estimators are consistent (see e.g.

Theorem 6.1 in Newey and McFadden, 1994), which is not the case in the “large S small ns”

sequence we consider. Also, a vast literature in meta-analysis studies meta-regressions, namely
2In our application, we re-estimate the variance of the ITT effects of the public program using the estimator

of Kline et al. (2020), and find a sizeably different estimator.
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regressions of study-specific effects on moderators (see e.g. Stanley and Doucouliagos, 2012, for

a textbook treatment). However, this literature has mostly considered the case where the mod-

erators are observed variables that do not need to be estimated. Moreover, this literature often

assumes that estimated effects are normally, or at least symmetrically distributed, which is not

warranted in the “large S small ns” setting we consider.

Estimating and predicting LATEs’ heterogeneity. Other papers have tried to bypass

the issue that a naive EB estimator cannot be used to estimate the variance of LATEs in “large

S small ns” multi-site RCTs. Walters (2015) estimates a parametric random-coefficient model,

while Adusumilli et al. (2024) estimate a parametric grouped-random-effect model. Instead, we

pursue a different and complementary route, where we try to estimate that variance under a

testable non-parametric assumption, namely that LATEs and FSs are independent. Our work

is also related to that of Angrist and Meager (2023), who study the heterogeneity of ITTs and

LATEs of an educational intervention, in a setting with a small number of large studies (“small

S large ns”). Using frequentist and Bayesian meta-analytic techniques, they find a much larger

variance of ITTs than LATEs, because the variance in ITTs is mostly driven by the variance in

FSs and implementation quality. In a very different context, we find that the variability in FSs

and implementer effects do not seem to explain the variability in ITTs.

2 Set-up

Completely randomized experiment, with at least two units assigned to treatment

and control per site. We consider a stratified RCT with S sites. Site s has ns units, and let

n = ∑S
s=1 ns denote the total number of units in the RCT. Let Zis be an indicator for whether

unit i in site s is assigned to treatment. Zs stacks all assignment indicators in site s.

Assumption 1 For all s, there exists n1s ∈ {2, ..., ns − 2} such that for every (z1, ..., zns) ∈

{0, 1}ns such that z1 + ... + zns = n1s, P (Zs = (z1, ..., zns)) = 1
( ns

n1s
) .

Potential treatments, outcomes, and mediators. For all (i, s) ∈ {1, ..., ns} × {1, ..., S},

the potential treatments of unit i in site s without and with assignment to treatment are de-

6



noted Dis(0) and Dis(1). Similarly, their potential outcomes without and with treatment are

denoted Yis(0) and Yis(1).3 Furthermore, we let Mis(0) denote a vector stacking the values of m

intermediate outcomes, or mediators, without treatment, while Mis(1) denotes the values of the

mediators with treatment. Then to simplify notation let us introduce “reduced-form” potential

outcome and mediators, that are functions of the assignment to treatment: Y r
is(0) = Yis(Dis(0)),

Y r
is(1) = Yis(Dis(1)), Mr

is(0) = Mis(Dis(0)), and Mr
is(1) = Mis(Dis(1)). Finally, let Dis =

ZisDis(1)+(1−Zis)Dis(0), Yis = ZisY
r

is(1)+(1−Zis)Y r
is(0), and Mis = ZisMr

is(1)+(1−Zis)Mr
is(0)

denote the units’ observed treatment, outcome, and mediators. We assume that potential treat-

ments, outcomes, and mediators are independent and identically distributed (iid) in each site,

independent of the treatment assignment in each site, and that potential treatments, outcomes,

and mediators, as well as assignments, are independent across sites.

Assumption 2 1. For all s, the vectors (Dis(0), Dis(1), Yis(0), Yis(1), Mis(0), Mis(1)) are in-

dependent and identically distributed across i.

2. For all s, (Dis(0), Dis(1), Yis(0), Yis(1), Mis(0), Mis(1))i∈{1,...,ns} ⊥⊥ Zs.

3. The random vectors ((Dis(0), Dis(1), Yis(0), Yis(1), Mis(0), Mis(1))i∈{1,...,ns}, Zs) are mutu-

ally independent across s.

Assumption 2 for instance holds if in each site, the units included in the experiment are randomly

drawn from a larger population. When units are not effectively drawn from a larger population,

one can assume that such sampling took place. Then, all effects below apply to this hypothetical

larger population, rather than to the study sample only. Assuming random sampling is conve-

nient to avoid the well-known issue that in RCTs conducted in convenience samples, the variance

of treatment-effect estimators is not identified (Neyman, 1923). As potential treatments and out-

comes are assumed to be iid in each site, for all s let (Ds(0), Ds(1), Ys(0), Ys(1), Ms(0), Ms(1))

denote a vector with the same probability distribution as the vectors

(Dis(0), Dis(1), Yis(0), Yis(1), Mis(0), Mis(1)).
3This notation implicitly assumes that assignment to treatment has no direct effect on the outcome, the

so-called exclusion restriction, see Angrist et al. (1996).
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First-stage and intention-to-treat effects. For all s let

FSs = E(Ds(1) − Ds(0))

denote the first-stage (FS) effect in site s, and let

FS =
∑

s

wsFSs

be a weighted average of the FSs across sites, for some non-negative and non-stochastic weights

ws that sum to one. With ws = ns/n, FS is the FS effect across units. With ws = 1/S, FS is

the FS effect across sites.4 Similarly, for all s let

ITTs = E(Y r
s (1) − Y r

s (0))

denote the intention-to-treat effect in site s, and let

ITT =
∑

s

wsITTs.

Finally, for all s let

ITTM,s = E(Mr
s(1) − Mr

s(0))

denote the intention-to-treat effects on the mediators in site s, and let

ITTM =
∑

s

wsITTM,s.

Local average treatment effects. As in Imbens and Angrist (1994), we assume that mono-

tonicity holds and that the first-stage is strictly positive:

Assumption 3 For all s Ds(1) ≥ Ds(0), and FS > 0.

Then, for all s such that FSs > 0, let

LATEs = ITTs

FSs

denote the local average treatment effect (LATE) in site s, and let

LATE = ITT
FS .

4If the analysis is at a more disaggregated level than randomization units (e.g. the randomization is at the

village level and stratified at the region level, but the analysis is at the villager level), ws could be proportional

to the number of observations in site s.
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FS, ITT, and LATE estimators. For all s, let n0s = ns−n1s denote the number of untreated

units in site s. For any generic variable xis defined for all i ∈ {1, ..., ns} and s ∈ {1, ..., S},

let xs = 1
ns

∑ns
i=1 xis denote the average of xis in site s, let x1s = 1

n1s

∑ns
i=1 Zisxis and x0s =

1
n0s

∑ns
i=1(1 − Zis)xis respectively denote the average of xis among the treated and untreated

units in site s, and let x = 1
S

∑
s=1 xs denote the average of xs across sites. Then, let w̃s = Sws

denote the weights re-scaled by the number of sites. For example, if ws = 1
S

then w̃s = 1 and if

ws = ns

n
w̃s = ns

n
where n is the average number of units per site. Finally, let

F̂Ss = D1s − D0s

ÎTTs = Y 1s − Y 0s

ÎTTM,s = M1s − M0s,

L̂ATEs = ÎTTs/F̂Ss

respectively denote the FS, ITTs, and LATE estimators in site s, and let

F̂S = 1
S

S∑
s=1

w̃sF̂Ss

ÎTT = 1
S

S∑
s=1

w̃sÎTTs

ÎTTM = 1
S

S∑
s=1

w̃sÎTTM,s

L̂ATE = ÎTT/F̂S

respectively denote the FS, ITTs, and LATE estimators across sites. Under Assumptions 1 and

2, F̂Ss, ÎTTs, and ÎTTM,s are unbiased, so F̂S, ÎTT, and ÎTTM are also unbiased.

Robust site-specific variance estimators. For all s ∈ {1, ..., S}, for any variable xis defined

for every i ∈ {1, ..., ns}, let r2
x,s = 1

ns−1
∑ns

i=1(xis −xs)2 denote the variance of xis in site s, and let

r2
x,1,s = 1

n1s−1
∑ns

i=1 Zis(xis − x1s)2 and r2
x,0,s = 1

n0s−1
∑ns

i=1(1 − Zis)(xis − x0s)2 respectively denote

the variance of xis among the treated and untreated units in site s. Then let,

V̂rob

(
ÎTTs

)
= 1

n1s

r2
Y,1,s + 1

n0s

r2
Y,0,s (1)

denote the robust estimator of the variance of ÎTTs (Eicker et al., 1963; Huber et al., 1967;

White et al., 1980). As is well-known (see, e.g., Equation (6.17) in Imbens and Rubin, 2015),
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under Assumptions 1 and 2,

E
(
V̂rob

(
ÎTTs

))
= V

(
ÎTTs

)
. (2)

Robust site-specific covariance estimators. For all s ∈ {1, ..., S}, for any variables qis

and xis defined for every i ∈ {1, ..., ns}, let cq,x,s = 1
ns−1

∑ns
i=1(qis − qs)(xis − xs) denote the

covariance between qis and xis in site s, and let cq,x,1,s = 1
n1s−1

∑ns
i=1 Zis(qis − q1s)(xis − x1s) and

cq,x,0,s = 1
n0s−1

∑ns
i=1(1 − Zis)(qis − q1s)(xis − x0s) respectively denote the covariance between qis

and xis among the treated and untreated units in site s.

