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Abstract

Third-degree price discrimination increases output and welfare if certain local demand curvature

conditions hold. These curvature conditions, known for nearly a century, have never been eval-

uated empirically before. To successfully evaluate the output and welfare effects of third-degree

price discrimination, demand specification must be sufficiently flexible to allow for curvature

heterogeneity across local markets. Otherwise, demand specification bakes-in empirical output

and welfare predictions of price discrimination. I show that with the notable exception of logit

demand, most other demands families predict output and welfare reductions as their elasticity

and curvature are negatively correlated. I use supermarket scanner data to evaluate demand

curvature conditions nonparametrically for thousands of chain-store-product combinations and

show that, more often than not, third-degree price discrimination (local store pricing) decreases

output and welfare relative to uniform pricing (chain-store pricing). Furthermore, I show that

using output as a proxy for welfare as Robert Bork suggested overstates potential gains and

understates potential damages of price discrimination.
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“Whether the much cruder forms of discrimination that one

encounters in the real world lead on average to a greater or smaller

output than single-price monopoly is an empirical question.”

Antitrust Law, An Economic Perspective

Richard A. Posner, 1976

1 Introduction

A monopolist serving two (or more) separate markets uses uniform pricing if he charges a single

unit price across locations. Alternatively, he engages in third-degree price discrimination (3DPD)

if he charges different prices in separate locations when preferences are sufficiently heterogeneous

and incremental profits are large enough to compensate arbitrage costs. Welfare effects associated

to 3DPD are positive when it helps opening new markets but ambiguous if the number of local

markets served remains unchanged. If both local markets are always served in equilibrium, the

monopolist can increase profits by charging a higher price in the strong market and a lower price

in the weak market. The additional profits plus the increase in consumer surplus of low valuation

consumers as the weak market expands may or may not compensate the consumer surplus reduction

following the exclusion of high valuation customers in the strong market. Figuring out whether

charging different prices in separate markets could increase welfare is a long-standing question in

economic theory dating back to Robinson (1933, Book V).

The very influential work of Robert Bork (1978) criticized the Robinson-Patman Act for

targeting 3DPD using fairness rather economic efficiency arguments. Bork’s work was extremely

influential among legal scholars to the point that the Robinson-Patman Act stopped being enforced

in the 1980s. What ultimately matters in Bork’s view is whether 3DPD helps expand or restrict the

total industry output. He concluded after Joan Robinson’s book, that relative demand curvature

in the weak and strong markets are likely to facilitate 3DPD increasing overall sales. Not only legal

scholars, but also most economists appear to have a fairly positive view of 3DPD . However, these

well-known demand curvature conditions have yet to be evaluated empirically.

The present paper aims to fill this void. I make two related contributions, one theoretical

and one empirical. In order to evaluate the output and welfare effects of 3DPD , demand specifi-

cation must be sufficiently flexible to allow for curvature heterogeneity across local markets. Not

addressing local demand curvature heterogeneity only produces results that are valid for particular

demand systems. Being unaware of this limitation leads empirical economists to bake-in output

and welfare results in a similar fashion that demand specification determines the pass-through rate

of commodity taxation (Bulow and Pfleiderer, 1983).

Theorists find conditions for 3DPD to expand overall output and welfare by assuming

that infinitesimal price differences across local markets result in local demands with drastically
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different curvature properties. Absent any “jumps” in local demand curvature, I show that for

most common demand families, elasticity and curvature are negatively correlated, so that 3DPD

necessarily reduces output and welfare regardless of the nature of the data generating process.

The only remarkable exception is the logit demand, which characterized by a positive correlation

of elasticity and curvature, always predict an increase in output with 3DPD . The conclusion of

this theoretical analysis of demand systems is that applied economists need to adopt very flexible

econometric specifications capable of accommodating demand curvature heterogeneity across local

markets, e.g., by allowing for nonlinear price effects interacted with local market indicators.

The empirical goal of this paper is to evaluate whether it is reasonable to assume demand

showing drastic curvature variation associated to small variation in prices. To that end, I use the

2008-2011 sample from the IRI Marketing Data Set to test whether the relative curvature demand

conditions of theoretical models generally hold in practice. I evaluate nearly 23,000 chain store

pricing problems (uniform vs. 3DPD) using four alternative nonparametric demand specifications

for more than 160,000 store-products combinations across ten retail product categories. Results

support the view that 3DPD is generally welfare decreasing across all categories of retail products

considered in this study. Thus, theorist’s local demand curvature heterogeneity is in practice not

large enough for 3DPD to increase output and welfare. I further show that using output as an

empirical proxy for welfare exaggerates the potential gains and underestimates the potential welfare

reductions of 3DPD .

Interestingly, around the time of Bork’s writing, Posner (1976, §8) and Schmalensee (1981,

footnote 8) speculated about the possibility of 3DPD being outlawed. Nearly a century after

Robinson’s seminal work, we still lack any empirical evidence supporting or rejecting the beneficial

output and welfare effects of 3DPD . The robustness of results and the scale of analysis of this

paper provides, for the first time, the kind of evidence that legal scholars lacked in the past to

decide whether mandating uniform pricing could be socially preferable to 3DPD .