Variances across sites. As many of our target parameters are variances or covariances of

vectors of real numbers across sites, we introduce a dedicated notation. Let AT denote the

transpose of a matrix A. For any site-specific K × 1 vector of real numbers (Us)s∈{1,...,S}, let

σ2 [U] =
S∑

s=1
ws

(
Us −

S∑
s′=1

ws′Us′

)(
Us −

S∑
s′=1

ws′Us′

)T

denote the weighted variance matrix of those vectors across sites.

3 Application: the effects of publicly- and privately-provided coun-

seling for job seekers.

Behaghel et al. (2014) conduct a large-scale RCT, in 216 local Public Employment Service (PES)

offices in France, to compare the public and private provision of counseling to job seekers. During

their first interview at the local PES office, 43,977 job seekers are randomly assigned to one of

three groups, with assignment probabilities varying locally. The first group is a control group,

where they receive the standard services provided by the PES. The second group is assigned to

an intensive counseling program provided by the PES, and the third is assigned to an intensive

counseling program provided by a private provider. Our framework is applicable to this RCT,

with local public employment offices as sites and job seekers as randomization units. A first slight

difference is that each unemployed has two assignment variables Z1,is and Z2,is, respectively equal

to one if they are assigned to the PES-operated and to the privately-operated program. This

difference is immaterial for our results. For instance, if one is interested in the heterogeneous
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effects of the PES-provided program, in the estimators defined below one lets Zis stand for Z1,is,

and one drops job seekers assigned to the privately-operated program from the sample.5 A

second slight difference is that for the private program, 12 offices have less than two treated or

two control units: they have to be dropped from our analysis. For the public program, 16 offices

have to be dropped for the same reason. Compliance with randomized assignment is imperfect.

While almost no job seekers unassigned to the counseling programs gets access to them, only

32% (resp. 43%) of job seekers assigned to the public (resp. private) counseling program took

it up. The outcome we consider is an indicator for holding any employment 6 months after

randomization, one of the three main employment outcomes considered by the authors. Results

are similar if we consider the authors’ two other outcomes. Unfortunately, the authors’ data set

does not contain mediators, such as measures of workers’ job-search effort.

4 Estimating and predicting ITTs’ and FSs’ heterogeneity.

4.1 Estimating the variance of ITTs and FSs across sites.

Target parameters. In this section, our target parameter is σ2 [ITT], the variance of the

ITTs across sites. The variance of the FS effects and the variances of the ITT effects on the

mediators can be estimated similarly.

Estimating σ2 [ITT] using an Empirical Bayes estimator. Let

σ̂2 [ITT] =
S∑

s=1
ws

[(
ÎTTs − ÎTT

)2
− V̂rob

(
ÎTTs

)]
.

σ̂2 [ITT] is the standard Empirical Bayes (EB) variance estimator (Morris, 1983), applied to

multi-site RCTs. σ̂2 [ITT] can easily be extended to multi-site RCTs stratified at a finer level

than sites. Then, one needs to define strata-specific robust variance estimators, and redefine

V̂rob

(
ÎTTs

)
as a weighted sum of those estimators, across all strata of site s.

5In particular, it follows from Theorem 3 in Li and Ding (2017) that the formulas in Neyman (1923) for the

variance of comparisons of treated and control observations still apply to RCTs with more than two treatments.
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Asymptotic distribution of the EB estimator. Let ϕs,1 = w̃s

[(
ÎTTs − ITT

)2
− V̂rob

(
ÎTTs

)]
.

Assumption 4 Sufficient conditions under which σ̂2 [ITT] is asymptotically normal.

1. The sequences
(
w̃sÎTTs

)
s≥1

and (ϕs,1)s≥1 satisfy the Lyapunov condition.

2. For all s, w̃s < N for some N > 0 and N < +∞.

3. ITT, 1
S

∑S
s=1 V (ϕs,1), 1

S

∑S
s=1 E(ϕs,1), 1

S

∑S
s=1 E(ϕ2

s,1) converge towards finite limits when

S → ∞.

Point 1 of Assumption 4 requires that one can apply the Lyapunov central limit theorem to ÎTT

and to an infeasible version of σ̂2 [ITT] where ÎTT is replaced by ITT. Point 2 of Assumption 4

requires that the rescaled weights for each site be bounded. Finally, Point 3 requires that certain

deterministic averages have finite limits. Under Assumption 4, let

Vσ2[ITT] = lim
S→∞

1
S

S∑
s=1

V (ϕs,1) ,

and let ϕ̂s,1 = w̃s

[(
ÎTTs − ÎTT

)2
− V̂rob

(
ÎTTs

)]
and

V̂σ2[ITT] = 1
S

S∑
s=1

[
ϕ̂s,1 − ϕ̂1

]2
.

Theorem 1 If Assumptions 1 and 4 hold,

√
S
(
σ̂2 [ITT] − σ2 [ITT]

)
d−→ N(0, Vσ2[ITT]),

and V̂σ2[ITT]
P−→ v, where v is a real number larger than Vσ2[ITT] defined in the proof.

Theorem 1 shows that in the “large S fixed ns” asymptotic sequence we consider, σ̂2 [ITT] is

asymptotically normal for σ2 [ITT], and V̂σ2[ITT] is a conservative estimator of its asymptotic

variance. Thus, Theorem 1 can be used to obtain conservative confidence intervals for σ2 [ITT].

Application: the variance across sites of the ITT effects of publicly- and privately-

provided counseling. In Table 1, we start by estimating the ITT effect of each treatment. On

average across all sites, both programs increase job seekers’ employment rate after six months

by slightly less than two percentage points (pp), an effect that is insignificant for the public
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program.6 However, this hides very substantial heterogeneity across sites. σ̂2 [ITT] is large and

significantly different from zero for the private program. For the public program, σ2 [ITT] is not

significantly different from zero at conventional levels (p-value=0.106), but this is due to the

larger standard error of σ̂2 [ITT] for that treatment, not to a lower point estimate. In each local

office, the majority of job seekers were assigned to the private program, so the effects of the public

program are less precisely estimated.
√

σ̂2 [ITT]/ÎTT = 469% for the public program, and 389%

for the private one. This is a very substantial amount of treatment effect heterogeneity. For

instance, assuming for illustrative purposes that site-specific ITTs follow a truncated normal,7

where the underlying untruncated distribution has a mean equal to ÎTT and a standard deviation

equal to
√

σ̂2 [ITT], the public program has a negative effect in 42% of the sites, while the private

program has a negative effect in 40% of them. We also re-estimate the variance of the ITT effects

of the public program using the estimator of Kline et al. (2020), in the special case described

in their Example 2 with a single binary regressor, in which case the target parameter coincides

with σ2 [ITT]. Doing so, we obtain an estimator around 20% smaller than our estimator, thus

showing that the two approaches do not coincide after some relabeling.8

6In the paper, that effect is significant at the 10% level, owing to the slightly different estimation sample.
7The outcome is binary so ITTs have to belong to [−1, 1].
8In our calculations, we divided z̃i by Tg in their covariance representation equation page 1868, as we inter-

preted the missingness of Tg as a typo. Without that change, their variance estimator is around 50 times smaller

than ours.
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Table 1: Estimating the variance across sites of the ITT effect of counseling

on job seekers’ probability of having a job after 6 months

ÎTT σ̂2 [ITT]
√

σ̂2 [ITT]/ÎTT N

(1) (2) (3) (4)

Public Counseling 0.017 0.0061 4.688 7,198

(0.012) (0.0038)

Private Counseling 0.019 0.0057 3.894 34,768

(0.009) (0.0022)
Results are based on data from the RCT in Behaghel et al. (2014). The outcome variable is an indicator

equal to 1 if the jobseeker holds a job 6 months after the randomization. In Column (1), we estimate the

average ITT effect across sites, with a robust standard error in parentheses beneath it. In Column (2), we

compute σ̂2 [ITT], the estimator of the variance of ITT effects across sites, with a robust standard error

in parentheses beneath it, computed following Theorem 1. In Column (3), we show
√

σ̂2 [ITT]/ÎTT. Our

estimation sample slightly differs from that in the paper: PESs with less than two treated or two control

units have to be dropped from our analysis. The estimation is weighted, using the weights of the paper.