Theory. I highlight the limitations of parametric models to evaluate the incremental welfare and

sales of 3DPD , as they predetermine demand curvature behavior behind output and welfare effects

of 3DPD . To show these limitations, I make use of the manifold invariance results of Mrázová and

Neary (2017, §II.B) in the context of 3DPD . I adopt the demand manifold framework to illustrate

where in the space of demand functions the conditions for 3DPD to increase output and welfare

are more likely to hold. The demand manifold framework is very useful to show that without

these demand curvature “jumps” in response to infinitesimal price changes, 3DPD generally leads

to reductions in output and welfare relative to uniform pricing as long as demand elasticity and

curvature are negatively correlated (downward sloping manifolds).

I also show how particular demand specifications might inadvertently constrain the behavior

of demand curvature. This is because demand manifolds might be invariant with respect to some

or all parameter estimates. To convey this argument intuitively, suppose that we estimate linear

demands to evaluate how markups of a product vary across all stores of a supermarket chain.
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The econometrician obtains store-specific intercepts and slopes estimates with this linear demand

specification that might even accurately account for differences in price responsiveness and the

effect of income differences across locations. But by construction, demand curvature is always zero

whenever we use a linear demand specification and the predicted total output is always identical

under both, uniform pricing and 3DPD , if all markets are always served. Furthermore, the predicted

welfare is always lower with price discrimination.1

Note that this empirical conclusion results exclusively from specifying a linear demand and

not necessarily because it is a feature of the data generating process. For linear demands, elasticity

and curvature are independent of each other. Welfare decreases with 3DPD for other manifold

invariant demands with respect to all parameters, such as semi-logarithmic, linear expenditure

system, and translog demands. In all these cases, elasticity and curvature are negatively correlated.

In contrast, logit demand always favors 3DPD over uniform pricing since, by construction,

logit demand ensures that elasticy and curvature estimates are positively correlated. This result

presents a practical challenge: the widespread use of logistic demand in empirical industrial orga-

nization and antitrust might give economists and policymakers the false impression that there is

abundant evidence of the beneficial effects of 3DPD , and thus, support the current lenient treatment

of 3DPD favored by most legal scholars.

I show that many other demand specifications that are not manifold invariant with respect to

all parameters are also likely to predict output reductions with 3DPD if their predicted elasticity

and curvature are negatively correlated unless econometrician allow demand curvature to differ

across local markets. Thus, applied economists should use sufficiently flexible demand specifications

to obtain robust output and welfare effects associated to 3DPD .

Empirics. I only focus on the canonical case of a single product monopolist with constant marginal

costs always serving all local markets to evaluate the predicted effect of 3DPD on output and

welfare.2 The case that always raised concerns since the works of Pigou and Robinson is one

where the number of local markets is fixed and the monopolist chooses between uniform pricing

and 3DPD because in this environment the misallocation effect might dominate the output effect

of price discrimination and reduce welfare.3

Economic theory does not provide any guidance on the economic fundamentals driving cur-

vature heterogeneity across markets, but from a practical perspective simply adding nonlinear price

effects interacted with local market demographics could, in principle, ensure enough chain demand

1 This is the misallocation effect first described by Pigou (1932, Part II, Chapter XVII, §13-16) for linear demands.
2 Despite the evidence against 3DPD reported in this paper, 3DPD could still increase overall output and welfare as
well as consumer surplus across all local markets if it allows firms to take advantage of economies of scale (Robinson,
1933, §16.2). I do not explore this possibility due to lack of cost information for thousand products.

3 Welfare increases whenever 3DPD opens up new markets. This is similar to the increase in pricing options in
models of second-degree price discrimination, e.g., Wilson (1993, §8.3). As they increase, options with lower fixed
fees help expand the market among low valuation customers while high valuation ones are offered marginal charges
closer to the marginal cost, thus promoting efficiency.
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curvature flexibility. I instead estimate thousands of store-product demands nonparametrically to

avoid any of the specification-induced curvature restrictions discussed above.

I use the 2008–2011 IRI Marketing Data Set where supermarket chains charge nearly

uniform prices, as in DellaVigna and Gentzkow (2019). There is however enough price variation

across stores and time to allow for separate store-specific estimates. Hence, I evaluate the regularity

and curvature conditions of Aguirre, Cowan and Vickers (2010), ACV hereafter, for thousands of

chain-store-product combinations. In particular, I directly test ACV’s curvature conditions for

strong and weak markets after solving for the optimal chain uniform price using the estimated store

demands parameters. This approach evaluates curvature conditions locally, in the neighborhood of

the optimal uniform price, as ACV’s Increasing Ratio Condition for demand curvature conditions

to hold globally generally fails.

The resulting evidence shows that output and welfare effects of 3DPD are far more negative

than economists, policy makers, and many legal scholars commonly expected. Output is predicted

to increase only for 26% of product-chains (24% of sales). This output proxy overestimates the

increase in welfare associated to 3DPD , which only increases for 19% of product-chains (17%

of sales). Output is also predicted to decrease for few cases: 16% of product-chains (15% of

sales). These output predictions, however, vastly underestimate missallocation effects, with welfare

possibly being lower for 76% of product-chains (78% of sales) with 3DPD . Similar results hold

across all ten product categories studied in this paper.

This empirical evidence challenges the relevance of long-held theoretical views on 3DPD .

Empirical analyses of other datasets using alternative methodologies are needed to confirm the

present results. The main contribution of this paper is to show that 3DPD has the potential to

reduce welfare far more often than increases it, which, at the very least, should also question the

wisdom of Bork’s argument and the current lenient antitrust treatment of 3DPD .

Related Literature. Robinson (1933) first identified the relative demand curvature conditions

driving the overall output and welfare effects of 3DPD vs. uniform pricing. If they fail, 3DPD only

helps the monopolist increase profits while restricting overall sales or not expanding output enough

to compensate for the missallocation effect. While a negative output effect of 3DPD is sufficient

for welfare to decrease, a sales increase is not sufficient to ensure that 3DPD increases welfare. It

needs to be large enough, adding many low-value customers in the weak market to compensate for

the exclusion of a few high-value customers in the strong market.

Research on the theory of price discrimination remained mostly dormant until the early

1980s. Schmalensee (1981) first extended Robinson’s analysis to the N -market case and proved

that 3DPD cannot enhance welfare unless total output increases in a framework where a constant

marginal cost monopolist faces independent local demands across markets. Varian (1985) general-

ized these results to the case of interdependent demands (imperfect arbitrage) and nondecreasing

marginal costs. Schwartz (1990) further generalized the same results for decreasing marginal costs

when the cost function depends on total output alone. Mauleg (1983) obtained bounds for welfare
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under 3DPD relative to uniform pricing when at least one of the local demands is concave. ACV

unified this literature and provided the curvature conditions for 3DPD to increase output and

welfare that I empirically evaluate in this paper. Finally, Bergeman, Brooks and Morris (2015)

extended the analysis to calculate output and welfare bounds of all possible market segmentations,

including those with non-concave profit functions.

Other important theoretical contributions addressed the case of price discrimination under

oligopoly (Borenstein, 1985; Holmes, 1989; Corts, 1998) or in vertical relations where discrimination

involves input prices (Katz, 1987; DeGraba, 1990; Miklós-Thal and Shaffer, 2021). Overall, these

papers show that some of the results for monopoly markets do not longer hold or are reversed in

oligopoly. See Varian (1989) and Stole (2007) for comprehensive review of these extensions.

There are numerous studies that document price discrimination in close geographical areas.4

However, I am not aware of any empirical study that evaluates the basic tenants of the theory of

3DPD . As far as I know, applied economists have not yet evaluated whether price discrimination

increases output and welfare relative to uniform pricing using an exogenous price regime change.

Early empirical work documented the possibility of 3DPD in oligopolistic markets and the ability

of firms to increase prices, either in gasoline retailing (Shepard, 1991) or the airline industry

(Borenstein, 1989; Borenstein and Rose, 1994). More recently, empirical studies have evaluated

the profitability of 3DPD but not its potential output and welfare effects. They solidly document,

however, that retail chain stores price nearly uniformly (Adams and Williams, 2019; DellaVigna

and Gentzkow, 2019; Hitcsh, Hortaçsu and Lin, 2021).

Organization. Section 2 reviews the economic reasoning behind Bork’s opinion against regulating

the ability of firms to engage in 3DPD . Section 3 uses the demand manifold framework to (i) state

output and welfare conditions of 3DPD in terms of elasticity, curvature, and their derivatives; (ii)

prove that output and welfare are driven by the chosen demand specification in the absence of local

demand curvature heterogeneity; (iii) show that common demand specifications that are manifold

invariant necessarily predict negative output and welfare effects of 3DPD ; and (iv) discuss the

curvature restrictions of common demand systems that are not manifold invariant with respect to all

parameters. Section 4 presents an econometric model comprising three elements: (i) four alternative

polynomial specifications for each chain-store-product demand; (ii) an equilibrium estimate of a

constant chain-product marginal cost; and (iii) the numerical computation of the optimal chain-

product uniform price used to evaluate the demand curvature conditions. Using the IRI Marketing

Data Set, I assess the likelihood that 3DPD leads to increases of decreases of output and welfare and

summarizes results across ten product categories for one specific polynomial demand specification.

Section 5 concludes. The Online Appendix reports detailed results for ten product categories and

all four polynomial demand specifications.