4.2 Predicting site-specific ITT and FS effects

Target parameter. Let Xs denote a K × 1 vector of site-level variables, which we want to

use to predict sites’ ITTs. Xs may include observed variables, like some baseline covariates of

site s. Xs may also include unobserved variables that have to be estimated. Let IK denote the

K × K identity matrix. Assuming that σ2[X] + λIK is invertible, our main target is

βITT
X (λ) ≡

(
σ2[X] + λIK

)−1 S∑
s=1

ws (Xs − µ(X)) (ITTs − ITT) ,

the coefficients on Xs in a Ridge regression of the demeaned ITTs on the demeaned Xs, weighted

by ws, and with hyper-parameter λ. βITT
X (0) is a standard OLS regression coefficient, denoted

βITT
X . When λ = 0, an auxiliary target is

RITT
X ≡

(
βITT

X

)T
σ2[X]βITT

X

σ2[ITT] ,

the R-squared of the OLS regression.
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Leading examples of unobserved variables one might want to include in Xs. We

have three leading examples in mind of potentially interesting unobserved variables one might

want to include in Xs. The first one is FSs, the first-stage effect in site s. For instance, one

can use the regression of ITTs on FSs to test the null that LATEs do not vary across sites:

this null holds if and only if the regression’s intercept is equal to zero while its R-squared is

equal to one. The second unobserved variable one might want to include in Xs is E(Y r
s (0)), the

average outcome in the control group. Regressing ITTs on E(Y r
s (0)) is a way to assess if ITTs

are larger or lower in sites with the lowest control outcomes, to assess if treatment offers reduce

or increase inequalities across sites. The third one is ITTM,s, the site-specific ITT effects on

mediator variables. Regressing ITTs on ITTM,s is a way to do “predictive mediation” analysis,

by assessing if sites with large effects on the mediators also tend to have large effects on the final

outcome. Of course, this type of mediation analysis remains predictive and not causal: larger

effects in sites with larger mediator effects could be due to omitted variables rather than the

mediator themselves.

Unbiased estimators of Xs. As explained above, Xs may include unobserved variables, that

need to be estimated. Then, we assume that we have an unbiased estimator of Xs, denoted

X̂s, that is a function of ((Dis(0), Dis(1), Yis(0), Yis(1), Mis(0), Mis(1))i∈{1,...,ns}, Zs) and known

real numbers. Of course, for all coordinates Xk,s of Xs, that are observed and do not need to

be estimated, X̂k,s = Xk,s, so X̂k,s is non-stochastic. We let µ(X) = ∑S
s=1 wsXs and µ̂(X) =∑S

s=1 wsX̂s. Letting X̂k,s denote the kth coordinate of X̂s, we assume that for all k ∈ {1, ..., K}

we also have unbiased estimators of Cov
(
X̂k,s, ÎTTs

)
, denoted Ĉov

(
X̂k,s, ÎTTs

)
, and we let

Ĉov
(
X̂s, ÎTTs

)
denote a vector stacking those estimators. Finally, we assume that we have an

unbiased estimator of V
(
X̂s

)
, denoted V̂

(
X̂s

)
. The next lemma shows that those conditions

are satisfied in our three leading examples.

Lemma 1 If Assumptions 1 and 2 hold,

1. E
(
F̂Ss

)
= FSs, E

(
cD,Y,0,s

n0,s
+ cD,Y,1,s

n1,s

)
= Cov

(
F̂Ss, ÎTTs

)
, and E

(
r2

D,0,s

n0,s
+ r2

D,1,s

n1,s

)
= V

(
F̂Ss

)
.

2. E
(
Y 0s

)
= E(Y r

s (0)), E
(

− r2
Y,0,s

n0,s

)
= Cov

(
Y 0s, ÎTTs

)
, and E

(
r2

Y,0,s

n0,s

)
= V

(
Y 0s

)
.
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3. E
( ̂ITTM,s

)
= ITTM,s, for all k ∈ {1, ..., K} E

(
cMk,Y,0,s

n0,s
+ cMk,Y,1,s

n1,s

)
= Cov

(
ÎTTMk,s, ÎTTs

)
,

and for all (k, k′) ∈ {1, ..., K}2 E
( cMk,Mk′ ,0,s

n0,s
+ cMk,Mk′ ,1,s

n1,s

)
= Cov

(
ÎTTMk,s, ÎTTMk′ ,s

)
.

Consistent and asymptotically normal estimator of βITT
X (λ). We let

β̂ITT
X (λ) =

(
σ2
[
X̂
]

−
S∑

s=1
wsV̂

(
X̂s

)
+ λIK

)−1 ( S∑
s=1

ws

((
X̂s − µ̂(X)

) (
ÎTTs − ÎTT

)
− Ĉov

(
X̂s, ÎTTs

)))
.

Without the V̂
(
X̂s

)
and Ĉov

(
X̂s, ÎTTs

)
terms, β̂ITT

X (λ) would just be the coefficient on X̂s in

a Ridge regression of the demeaned ÎTTs on the demeaned X̂s. Those terms account for the

fact that X̂s is unbiased but not consistent for Xs. Similarly, when λ = 0, we let

R̂ITT
X =

(
β̂ITT

X

)T
σ̂2[X]β̂ITT

X

σ̂2[ITT]

denote the estimator of RITT
X . Then, let

A(λ) =
S∑

s=1
ws (Xs − µ(X)) (Xs − µ(X))T + λIK

B =
S∑

s=1
ws (Xs − µ(X)) (ITTs − ITT)

Â(λ) =
S∑

s=1
ws

((
X̂s − µ̂(X)

) (
X̂s − µ̂(X)

)T
− V̂

(
X̂s

))
+ λIK

B̂ =
S∑

s=1
ws

((
X̂s − µ̂(X)

) (
ÎTTs − ÎTT

)
− Ĉov

(
X̂s, ÎTTs

))
,

ϕs,2 =w̃s

((
X̂s − µ(X)

) (
X̂s − µ(X)

)T
− V̂

(
X̂s

))
+ λIK

ϕs,3 =w̃s

((
X̂s − µ(X)

) (
ÎTTs − ITT

)
− Ĉov

(
X̂s, ÎTTs

))
ϕs,4 = − [A(λ)]−1 ϕs,2 [A(λ)]−1 B + [A(λ)]−1 ϕs,3,

and let VβITT
X (λ) denote the limit of 1

S

∑S
s=1 V (ϕs,4), which is assumed to exist in Assumption 7

in the Web Appendix.

Theorem 2 Suppose that Assumptions 1 and 2 hold, and that the technical conditions in As-

sumption 7 in the Web Appendix hold. Then,

β̂ITT
X (λ) − βITT

X (λ) P−→ 0,
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and

√
S
(
β̂ITT

X (λ) − βITT
X (λ)

)
d−→ N(0, VβITT

X (λ)).

Let

ϕ̂s,4 = −
[
Â(λ)

]−1
ϕ̂s,2

[
Â(λ)

]−1
B̂ +

[
Â(λ)

]−1
ϕ̂s,3

ϕ̂s,2 =w̃s

((
X̂s − µ̂(X)

) (
X̂s − µ̂(X)

)T
− V̂

(
X̂s

))
+ λIK

ϕ̂s,3 =w̃s

((
X̂s − µ̂(X)

) (
ÎTTs − ÎTT

)
− Ĉov

(
X̂s, ÎTTs

))
.

We conjecture that using similar steps as in the proof of Theorem 1, one can show that V̂βITT
X (λ),

the sample variance of ϕ̂s,4, is a conservative estimator of VβITT
X (λ).9

Choice of hyper-parameter. Golub et al. (1979) propose to use a generalized cross-validation

(GCV) method to choose λ. Applying their Equation (1.4) to our multi-site RCT setting, rewrit-

ing explicitly the inner product in the numerator and using the linearity and cyclicality of the

trace operator to rewrite the denominator, GCV amounts to using λ∗, the minimizer of

V (λ) =
σ2[ITT ] + B′

(
[A(λ)]−1 σ2[X] [A(λ)]−1 − 2 [A(λ)]−1

)
B(

1 − 1
S

Tr
(
[A(λ)]−1 σ2[X]

))2 , (3)

where Tr(.) denotes the trace operator. (3) makes it clear that for any λ, V (λ) can be consistently

estimated, replacing σ2[ITT ], B, A(λ), and σ2[X] by their estimators. Accordingly, we propose

to use λ̂∗, the minimizer of V̂ (λ). While it should be feasible to derive the asymptotic variance

of β̂ITT
X

(
λ̂∗
)

using standard results from M-estimation, for now we rely on the bootstrap.