4 They include analysis of pricing in movie theaters in New Haven (Davis, 2006); ethnic restaurants in New York
City (Davis, Dingel, Monras and Morales, 2019); grocery shops in different neighborhoods of Jerusalem (Eizenberg,
Lach and Oren-Yiftach, 2021); gas stations in Quebec (Houde, 2012); and fast food restaurants in Santa Clara
County (Thomadsen, 2005).
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2 Robert Bork: Output as Proxy for Welfare

The Robinson-Patman Act of 1936, RPA hereafter, is the antitrust law dealing with third-degree

price discrimination, mostly aimed to intermediate products sold by wholesalers with market power.

The RPA aimed at protecting small retailers from large chain stores by limiting wholesale discounts,

the so-called secondary line injury to competition, ignoring costs and efficiency arguments (Varian,

1989, §3.7). , even if it might end up harming consumers (Breit and Elzinga, 2001, §5). The

influential legal scholar Robert Bork, who doubted the RPA as the “Typhoid Mary of Antitrust,”

led the charge against it:

“[...] the better guess, it seems to me, is that antitrust policy would do well to ignore price

discrimination. That estimate is based upon the judgment that price discrimination is, on

balance, probably better for consumers than any rule enforcing nondiscrimination, and upon

the belief that law cannot satisfactorily deal with the phenomenon in any event.” (Bork, 1978,

§20, p.412)

Bork also argued that the law is not very effective at distinguishing true price discrimination from

temporary discounts to meet the competition or accounting for cost differences in providing services

across local markets. Influenced by Bork’s opinion and the work of many economists, the RPA was

less frequently enforced beginning in the 1980s.5

How did Robert Bork conclude that price discrimination is, on balance, probably better for

consumers? What was the evidence supporting this opinion? The answer matters because Bork’s

arguments permeated the opinion of legal scholars for decades. Many legal scholars still believe

that 3DPD generally benefits rather than harms consumers in the aggregate (Hovenkamp, 2017,

§1.5b). This may or may not be the case. However, as I document below, this conclusion follows

exclusively from Bork’s introspective theoretical reasoning rather than from any statistical analysis

of actual data.

Bork appealed to efficiency arguments to justify a lenient treatment of 3DPD and treated

the output effect of price discrimination as a proxy for consumer welfare:

“[...] The evil of monopoly is restriction of output and consequent misallocation of resources.

The question, therefore, is whether the misallocation will be greater under a rule permitting

discrimination or under a rule requiring a single price to all customers. That question, in

turn, translates into the question of whether discrimination expands or further restricts the

monopolist’s output. [...] The impact of discrimination on output, therefore, may be taken as a

proxy for its effect on consumer welfare.” (Bork, 1978, §20, p.413)

Bork was well aware that 3DPD excludes some high valuation customers to expand the market

among low valuation ones, but acknowledged that antitrust did not have the tools to account

for deadweight losses and misallocation across consumers with different valuations (Bork, 1978,

footnote, p.413). Using output as a proxy for welfare could sound as a reasonable alternative as,

5 See O’Brien and Shaffer (1994), Blair and DePasquale (2014), and Schwartz (1986) in addition to Posner (1976)
and Bork (1978, §20) himself.
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short of opening up new markets, welfare effects of 3DPD ultimately depend on second derivatives

of the direct and inverse demand functions evaluated at the optimal uniform price, i.e., an abstract

construct difficult to articulate in legal terms. But the question remains: Why did Bork believe

that output could increase with 3DPD?

“The movement from a single price to a two-price system clearly benefits the seller; the question

for antitrust policy is what it does to output. There is no easy answer in this simple two-market

case, though Joan Robinson, whose analysis seems as complete as any that has appeared since,

thought it more probable on the whole that output would be greater under discrimination than

non-discrimination.” (Bork, 1978, §20, p.415) – cursive added.

Thus, it is not data but Joan Robinson’s sole opinion written in 1933, what informs Bork’s belief

that 3DPD must be mostly beneficial. His influential legal position thus rests on purely theoretical

arguments based on the relationship between demand elasticity and curvature that have so far not

been evaluated empirically. Joan Robinson only explored logical conditions for output to increase

but did not asses the likelihood of them holding in practice.6

An important contribution of the present work is to show empirically that using output as

a proxy exaggerates the benefits and underestimates the welfare harm of 3DPD .

It should be noted that there was a recent push to rehabilitate the enforcement of the

RPA claiming that the legislator never cared about economic efficiency but enacted the RPA to

pursue fairness by protecting smaller businesses against the “unfair practices” available only to

large corporations.7 This includes two FTC investigations on retail pricing by soda manufacturers

and wine and liquor distributors.8 A recent court decision banned Prestige and Medtech from

making promotional payments for advertising and other services of their Clear Eyes drops only to

large retailers such as Costco and Sam’s Club.9 The ultimate target appears to be Amazon and its

ability to induce wholesalers to price discriminate against smaller retailers.10

6 It could perhaps be argued that Bork was doubly mistaken since Robinson’s analysis dealt with discrimination
in final product markets while RPA is mainly intended for intermediate goods sold by wholesalers. However,
economists had not addressed the welfare effects of input price discrimination by the time Bork wrote his book.
Katz (1987) showed that uniform pricing might be more beneficial with intermediate goods nearly a decade after
Bork published his influential book.

7 See Federal Trade Commissioner Alvaro M. Bedoya’s (2022) prepared remarks at the Midwest Forum on
Fair Markets, https://www.ftc.gov/system/files/ftc_gov/pdf/returning_to_fairness_prepared_remarks_

commissioner_alvaro_bedoya.pdf.
8 See the June 12, 2024 WSJ editorial The FTC Brings Back the 1930s.
9 L.A. International Corp. v. Prestige Brands Holdings Inc. et al. See “Expect an Increase in Robinson-Patman Act
Enforcement” by D. Savrin, N. Kaufman and C. Zeytoonian, on April 29, 2024; and “Eye Drops Must Sell on Even
Terms Under Rare Antitrust Win” by B. Koenig, on May 21, 2024, both at https://www.law360.com/.

10Kim (2021) presents a blueprint of the different strategies that plaintiffs and government agencies could use to
bring a secondary-line case against Amazon for using separate vendor programs, Amazon seller Central and Amazon
Vendor Central, with different conditions for pricing retailers, listing products, fulfillment and shipping. The article
also speculates on effective and admissible evidence to show that these practices harm competition.
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3 Theory: Demand Specification and Curvature Conditions

Let’s assume that an econometrician has access to detailed price and quantity sales information

(psjt, xsjt) of products j sold in all stores s ∈ s(r) of chain r across time t. Suppose that the sample

contains two pricing regimes. First, chains engage in 3DPD (store pricing). Then, due to a sudden

and unexpected change in regulation, chains are forced to price uniformly across all stores. The

econometrician could thus estimate a simple diff-in-diff model to evaluate whether overall output

is larger or smaller with 3DPD or under uniform pricing. A similar approach could be used if

regulation moves in the opposite direction, no longer restricting firms to uniform pricing, after

accounting for price endogeneity.

In both cases, output effects are evaluated ex post, and are not informative for the regulator

to decide whether to constrain firms’ pricing across locations. My goal is to evaluate the potential

effects of 3DPD vs. uniform pricing ex ante, which requires the use of a simple equilibrium model

capable of generating thousands of inexpensive robust counterfactuals. The basic elements behind

this minimal equilibrium model are the following:

1. I focus on a single-product demand at each store. Despite being a common approach in the

literature (DellaVigna and Gentzkow, 2019; Hitcsh et al., 2021), it ignores substitution and

strategic pricing decision within and across product categories in order to offer a large number

of demand estimates that would be unfeasible otherwise. Consumer identity is not available

and I therefore assume they always purchase at the same store location.

2. I specify a constant, product-chain specific, marginal cost. Constant returns ignore the

possibility of wholesale quantity discounts, but this is a reasonable assumption as small store

sales variations are unlikely to trigger massive discounts. Furthermore, it greatly facilitates

the computation of product-store marginal costs as an equilibrium estimate using the chain’s

profit maximization conditions.

3. Theory of price discrimination evaluates curvature conditions locally at the optimal uniform

price. This is the only counterfactual that I need to compute.

This section discusses how parametric specifications might drive output and welfare predictions of

3DPD within this framework. Section 4 estimates demand nonparametrically to overcome any of

the limitations on local curvature heterogeneity highlighted below.

Basic Elements. Let’s consider a candidate specification with direct and inverse demand func-

tions that are both positive, continuous, strictly decreasing, and three times differentiable:

x = x(p), s.t. x′ = xp(p) < 0, and x(p) ∈ C3 , (1a)

p = p(x), s.t. p′ = px(x) < 0, and p(x) ∈ C3 . (1b)
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The elasticity ε(x) and curvature ρ(x) of the inverse demand are:

ε(x) ≡ − p(x)

x · p′(x)
= −p · x′(p)

x(p)
=

1

e(p)
> 0 , (2a)

ρ(x) ≡ −x · p′′(x)
p′(x)

=
x(p) · x′′(p)
[x′(p)]2

= e(p) · r(p) , (2b)

where e(p), the reciprocal of the elasticity of the direct demand function is, in equilibrium, the

price markup or Lerner index, while r(p) represents the curvature of the direct demand function:

r(p) ≡ −p · x′′(p)
x′(p)

=
p(x) · p′′(x)
[p′(x)]2

= ε(x) · ρ(x) . (3)

Demand Manifolds. A demand manifold is a smooth function relating demand elasticity and

curvature. MN[Proposition 1] proves that with the exception of the CES , downward sloping direct

and inverse demand functions that are three times continuously differentiable lead to a well-defined

and smooth equilibrium relationship in the elasticity-curvature space for each demand function:

ε(ρ) = ε (ρ[x(p)]) , or ρ(ε) = ρ (ε[x(p)]) . (4)