Application: predicting site-specific ITT effects of the publicly- and privately-

provided counseling programs. Table 2 reports several univariate OLS regressions of sites

ITT effects on predictors. Future versions of this paper will also show some ridge regressions.

In Column (1), we regress sites’ ITTs on their FSs. While FSs varies across sites (sd = 12

pp for both programs, see Table 4 below), FSs are not significantly correlated with ITTs. In

Column (2), we investigate if the heterogeneity in ITT effects could be due to differences in the
9For a vector, a conservative variance estimator means that for any K ×1 vector of real numbers θ, θ′V̂βITT

X
(λ)θ

converges to a limit weakly larger than that of θ′VβITT
X

(λ)θ.
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populations of job seekers across sites. For that purpose, we regress sites’ ITTs on the average

employability of their job seekers.10 While employability varies across sites (sd = 3.5 pp), it is

not correlated with sites’ ITTs. In Column (3), we investigate if the heterogeneity in ITT effects

could be due to differences in the local labor market conditions across sites. For that purpose,

we regress ITTs on sites’ local unemployment rate, which we could retrieve for all but one site.11

Again, while the unemployment rate varies across sites (sd = 4.4 pp), it is not correlated with

sites’ ITTs. In Column (4), we find that the ITT effects of the public and private programs are

strongly negatively correlated with the control group job finding rate, which might indicate that

counseling is more effective in less tight labor markets. The regressions in Column (3) could fail

to detect that, because the local unemployment rate might be an imperfect proxy of the labor

market conditions faced by the job seekers eligible for this RCT, namely those at high risk of

long-term employment, and the average job finding rate of the experimental control group may

be a better proxy. This correlation may also be used to better target the program, using for

instance the average job finding rate of an earlier cohort of job seekers in each site as a proxy for

E(Y r
s (0)). Finally, in Column (5) of Panel A, we find a very strong positive correlation between

the ITTs of the public and private programs. In each site, the two programs are delivered by dif-

ferent providers. Therefore, this suggests that the heterogeneity in sites’ ITT effects is unlikely

to be entirely driven by providers’ effects.12

Application: comparing our regression coefficients β̂ITT
X to naive ones. At the bottom

of each column of Table 2, we show naive OLS regression coefficients of ITTs on characteristics,

that do not account for the estimation of the independent variable, and of the explanatory

variable for some of the regressions. When the explanatory variable is estimated (Columns (1),

(4), and (5)), the naive regression leads to a point estimate that differs from β̂ITT
X , and to much

smaller standard errors. When the characteristic is not estimated (Columns (2), (3)), the naive

regression leads to identical point estimates and only very slightly different standard errors.
10Employability is a job seeker’s probability of finding a job in less than six months, according to a logistic

regression with a rich set of covariates estimated in the control group by Behaghel et al. (2014).
11Specifically, we matched the data of Behaghel et al. (2014) to a dataset produced by the French National

Office of Statistics, with unemployment rates at the city level in 2007, the year when the RCT was conducted.
12Of course, this claim remains suggestive, as one cannot rule out a perfect correlation between the quality of

the local public and private providers, but that scenario does not sound very plausible.
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Table 2: Predicting site-specific ITTs

Panel A: Public Counseling

FSs Employability Local Unemp Rate E(Y r
s (0)) ITTpriv

s

(1) (2) (3) (4) (5)

β̂ITT
X -0.113 0.266 -0.089 -0.626 1.043

(0.213) (0.391) (0.271) (0.206) (0.282)

R̂ITT
X 0.025 0.015 0.002 0.451 1.063

Naive estimator -0.026 0.266 -0.089 -0.848 0.768

(0.084) (0.393) (0.271) (0.080) (0.071)

Number of sites 200 200 199 200 200

Panel B: Private Counseling

FSs Employability Local Unemp Rate E(Y r
s (0))

(1) (2) (3) (4)

β̂ITT
X -0.048 0.399 0.089 -0.854

(0.094) (0.295) (0.242) (0.090)

R̂ITT
X 0.005 0.032 0.003 0.957

Naive estimator -0.035 0.399 0.089 -0.939

(0.073) (0.296) (0.243) (0.036)

Number of sites 204 204 203 204
Results are based on data from the RCT in Behaghel et al. (2014). In Panel A, we estimate univariate

regressions of the site-level ITTs of the public counseling program on the following site-level variables:

the program take-up rate, job seekers average employability, the local unemployment rate, job seekers’

job finding rate without the program, and the ITT effect of the private counseling program. Panel B

shows the same regressions, except for the last one, for the ITT effects of the private program. The

estimator β̂ITT
X and it standard error are computed as described in the text. The naive estimator and its

standard error are computed by running a linear regression of the ITTs on the site-level variable under

consideration, using robust standard errors. The estimation is weighted, using the weights of the paper.

Application: regressing the job finding rate in the public counseling group on the

job finding rates in the control group and in the private counseling group. Table 2

shows that both the job finding rate in the control group and the ITT of the private program
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predict the ITT of the public one. We now assess if the job finding rates in the control group and

in the private counseling group significantly predict the job finding rate in the public counseling

group. Table 3 below shows that both coefficients are positive and significant.

Table 3: Regressing the job finding rate in the public counseling group on

the job finding rates in the control group and in the private counseling group

E(Y r
s (0)) E(Y r

s (priv))

(1) (2)

β̂
E(Y r

s (pub))
X 0.322 0.508

(0.191) (0.205)

Naive estimator 0.156 0.295

(0.094) (0.164)

Number of sites 200 200
Results are based on data from the RCT in Behaghel et al. (2014). We estimate a multivariate regression

of the job finding rate in the public counseling group on the job finding rates in the control group and

in the private counseling group. The estimator β̂ITT
X and it standard error are computed as described in

the text. The naive estimator and its standard error are computed by running a linear regression, using

heteroscedasticity-robust standard errors. The estimation is weighted, using the weights of the paper.

5 Estimating and predicting LATEs’ heterogeneity.

Studying LATEs’ heterogeneity when FSs are homogeneous. If σ2 [FS] = 0, then

LATEs = ITTs/FS, and to study LATEs’ heterogeneity one can merely study ITTs’ heterogene-

ity using the techniques presented in the previous section.

Application: the publicly- and privately-provided counseling programs have hetero-

geneous FS effects across sites. Table 4 shows that in Behaghel et al. (2014), first-stage

effects vary across sites, both for the public and for the private program. The estimated stan-

dard deviation of FS effects is around 12 pp, namely 38% of the average FS effect of the public

program, and around 30% of the average FS effect of the private program.

20



Table 4: Estimating the variance across sites of the FS effect of receiving an

offer for the counseling programs

F̂S σ̂2 [FS]
√

σ̂2 [FS]/F̂S N

(1) (2) (3) (4)

Public Counseling 0.312 0.012 0.379 7,198

(0.007) (0.003)

Private Counseling 0.402 0.013 0.305 34,768

(0.004) (0.002)
Results are based on data from the RCT in Behaghel et al. (2014). The outcome variable is an indicator

equal to 1 if the jobseeker enrolled for the public (resp. private) counseling program. In Column (1),

we estimate the average FS effect across sites, with a robust standard error in parentheses beneath it.

In Column (2), we compute σ̂2 [FS], the estimator of the variance of FS effects across sites, with a

robust standard error in parentheses beneath it, computed following Theorem 1. In Column (3), we show√
σ̂2 [FS]/F̂S. The estimation is weighted, using the weights of the paper.

Studying LATEs’ heterogeneity with heterogeneous FS effects. In the remainder of

this section, we propose techniques to estimate the variance of LATEs across sites, or the co-

efficient from a regression of LATEs on some covariates, allowing for heteogeneous FS effects.

Doing so is more difficult than in the ITT case, because unlike ÎTTs, L̂ATEs is not unbiased.

Thus, we will propose testable assumptions under which our targets can be written as functions

of ITTs, FSs, and other objects that can be unbiasedly estimated.

5.1 Estimating the variance of LATEs across sites.

Target parameter. In this section, our target parameter is

σ2 [LATE] ≡
S∑

s=1

wsFSs

FS [LATEs − LATE]2,

a weighted variance of LATEs where the weight assigned to site s corresponds to the weight

assigned to that site in LATE.13

13With a slight abuse of notation, we keep the same σ2 [.] notation as in the previous section, despite the

difference in the weights.
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Identification of σ2 [LATE] assuming independent FSs and LATEs.

Assumption 5 For any functions f and g,

S∑
s=1

wsf(LATEs) × g(FSs) =
(

S∑
s=1

wsf(LATEs)
)

×
(

S∑
s=1

wsg(FSs)
)

.

Assumption 5 requires that sites’ FSs and LATEs be independent.