Some results proven in the context of demand manifolds, such as their invariance to some

or all demand parameters, are relevant for output and welfare predictions of 3DPD . To illustrate

and convey the intuition of the results presented in this paper, Figure 1 depicts the example of

demand manifolds associated to the translated CES demand system introduced by Pollak (1971):

x = γ + δp−σ . (5)

After combining the necessary and sufficient profit maximization conditions using this demand

specification, the Pollak demand manifold is:11

ρ =
σ + 1

ε
. (6)

The necessary condition profit maximization requires demand to be elastic in equilibrium

for any firm with market power, ε > 1. Similarly, sufficiency requires the profit function to be

concave, i.e., that the marginal revenue function is not increasing at the equilibrium prices, or

ρ < 2. Together, these two conditions restrict the set of admissible combinations of (ε, ρ) for

a profit maximizing monopolist to the non-shaded area in Figure 1. Note that in equilibrium,

demands can take many different shapes for any elasticity value, ε.

11A profit maximizing monopolist with a constant marginal cost c chooses price p so that p+xp′ = p(1−1/ε) = c > 0
and 2p′ + xp′′ = p′(2− ρ) < 0.
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Figure 1: Pollak Demand Manifolds
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The Pollak demand system includes both concave and convex demands as well as upward

and downward sloping manifolds, an important feature for the evaluation of output and welfare of

3DPD . When ρ < 0 demand is concave; linear for ρ = 0; and convex for ρ > 0. Among the latter,

demand is log-concave when ρ < 1 and log-convex if ρ > 1, with incomplete or more than complete

pass-through rate. When ρ = 1, along the dotted vertical line of Figure 1, pass-through rate is

exactly 100%.

Figure 1 shows that exponent σ determines the location of the {ε, ρ} manifold for the Pollak

family. Parameter σ summarizes in this case all determinants of demand curvature. A value of

σ = −1 identifies the family of linear demands. The manifold is upward sloping for σ < −1 which, in

this particular case, also identifies concave demands functions. Conversely, manifolds are downward

sloping for σ > −1, which includes both log-concave and log-convex demand functions. For any

value of σ, a combination of parameters (γ, δ) identifies a single point on each (ε, ρ) manifold.

An important final distinction occurs depending where demand manifold falls relative to

the set of blue dashed CES elasticity-curvature combinations. For (ε, ρ) combinations to the right

(left) of the CES demand is superconvex (subconvex). Superconvexity determines how demand
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elasticity varies with sales (or equivalently, price). A function f(x) is superconvex if log[f(x)] is

convex in log(x). MN[Online Appendix B] show that:

dε(x)

dx
= εx = − ε

x

(
1 +

1

ε
− ρ

)
> 0 . (7)

Thus, demand is superconvex if for any given price elasticity ε, its associated curvature ρ, exceeds

the curvature ρCES = 1 + 1/ε of a CES demand with the same price elasticity. If demand is

superconvex, it becomes more elastic (smaller markups) as sales increase. When εx > 0, the small

orange arrows to the right of the CES curve in Figure 1 point upwards.

Most demand functions are subconvex, with demand becoming less elastic (higher markups)

as sales increase. Now εx < 0 and the small orange arrows to the left of the CES curve in Figure 1

point downwards. Subconvexity corresponds to Marshall’s observation that demand should most

likely become more elastic at higher prices, i.e., εp > 0 (smaller sales). This is the so-called

Marshall’s Second Law of Demand (Marshall, 1920, [Book III, Chapter IV, §2).

3.1 Curvature Conditions and Demand Manifolds

In this section I review how demand curvature conditions across local markets determine output

and welfare effects of 3DPD relative to uniform pricing. I begin by analyzing ACV’s increasing

ratio condition and then write ACV’s output and welfare conditions in terms of demand elasticity

and curvature to convey intuitively their meaning with the help of Figure 1. For simplicity, and

without loss of generality, assume that there is only one weak and one strong local market so that

ps > pw when the chain does not engage in uniform pricing, pu.

The Increasing Ratio Condition. The starting point of ACV’s analysis is the Increasing Ratio

Condition (IRC ), a property ensuring welfare to vary monotonically with ps − pw, the price

difference between strong and weak markets, or alternatively, showing an interior peak. Let’s

define z(p) as the ratio of the marginal effect of a price increase on social welfare to the second

derivative of the profit function. The ratio z(p) is the product of the markup and pass-through

rate of a single-product monopolist (after making use of the Lerner index):

z(p) =
(p− c)x′(p)

2x′(p) + (p− c)x′′(p)
=

p− c

2− ρ[x(p)]
. (8)

IRC: The increasing ratio condition holds in every market evaluated at local prices, i.e.,

z′(pw) > 0 and z′(ps) > 0.