Theorem 3 If Assumption 5 holds, then

σ2 [LATE] =
∑S

s=1 ws(ITTs − FSs × LATE)2∑S
s=1 wsFS2

s

.

Once noted that under Assumption 5,

σ2 [LATE] =
S∑

s=1
ws[LATEs − LATE]2,

Theorem 3 follows from applying Assumption 5 to f(x) = (x − LATE)2 and g(x) = x2.

A lower bound for σ2 [LATE] based on Theorem 3. Heuristically, let

νs = ITTs − FSsLATE.

As ∑S
s=1 wsνs = 0, the numerator of σ2 [LATE] in Theorem 3 is equal to the variance of νs across

sites. Then, one may be able to show that an EB variance estimator with outcome variable

ν̂is = Yis − Dis × L̂ATE

converges to the same limit as ∑S
s=1 ws(ITTs − FSs × LATE)2. As Jensen’s inequality implies

that ∑S
s=1 wsF̂S2

s converges to a limit larger than that of ∑S
s=1 wsFS2

s, dividing this EB estimator

by ∑S
s=1 wsF̂S2

s would yield an estimator of a lower bound of σ2 [LATE]. Let

ν̂s =ÎTTs − F̂Ss × L̂ATE

ν̃s =ÎTTs − F̂Ss × LATE

V̂rob (ν̂s) = 1
n1s

r2
ν̂,1,s + 1

n0s

r2
ν̂,0,s

V̂rob (ν̃s) = 1
n1s

r2
ν̃,1,s + 1

n0s

r2
ν̃,0,s.
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Let

ϕs,5 = w̃sν̃s

FS ,

and let

ϕs,6 =
w̃s

(
(ν̃s)2 − V̂rob (ν̃s)

)
− 2(C1 + C2)ϕs,5 − w̃sF̂S

2
sC3

C4
,

where C1, C2, C3, and C4 respectively denote the limits of 1
S

∑S
s=1 w̃sE(F̂Ssν̃s),

1
S

∑S
s=1 w̃sE

(
LATE×r2

D,1,s−cD,Y,1,s

n1s
+ LATE×r2

D,0,s−cD,Y,0,s

n0s

)
, σ2[LATE], and 1

S

∑S
s=1 w̃sE

(
F̂S2

s

)
, which

are assumed to exist in Assumption 6 below. Let Vσ2[LATE] denote the limit of 1
S

∑S
s=1 V (ϕs,6),

which is also assumed to exist below. Finally, let

σ̂2[LATE] =
1
S

∑S
s=1 w̃s

[
(ν̂s)2 − V̂rob (ν̂s)

]
1
S

∑S
s=1 w̃sF̂S2

s

σ2[LATE] =
1
S

∑S
s=1 w̃s

[
E((ν̃s)2) − E

(
V̂rob(ν̃s)

)]
1
S

∑S
s=1 w̃sE

(
F̂S2

s

) .

Assumption 6 1. The sequence (ϕs,6)s≥1 satisfies the Lyapunov condition.

2. The limits of the following sequences exist: i) 1
S

∑S
s=1 w̃sE

(
F̂S

2
s

)
; ii) 1

S

∑S
s=1 w̃sE(F̂Ssν̃s);

iii) σ2[LATE]; iv) 1
S

∑S
s=1 w̃sE

(
LATE×r2

D,1,s−cD,Y,1,s

n1s
+ LATE×r2

D,0,s−cD,Y,0,s

n0s

)
; v) 1

S

∑S
s=1 w̃sFS2

s;

vi) 1
S

∑S
s=1 V (ϕs,6); vii) σ2[LATE].

3. lim
S→+∞

1
S

∑S
s=1 w̃sE

(
F̂S

2
s

)
> 0.

Theorem 4 Suppose that Assumptions 1-6 hold. Then,

lim
S→+∞

σ2[LATE] ≤ lim
S→+∞

σ2 [LATE] ,

and

√
S(σ̂2[LATE] − σ2[LATE]) d−→ N(0, Vσ2[LATE]).

Theorem 4 shows that under Assumption 5, σ̂2[LATE] is an asymptotically normal estimator of

a lower bound of σ2 [LATE]. We conjecture that using similar steps as in the proof of Theorem

1, one can show that the sample variance of ϕ̂s,6, a variable where all the population quantites in

ϕs,6 are replaced by their sample equivalents, converges to a limit weakly larger than Vσ2[LATE],

and can thus be used as a conservative variance estimator.
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Application: estimating the variance of the LATEs of the publicly- and privately-

provided counseling programs. Though we do not report them, naive EB estimators using

site-specific 2SLS estimators as building blocks are negative and therefore uninformative on the

LATEs’ variance, as was already found by Walters (2015) in a different context. Instead, in

Table 5 we estimate our lower bound for the variance of LATEs across sites, under Assumption

5. We find evidence of very heterogeneous LATEs across sites for both programs. Our lower

bound on LATEs’ standard deviation across sites is equal to 377% of the LATE estimate for

the private program, and to 314% of the LATE estimate for the public one. Our lower bound is

significantly different from zero for both programs (at the 10% level for the public program).

Table 5: Lower bound for the variance of LATEs across sites

L̂ATE σ̂2[LATE]
√

σ̂2[LATE]/L̂ATE N

(1) (2) (3) (4)

Public Counseling 0.070 0.0486 3.138 7,198

(0.040) (0.0296)

Private Counseling 0.048 0.0326 3.773 34,768

(0.023) (0.0125)
Results are based on data from the RCT in Behaghel et al. (2014). In Column (1), we show the average

LATE effect across sites, with a robust standard error in parentheses beneath it. In Column (2), we show

an estimator of the variance of LATE effects across sites and a robust standard error in parentheses be-

neath it, both computed following Theorem 4. In Column (3), we show the estimated standard deviation

of LATEs divided by L̂ATE. The estimation is weighted, using the weights of the paper.

An upper bound for σ2 [LATE]. While upper bounding σ2 [LATE] is of less interest than

lower bounding it, it still worth noting that under Assumption 5, it follows from the law of total

variance that

σ2[ITT] = σ2 [LATE]
S∑

s=1
wsFS2

s + σ2 [FS] LATE2,

thus implying that

σ2 [LATE] = σ2[ITT] − σ2[FS]LATE2∑S
s=1 wsFS2

s

≤ σ2[ITT] − σ2[FS]LATE2

FS2 ,

an upper bound that can be consistently estimated. The previous display also implies that

σ2 [LATE] ≤ σ2[ITT]
FS2 ,
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so that √
σ2 [LATE]/LATE ≤

√
σ2[ITT]/ITT :

LATEs cannot be more heterogeneous than ITTs under Assumption 5.

Testing Assumption 5. We now show that Assumption 5 has a testable implication.

Theorem 5 Suppose that Assumptions 1- 3 hold. If Assumption 5 further holds,

LATE = βITT
FS .

Then, to test Assumption 5, one just needs to estimate LATE and βITT
FS , and test that the two

estimators are significantly different.

Application: the test that the LATEs and FSs effects of the publicly- and privately-

provided counseling programs are independent is not rejected. In Table 6, we test

the null that LATE = βITT
FS . The test is not rejected, either for the private or for the public

program. In this application, the test is not very powerful, especially for the public program,

and it could fail to detect meaningful differences between the two parameters.

Table 6: Testing if sites’ first-stage and LATE effects are independent

L̂ATE − β̂ITT
FS s.e. N

(1) (2) (3)

Public Counseling 0.160 (0.207) 7,198

Private Counseling 0.096 (0.099) 34,768
Results are based on data from the RCT in Behaghel et al. (2014). We follow Theorem 5 to test the

assumption that sites’ LATE and FS effects are not correlated. Column (1) shows L̂ATE − β̂ITT
FS , the

test’s statistic. Column (2) shows its standard error, obtained using linearizations of β̂ITT
FS and L̂ATE

that can be found in the proofs. The estimation is weighted, using the weights of the paper.
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5.2 Predicting site-specific LATEs

Target parameter. Let xs be a scalar and binary site-level covariate. Letting Sx,1 = ∑S
s=1 xsws

and Sx,0 = ∑S
s=1(1 − xs)ws, our target parameter is

βLATE
x ≡ 1

Sx,1

S∑
s=1

xswsLATEs − 1
Sx,0

S∑
s=1

(1 − xs)wsLATEs,

the difference between the average LATEs of sites with xs = 1 and xs = 0. Let LATEx,1 and

LATEx,0 respectively denote the average LATE across sites with xs = 1 and xs = 0.

Identification. Assume that for any functions f and g,

1
Sx,0

S∑
s=1

(1 − xs)wsf(LATEs) × g(FSs) =
(

1
Sx,0

S∑
s=1

(1 − xs)wsf(LATEs)
)

×
(

1
Sx,0

S∑
s=1

(1 − xs)wsg(FSs)
)

1
Sx,1

S∑
s=1

xswsf(LATEs) × g(FSs) =
(

1
Sx,1

S∑
s=1

xswsf(LATEs)
)

×
(

1
Sx,1

S∑
s=1

xswsg(FSs)
)

, (4)

meaning that sites’ FSs and LATEs are independent within the subsample of sites with xs = 1

and within the subsample of sites with xs = 0, a conditional version of Assumption 5.

Theorem 6 If (4) holds, then

βLATE
x =

1
Sx,1

∑S
s=1 xs (ITTs − FSsLATEx,0) − 1

Sx,0

∑S
s=1(1 − xs) (ITTs − FSsLATEx,1)

FS .

To consistently estimate βLATE
x , one can just replace ITTs, FSs, LATEx,0, LATEx,1 and FS by

their estimators in the previous display.

6 Conclusion

In multi-site randomized controlled trials, with a large number of sites but few randomization

units per site, an Empirical-Bayes (EB) estimator can be used to estimate the variance of the

treatment effect across sites. We propose a consistent estimator of the coefficient from a ridge

regression of site-level effects on site-level characteristics that are unobserved but can be unbi-

asedly estimated, such as sites’ average outcome without treatment, or site-specific treatment

effects on mediator variables. For instance, in a multi-site job-search counseling RCT, it can
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be interesting to study whether sites that have the largest effects on job-seekers’ job finding

rate are also the sites that have the largest effect on their search effort, as a “predictive media-

tion analysis” of whether the job-finding effect can be “explained” by the job-search effect. In

experiments with imperfect compliance, we also propose a non-parametric and partly testable

assumption under which the variance of local average treatment effects (LATEs) across sites can

be estimated. We revisit Behaghel et al. (2014), who study the effect of counseling programs

on job seekers job-finding rate, in more than 200 job placement agencies in France. We find

considerable treatment-effect heterogeneity, both for intention to treat and LATE effects, and

the treatment effect is negatively correlated with sites’ job-finding rate without treatment.
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Web Appendix, not for publication

7 Proofs

7.1 Proof of Theorem 1

Asymptotic normality.

Let

σ̃2 [ITT] =
S∑

s=1
ws

[(
ÎTTs − ITT

)2
− V̂rob

(
ÎTTs

)]
.

√
S
(
σ̂2 [ITT] − σ̃2 [ITT]

)
= 1√

S

S∑
s=1

w̃s

[(
ÎTTs − ÎTT

)2
−
(
ÎTTs − ITT

)2
]

= −
√

S
(
ÎTT − ITT

) 1
S

S∑
s=1

w̃s

[
2ÎTTs − ÎTT − ITT

]

= −
√

S
(
ÎTT − ITT

) [ 1
S

S∑
s=1

w̃sÎTTs − ITT
]

= −
√

S
(
ÎTT − ITT

)
oP (1)

=oP (1). (5)

The fourth equality follows from the fact ÎTT is unbiased for ITT, from applying the law of large

numbers in Lemma 1 of Liu et al. (1988) to the sequence of independent and bounded random

variables w̃sÎTTs, and from Point 3 of Assumption 4. The fifth equality follows from applying

the Lyapunov CLT to
(
w̃sÎTTs

)
s≥1

. Then, as

E (ϕs,1) =w̃s

[
E
((

ÎTTs − ITT
)2
)

− E
(
V̂rob

(
ÎTTs

))]
=w̃s

[
E
((

ÎTTs − ITTs

)2
)

+ (ITTs − ITT)2 − 2 (ITTs − ITT) E
(
ÎTTs − ITTs

)
− V (ÎTTs)

]
=w̃s (ITTs − ITT)2 ,

√
S
(
σ̃2 [ITT] − σ2 [ITT]

)
= 1√

S

S∑
s=1

(ϕs,1 − E(ϕs,1)) . (6)
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The result follows from (5) and (6), from applying the Lyapunov CLT to (ϕs,1)s≥1, and from the

Slutsky lemma.

Asymptotically conservative variance estimator.

Let

V̂ I
bound = 1

S

S∑
s=1

[
ϕs,1 − ϕ1

]2
.

V̂σ2[ITT] − V̂ I
bound

= 1
S

S∑
s=1

[
ϕ̂2

s,1 − ϕ2
s,1

]
−

( 1
S

S∑
s=1

ϕs,1 + 1
S

S∑
s=1

[
ϕ̂s,1 − ϕs,1

])2

−
(

1
S

S∑
s=1

ϕs,1

)2 . (7)

Let (x, y, z) 7→ g(x, y, z) = w̃s

[
(x − y)2 − z

]
.

ϕs,1 = g
(
ÎTTs, ITT, V̂rob

(
ÎTTs

))
, and ϕ̂s,1 = g

(
ÎTTs, ÎTT, V̂rob

(
ÎTTs

))
. Under Points 1 and

2 of Assumption 4, (ÎTTs, ITT, V̂rob

(
ÎTTs

)
) belongs to a compact subset Θ of R3, and as g

is continuously differentiable, there exists a real number C such that
∣∣∣∂g

∂y
(x, y, z)

∣∣∣ ≤ C for all

(x, y, z) ∈ Θ.∣∣∣∣∣ 1S
S∑

s=1

[
ϕ̂s,1 − ϕs,1

]∣∣∣∣∣
≤ 1

S

S∑
s=1

∣∣∣ϕ̂s,1 − ϕs,1

∣∣∣
= 1

S

S∑
s=1

∣∣∣∣∣(ÎTT − ITT
) ∂g

∂y

(
ÎTTs, ãs, V̂rob

(
ÎTTs

))∣∣∣∣∣ , for ãs ∈
[
min(ÎTT, ITT), max(ÎTT, ITT)

]
≤
∣∣∣ÎTT − ITT

∣∣∣C.

The first inequality follows from the triangle inequality, the equality follows from the mean value

theorem. Then, as ÎTT − ITT = oP (1), the previous display implies that

1
S

S∑
s=1

[
ϕ̂s,1 − ϕs,1

]
= oP (1). (8)

One can use similar steps to show that
1
S

S∑
s=1

[
ϕ̂2

s,1 − ϕ2
s,1

]
= oP (1). (9)

Finally, it follows from (7)-(9), the fact that under Assumptions 1 and 4 1
S

∑S
s=1 ϕs,1

P−→

lim
S→+∞

1
S

∑S
s=1 E (ϕs,1), and the continuous mapping theorem, that

V̂σ2[ITT] − V̂ I
bound = oP (1). (10)
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Finally, under Assumptions 1 and 4,

V̂ I
bound

P−→ v ≡ lim
S→+∞

1
S

S∑
s=1

E
(
ϕ2

s,1

)
−
(

lim
S→+∞

1
S

S∑
s=1

E (ϕs,1)
)2

≥ Vσ2[ITT],

where the inequality follows by convexity of x 7→ x2. The result follows from (10) and the

previous display.

7.2 Proof of Lemma 1

Proof of Point 1

The first and last equalities are well-known results. The proof of the second one is similar to

the proof of the second and third equalities in Point 3 below.

Proof of Point 2

E
(
Y 0s

)
= E(Y r

s (0)) is a well-known result. Conditional on (Y r
is(0))i∈{1,...,ns}, the only source of

randomness in Y 0s is the random sampling, without replacement, of n0,s units out of ns assigned

to the control group. Then, as is well-known,

V
(
Y 0s|(Y r

is(0))i∈{1,...,ns}
)

= r2
Y r

s (0),s

(
1

n0,s

− 1
ns

)
.

Then, from the law of total variance and the fact that E
(
r2

Y r
s (0),s

)
= V (Y r

s (0)), it follows that

V
(
Y 0s

)
= V (Y r

s (0))
n0,s

. (11)

Then,

Cov
(
Y 0s, Y 1s

)
=1/2

(
V
(
Y 0s

)
+ V

(
Y 1s

)
− V

(
ÎTTs

))
=1/2

(
V (Y r

s (0))
n0,s

+ V (Y r
s (1))

n1,s

− V (Y r
s (0))

n0,s

− V (Y r
s (1))

n1,s

)

=0, (12)

The first equality follows from the fact that for any random variables A and B, V (A − B) =

V (A) + V (B) − 2Cov(A, B). The second equality follows from (11), an equivalent equality for
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V
(
Y 1s

)
, and the fact that under Assumptions 1 and 2, V

(
ÎTTs

)
= V (Y r

s (0))
n0,s

+ V (Y r
s (1))

n1,s
(see, e.g.,

Equation (6.17) in Imbens and Rubin, 2015). (12) directly implies that

Cov
(
Y 0s, ÎTTs

)
= −V

(
Y 0s

)
. (13)

Finally, the result follows from (11), (13), and the fact that under Assumptions 1 and 2, r2
Y,0,s is

unbiased for V (Y r
s (0)).