Differentiating (8), and making use again of the equilibrium Lerner index, p − c = p/ε =

−x/x′, as well as the second expression for demand manifold in (4), the IRC can be stated as:

z′(p) =
(2− ρ) + (p− c)ρx · x′

(2− ρ)2
=

(2− ρ)− x · ρx
(2− ρ)2

=
(2− ρ)− x · εx · dρ/dε

(2− ρ)2
> 0 . (9)
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ACV[Appendix B] claim that many demand functions meet this IRC condition. Concavity

of a monopolist’s profit function requires demand not to be excessively convex, ρ < 2. Then,

it suffices that εx · dρ/dε < 0 to ensure that IRC holds. Thus, IRC always hold for isocurvature

demands (Bulow and Pfleiderer, 1983), , including linear demands with ρ = 0, since ρx = dρ/dε = 0,

so that z′(p) = 1/(2− ρ) > 0 for ρ < 2.

We can use Figure 1 to assess intuitively for what kind of demand functions the IRC

holds true. For the Pollak demand system, this sufficient condition holds either for superconvex

or concave demands.12 First, if demand is superconvex, εx > 0, manifolds need to be downward

sloping, dρ/dε < 0. These conditions are fulfilled in the region to the right of the CES curve up

to the vertical green line of the sufficient profit condition ρ = 2 in Figure 1. Alternatively, when

demand is subconvex, εx < 0, manifolds need to be upward sloping, dρ/dε > 0, which is the case

for concave Pollak demands.

In practice, most demands fulfill Marshall’s Second Law, εx < 0, but are also convex, falling

between the linear, ρ = 0, and CES cases. I will show in Section 3.3 that, with the exception of the

logit demand, the manifolds of most demand families are downward sloping, dρ/dε < 0, and thus

the IRC condition is not ensured to hold for most subconvex demands. Of course εx · dρ/dε < 0

is only a sufficient condition. The IRC condition could still hold for subconvex demands with

downward sloping manifolds if they are not “too convex.” Overall, this becomes an empirical issue

that requires to evaluate the joint empirical distribution of (ε, ρ). Result reported in Table 6 of

Section 4.4 corroborate that the IRC condition fails most often than not.

ACV’s Curvature Conditions. I now present ACV’s propositions on demand curvature behind

output and welfare effects of 3DPD .

ACV1: Given the IRC , if the direct demand function in the strong market is at least

as convex as that in the weak market at the nondiscriminatory price then discrimination reduces

welfare, i.e., welfare decreases if rs(pu) ≥ rw(pu). The proposition can be rewritten as follows after

substituting identity (3): Welfare decreases with 3DPD when:

εs[x(pu)]·ρs[x(pu)]︸ ︷︷ ︸
rs(pu)

≥ εw[x(pu)]·ρw[x(pu)]︸ ︷︷ ︸
rw(pu)

. (10)

If this condition holds, welfare decreases in the neighborhood of pu. In the unlikely case

that IRC also holds, welfare reduction will also hold globally, for any price difference across local

markets, i.e., for all prices in [pw, pu] and [pu, ps], respectively. Starting from a situation where the

monopolist sets a common price across locations, ACV1 tests whether transitioning from uniform

pricing to 3DPD could reduce welfare.

12As I will show in Section 3.3, the shape of demand manifolds for most demand families share many common features
with Pollak’s demand manifolds. Superconvex demands frequently show unstable behavior with markups increasing
monotonically in price. See the discussion on superconvexity in the context of discrete choice demand estimation
in Miravete, Seim and Thurk (2023, §4.2).
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ACV2: Given the IRC , if zw(pw) = (pw−c)/(2−ρw) ≥ (ps−c)/(2−ρs) = zs(ps) (so inverse

demand in the weak market is more convex than that in the strong market at the discriminatory

prices, which are close together) then welfare is higher with discrimination.

ACV suggest using this condition to evaluate a mandatory uniform pricing policy could

reduce welfare when the monopolist actually engages in 3DPD . Again, IRC ensures that results

are valid globally, for all prices between the local and uniform prices. This proposition could be

restated as follows after using Lerner Index equilibrium condition to eliminate the unobservable

marginal cost. Given the IRC , welfare is higher with discrimination if:

(2− ρs[x(ps)]) · εs[x(ps)]
ps

≥ (2− ρw[x(pw)]) · εw[x(pw)]
pw

. (11)

ACV4(+): Total output rises if both direct demand and inverse demand are more convex

in the weak market than in the strong market. Evaluated locally at the nondiscriminatory price,

output rises with 3DPD when:

εw[x(pu)]·ρw[x(pu)]︸ ︷︷ ︸
rw(pu)

> εs[x(pu)]·ρs[x(pu)]︸ ︷︷ ︸
rs(pu)

, and ρw[x(pu)] > ρs[x(pu)] , (12)

ACV4(–): Total output does not increase if both direct demand and inverse demand are

more (or equally) convex in the strong market than in the weak market. Evaluated locally at the

nondiscriminatory price, output and welfare decreases with 3DPD when:

εs[x(pu)]·ρs[x(pu)]︸ ︷︷ ︸
rs(pu)

≥ εw[x(pu)]·ρw[x(pu)]︸ ︷︷ ︸
rw(pu)

, and ρs[x(pu)] ≥ ρw[x(pu)] . (13)

Demand curvatures evaluated at the uniform price are key to determine if 3DPD could

increase sales relative to uniform pricing. In some cases the curvature of the inverse demand

function suffices to characterize the output effect. Sales increase with 3DPD if all demands are

convex and 0 < ρs[x(pu)] < ρw[x(pu)]. Similarly, sales decrease with 3DPD if all demands are

concave and 0 > ρs[x(pu)] ≥ ρw[x(pu)] (Shih, Mai and Liu, 1988; Cheung and Wang, 1994).