Proof of Point 3

E
(
ÎTTM,s

)
= ITTM,s is a well-known result. We only prove that E

(
cMk,Y,0,s

n0,s
+ cMk,Y,1,s

n1,s

)
=

Cov
(
ÎTTMk,s, ÎTTs

)
, the proof that E

( cMk,Mk′ ,0,s

n0,s
+ cMk,Mk′ ,1,s

n1,s

)
= Cov

(
ÎTTMk,s, ÎTTMk′ ,s

)
is sim-

ilar. Let Ts = (Y r
is(0), Y r

is(1), M r
k,is(0), M r

k,is(1))i∈{1,...,ns}. Under Assumptions 1 and 2, we can

apply Theorem 3 in Li and Ding (2017) conditional on Ts, to show that

Cov
(
ÎTTMk,s, ÎTTs

∣∣∣Ts

)
=

cMr
k

(0),Y r(0),s

n0,s

+
cMr

k
(1),Y r(1),s

n1,s

−
cMr

k
(1)−Mr

k
(0),Y r(1)−Y r(0),s

ns

. (14)

Then,

Cov
(
ÎTTMk,s, ÎTTs

)
=E

(
Cov

(
ÎTTMk,s, ÎTTs

∣∣∣Ts

))
+ Cov

(
E
(
ÎTTMk,s

∣∣∣Ts

)
, E

(
ÎTTs

∣∣∣Ts

))
=E

(
cMr

k
(0),Y r(0),s

n0,s

+
cMr

k
(1),Y r(1),s

n1,s

−
cMr

k
(1)−Mr

k
(0),Y r(1)−Y r(0),s

ns

)

+Cov
(

1
ns

ns∑
i=1

(M r
k,is(1) − M r

k,is(0)), 1
ns

ns∑
i=1

(Y r
is(1) − Y r

is(0))
)

=
Cov(M r

k,s(0), Y r
s (0))

n0,s

+
Cov(M r

k,s(1), Y r
s (1))

n1,s

−
Cov(M r

k,s(1) − M r
k,s(0), Y r

s (1) − Y r
s (0))

ns

+
Cov(M r

k,s(1) − M r
k,s(0), Y r

s (1) − Y r
s (0))

ns

=
Cov(M r

k,s(0), Y r
s (0))

n0,s

+
Cov(M r

k,s(1), Y r
s (1))

n1,s

. (15)

The first equality follows from the law of total covariance. The second equality follows from

(14), and the fact that ÎTTMk,s and ÎTTs are conditionally unbiased for the sample ITT effects

on the outcome and the mediator. The third equality follows from the fact that the vectors

(Y r
is(0), Y r

is(1), M r
k,is(0), M r

k,is(1)) are iid across i. The result follows from the previous display,

and the fact that under Assumptions 1 and 2, cMk,Y,0,s and cMk,Y,1,s are respectively unbiased for

Cov(M r
k,s(0), Y r

s (0)), and Cov(M r
k,s(1), Y r

s (1)).
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Assumption 7 1. There exists real numbers M0 and M1 such that |X̂s| ≤ M0 and w̃s ≤ M1,

and the sequence (ϕs,4)s≥1 satisfies the Lyapunov condition.

2. The limits of the following sequences, when S → +∞, exist:

(a) ∑S
s=1 wsXsXT

s

(b) µ(X)

(c) ∑S
s=1 wsXsITTs

(d) 1/S
∑S

s=1 V (ϕs,4).

7.3 Proof of Theorem 2

Proof of consistency.

We have

βITT
X (λ) =

(
S∑

s=1
wsXsXT

s − µ(X)µ(X)T + λIK

)−1 ( S∑
s=1

wsXsITTs − µ(X)ITT
)

, (16)

and

β̂ITT
X (λ) =

(
S∑

s=1
ws

(
X̂sX̂T

s − V̂
(
X̂s

))
− µ̂(X)µ̂(X)T + λIK

)−1

×
(

S∑
s=1

ws

(
X̂sÎTTs − Ĉov

(
X̂s, ÎTTs

))
− µ̂(X)ÎTT

)
. (17)

Moreover,

E
(
X̂sX̂T

s − V̂
(
X̂s

))
= E

(
X̂s

)
E
(
X̂T

s

)
= XsXT

s . (18)

The first equality follows from the fact V̂
(
X̂s

)
is unbiased for V

(
X̂s

)
= E

(
X̂sX̂T

s

)
−E

(
X̂s

)
E
(
X̂T

s

)
.

The second equality follows from the fact X̂s is unbiased.

Similarly,

E
(
X̂sÎTTs − Ĉov

(
X̂s, ÎTTs

))
= E

(
X̂s

)
E
(
ÎTTs

)
= XsITTs. (19)

The first equality follows from the fact Ĉov
(
X̂s, ÎTTs

)
is unbiased for Cov

(
X̂s, ÎTTs

)
= E

(
X̂sÎTTs

)
−

E
(
X̂s

)
E
(
ÎTTs

)
. The second equality follows from the fact X̂s and ÎTTs are unbiased.
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Finally, the result follows from (16)-(19), the fact that X̂s and the normalized weights w̃s are

bounded, the fact that random variables are independent across sites, the law of large numbers

for independent variables in Lemma 1 of Liu et al. (1988), Point 2 of Assumption 7, and repeated

uses of the continuous mapping theorem.

Proof of asymptotic normality.

Let

Ã(λ) =
S∑

s=1
ws

((
X̂s − µ(X)

) (
X̂s − µ(X)

)T
− V̂

(
X̂s

))
+ λIK

B̃ =
S∑

s=1
ws

((
X̂s − µ(X)

) (
ÎTTs − ITT

)
− Ĉov

(
X̂s, ÎTTs

))
.

As E
(∑S

s=1 ws

(
X̂s − µ(X)

))
= 0, it follows from a Taylor expansion that

√
S
(
Â(λ) − Ã(λ)

)
=

√
S (µ̂(X) − µ(X)) oP (1) + oP (1) = oP (1). (20)

Similarly,
√

S
(
B̂ − B̃

)
= oP (1). (21)

Using the same arguments as in the proof of Theorem 2, one can show that A(λ) = 1
S

∑S
s=1 E(ϕs,2).

Combined with (20), this implies that

√
S
(
Â(λ) − A(λ)

)
= 1√

S

S∑
s=1

(ϕs,2 − E(ϕs,2)) + oP (1). (22)

Similarly, one can show that

√
S
(
B̂ − B

)
= 1√

S

S∑
s=1

(ϕs,3 − E(ϕs,3)) + oP (1). (23)

Finally, using the fact that

√
S
(
Â−1(λ)B̂ − [A(λ)]−1 B

)
=

√
S
(
− [A(λ)]−1

(
Â(λ) − A(λ)

)
[A(λ)]−1 B + [A(λ)]−1

(
B̂ − B

))
+oP (1),

(24)

it follows from (22) and (23) that

√
S
(
β̂ITT

X (λ) − βITT
X (λ)

)
= 1√

S

S∑
s=1

(ϕs,4 − E(ϕs,4)) + oP (1).

The result follows from applying the Lyapunov CLT to (ϕs,4)s≥1, and from the Slutsky lemma.
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7.4 Proof of Theorem 4

It follows from Jensen’s inequality that the denominator of σ2[LATE] is larger than that of

σ2 [LATE], and it follows from Assumption 6 that both denominators have a finit limit. Then,

one can use arguments similar to those used to show Theorem 1, the fact that 1
S

∑S
s=1 w̃sνs = 0,

and Assumption 6, to show that their numerators have the same finite limit.

We now show the asymptotic normality result. It follows from, e.g., (A28) in De Chaisemartin

and d’Haultfoeuille (2018) and the fact that 1
S

∑S
s=1 E(ϕs,5) = 0 that

L̂ATE − LATE = 1
S

S∑
s=1

ϕs,5 + oP

(
1√
S

)
. (25)

As the variables ϕs,5 are independent and bounded, it then follows from the law of large numbers

in Lemma 1 of Liu et al. (1988) that

L̂ATE − LATE = oP (1). (26)

Then, letting ν̃s(x) = ÎTTs − x × F̂Ss,

1
S

S∑
s=1

w̃s (ν̂s)2

= 1
S

S∑
s=1

w̃s(ν̃s)2 + 1
S

S∑
s=1

w̃s

[
(ν̂s)2 − (ν̃s)2

]

= 1
S

S∑
s=1

w̃s(ν̃s)2 +
(
L̂ATE − LATE

) 1
S

S∑
s=1

w̃s
∂ (ν̃2

s )
∂x

( ˜LATEs)

= 1
S

S∑
s=1

w̃s(ν̃s)2 +
(
L̂ATE − LATE

)( 1
S

S∑
s=1

w̃s
∂ (ν̃2

s )
∂x

(LATE) + 1
S

S∑
s=1

w̃s
∂2 (ν̃2

s )
∂x2 ( ¯LATEs)( ˜LATEs − LATE)

)
,

where the second and third equalities follow from the mean-value theorem, for some ˜LATEs

included between LATE and L̂ATE, and for some ¯LATEs included between LATE and ˜LATEs.

As ∂(ν̃2
s)

∂x
(x) = −2F̂Ss

(
ÎTTs − F̂Ssx

)
and ∂2(ν̃2

s)
∂x2 (x) = 2F̂S2

s,∣∣∣∣∣ 1S
S∑

s=1
w̃s

∂2 (ν̃2
s )

∂x2 ( ¯LATEs)(L̂ATEs − LATE)
∣∣∣∣∣

=
∣∣∣∣∣ 1S

S∑
s=1

w̃s2F̂S2
s(L̂ATEs − LATE)

∣∣∣∣∣
≤
∣∣∣L̂ATE − LATE

∣∣∣ 2 1
S

S∑
s=1

w̃sF̂S2
s

=oP (1),

36



where the last equality follows from (26), from applying the law of large numbers in Lemma 1

of Liu et al. (1988) to the sequence of independent and bounded random variables w̃sF̂S2
s, and

from Point 2i) of Assumption 6. Therefore,

1
S

S∑
s=1

w̃s (ν̂s)2 = 1
S

S∑
s=1

w̃s(ν̃s)2 − 2
(
L̂ATE − LATE

)( 1
S

S∑
s=1

w̃sF̂Ssν̃s + oP (1)
)

= 1
S

S∑
s=1

w̃s(ν̃s)2 − 2
(
L̂ATE − LATE

)
(C1 + oP (1))

= 1
S

S∑
s=1

(
w̃s(ν̃s)2 − 2C1ϕs,5

)
+ oP

(
1√
S

)
. (27)

The second equality follows from applying the law of large numbers in Lemma 1 of Liu et al.

(1988) to the sequence of independent and bounded random variables w̃sF̂Ssν̃s and from Point

2ii) of Assumption 6. The third equality follows from (25).

Similarly, let

ν̃is(x) =Yis − Dis × x

v (x) = 1
n1s

r2
ν̃(x),1,s + 1

n0s

r2
ν̃(x),0,s

= 1
n1s(n1s − 1)

ns∑
i=1

Zis

(
Yis − Y 1s −

(
Dis − D1s

)
x
)2

+ 1
n0s(n0s − 1)

ns∑
i=1

(1 − Zis)
(
Yis − Y 0s −

(
Dis − D0s

)
x
)2

.

One has

∂v

∂x
(x) =2

( 1
n1s

(x × r2
D,1,s − cD,Y,1,s) + 1

n0s

(x × r2
D,0,s − cD,Y,0,s)

)
∂2v

∂x2 (x) =2
( 1

n1s

r2
D,1,s + 1

n0s

r2
D,0,s

)
.
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Then, using arguments similar to those used to show (27),

1
S

S∑
s=1

w̃sV̂rob (ν̂s)

= 1
S

S∑
s=1

w̃sV̂rob (ν̃s) + 1
S

S∑
s=1

w̃s

[
V̂rob (ν̂s) − V̂rob (ν̃s)

]

= 1
S

S∑
s=1

w̃sV̂rob (ν̃s) +
(
L̂ATE − LATE

) 1
S

S∑
s=1

w̃s
∂v

∂x
( ˜LATEs)

= 1
S

S∑
s=1

w̃sV̂rob (ν̃s) + 2
(
L̂ATE − LATE

)
(C2 + oP (1))

= 1
S

S∑
s=1

(
w̃sV̂rob (ν̃s) + 2C2ϕs,5

)
+ oP

(
1√
S

)
. (28)

Then, it follows from (27) and (28) that

1
S

S∑
s=1

w̃s

[
(ν̂s)2 − V̂rob (ν̂s)

]
= 1

S

S∑
s=1

(
w̃s

(
ν̃s)2 − V̂rob (ν̃s)

)
− 2(C1 + C2)ϕs,5

)
+ oP

(
1√
S

)
. (29)

Let

σ̃2[LATE] =
1
S

∑S
s=1

(
w̃s

(
ν̃s)2 − V̂rob (ν̃s)

)
− 2(C1 + C2)ϕs,5

)
1
S

∑S
s=1 F̂S2

s

.

It follows from, e.g., (A28) in De Chaisemartin and d’Haultfoeuille (2018), and from the fact

that 1
S

∑S
s=1 E(ϕs,5) = 0, that

√
S(σ̃2[LATE] − σ2[LATE]) = 1√

S

S∑
s=1

(ϕs,6 − E(ϕs,6)) + oP (1) . (30)

Then, it follows from (29), (30) and Point 3 of Assumption 6 that
√

S(σ̂2[LATE] − σ2[LATE]) = 1√
S

S∑
s=1

(ϕs,6 − E(ϕs,6)) + oP (1) . (31)

The result follows from applying the Lyapunov CLT to (ϕs,6)s≥1, and from the Slutsky lemma.

7.5 Proof of Theorem 5

1
S

S∑
s=1

w̃sITTs(FSs − FS) = 1
S

S∑
s=1

w̃sLATEsFSs(FSs − FS)

= 1
S

S∑
s=1

w̃sLATEs × 1
S

S∑
s=1

w̃sFSs(FSs − FS)

= 1
S

S∑
s=1

w̃sLATEsσ
2 [FS] ,
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where the second equality follows from Assumption 5. Therefore,

LATE = 1
S

S∑
s=1

w̃sLATEs =
1
S

∑S
s=1 w̃sITTs(FSs − FS)

σ2 [FS] = βITT
FS , (32)

where the first equality follows again from Assumption 5.

7.6 Proof of Theorem 6

1
Sx,1

S∑
s=1

xsws (ITTs − FSsLATEx,0) − 1
Sx,0

S∑
s=1

(1 − xs)ws (ITTs − FSsLATEx,1)

= 1
Sx,1

S∑
s=1

xswsFSs (LATEs − LATEx,0) − 1
Sx,0

S∑
s=1

(1 − xs)wsFSs (LATEs − LATEx,1)

=
(

1
Sx,1

S∑
s=1

xswsFSs

)(
1

Sx,1

S∑
s=1

xsws (LATEs − LATEx,0)
)

−
(

1
Sx,0

S∑
s=1

(1 − xs)wsFSs

)(
1

Sx,0

S∑
s=1

(1 − xs)ws (LATEs − LATEx,1)
)

=βLATE
x FS.
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8 Survey of Multi-Site RCTs

Table 7: Multi-site RCTs in AEJ: Applied Economics 2014-2016

Title Units of Observation Units of Randomization Sites

Keeping It Simple: Financial Literacy and Rules of Thumb Individual Clients 1,193 Individual Clients 107 Barrio

Improving Educational Quality through Enhancing Community Participation: Results from a Randomized Field Experiment in Indonesia Students 520 Schools 44 Subdistricts

The Demand for Medical Male Circumcision Individuals 1,634 Individuals 29 Enumeration Areas

Should Aid Reward Performance? Evidence from a Field Experiment on Health and Education in Indonesia Individuals 300 Kecamatan 20 Kabupaten

Private and Public Provision of Counseling to Job Seekers: Evidence from a Large Controlled Experiment Individuals 43,977 Individuals 216 Employment Offices

Estimating the Impact of Microcredit on Those Who Take It Up: Evidence from a Randomized Experiment in Morocco Households Villages (81 pairs) 47 Branches

Microcredit Impacts: Evidence from a Randomized Microcredit Program Placement Experiment by Compartamos Banco Households 250 Geographic Clusters Superclusters of 4 Adjacent Clusters

The Impacts of Microcredit: Evidence from Bosnia and Herzegovina Individuals 1,196 Individuals 282 City/Towns or 14 Branches

Social Networks and the Decision to Insure Households 5,300 Households 185 Villages

Inputs in the Production of Early Childhood Human Capital: Evidence from Head Start Individuals 4,442 Individuals 353 Head Start Centers

The Returns to Microenterprise Support among the Ultrapoor: A Field Experiment in Postwar Uganda14 Individuals 904 Individuals 60 Villages

The Impact of High School Financial Education: Evidence from a Large-Scale Evaluation in Brazil Student 892 Schools (in matched pairs) Municipalities
"The Returns to Microenterprise Support among the Ultrapoor: A Field Experiment in Postwar Uganda" corresponds to the Phase 2 experiment.

"Social Networks and the Decision to Insure" corresponds to the household level randomization and analysis.
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