3.2 Demand Curvature Heterogeneity: Output and Welfare Predictions

In this section I use the demand manifold framework to illustrate how these output and welfare

conditions may or may not hold across different regions of demand curvature. The slope of demand

manifolds plays a key role. The main result of the following analysis is that unless demand curvature

heterogeneity across local markets is substantial, 3DPD reduces output and welfare if demand

manifolds are downward sloping.
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Homogeneous Curvature Across Markets. I now explore where the curvature conditions

behind output and welfare of 3DPD hold in the (ε, ρ) space. The basic arguments can be conveyed

graphically. Dots {u,w, s} in Figure 1 represent particular elasticity-curvature combinations (ε, ρ)

at strong and weak local markets. They are intended to represent “infinitesimal” deviations from

the elasticity and curvature under uniform pricing, (εu, ρu), along a single manifold. From ACV’s

conditions we know that for output and welfare to increase with price discrimination, elasticity and

curvature need to be positively correlated. This might occur even in the absence of local market

demand curvature heterogeneity, i.e., along a single manifold, if manifolds are upward sloping.

If demand manifolds are downward sloping, output and welfare decreases with 3DPD unless the

drivers of local demand curvature are exceedingly different across strong and weak markets.

This argument relies on optimal price and elasticity being inversely related for a profit

maximizing monopolist. However, demand specification determines if prices increase or decrease

with curvature. The monopoly pricing solution is formally identical for the weak and strong market,

as well as for the uniform pricing case. The optimal monopoly price is given by:

pj =
εj

εj − 1
c , for j = {u,w, s} . (14)

Local markets are defined as strong or weak if, under 3DPD , the local price is higher or lower than

the optimal uniform pricing solution, ps > pu > pw. It follows from the pricing equation (14) that

εs < εu < εw, i.e., demand is less elastic in the strong market than in the weak one, with demand

elasticity of the joint market falling in between (Nahata, Ostaszewski and Sahoo, 1990, Theorem 1).

The strength of the price-curvature connection determines the amount of local market

curvature heterogeneity needed for 3DPD to increase output and welfare. If manifolds are upward

sloping, the ordering of elasticities and curvatures in the weak and strong market is the same as

points {w2, u2, s2} in Figure 1. Demand is always more elastic for the weak than for the strong

market, εw2 > εs2 . Because the demand manifold are upward sloping, it is also the case that

ρw2 > ρs2 . Thus, ACV4(+) condition (12), εw2ρw2 > εs2ρs2 , holds and output increases with price

discrimination even in the absence of curvature heterogeneity across local markets, i.e., when local

demands have common curvature determinants as in Figure 1 for the σ = −2 manifold.

A very different outcome occurs when Pollak demands are convex and manifolds downward

sloping, e.g., points {w1, u1, s1} along the σ = 0.25 manifold in Figure 1. If local demands still

have common curvature determinants εs1 < εw1 , but ρs1 > ρw1 . Now elasticity and curvature are

inversely correlated, which leads to ambiguous rankings of direct demands curvatures.13

Consider first the case where manifolds are very steep, ρs1 ≈ ρw1 , corresponding to the

case of limited local curvature heterogeneity. Inequality (12), εw1ρw1 > εs1ρs1 , most likely holds

because εs1 < εw1 . Thus, output could still increase with 3DPD when determinants of local demand

13According to Cowan (2016, equation (12)) “captures the intuition that the total output effect is positive if the price
elasticity and the curvature measures are positively correlated.” Thus if we were to use the CES specification of
DellaVigna and Gentzkow (2019) for welfare evaluation we will conclude necessarily that 3DPD reduces welfare
because for the CES demand ρ = 1− 1/ε, and therefore corr(ε, ρ) < 0.
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curvature are common and the correlation between ε and ρ is negative but sufficiently small. On the

other hand, welfare is more likely to decrease with 3DPD if demand manifolds are relatively flat,

i.e., when curvature varies substantially across local markets. Now ρs1 >> ρw1 and εsρs ≥ εwρw.

If this is the case, equation (13) implies that output decreases with 3DPD . Combining (10) and

(13) shows that 3DPD reduces output relative to uniform pricing as well as welfare.

Local Curvature Heterogeneity. For output to increase with 3DPD it is necessary that ρw > ρs

when εw > εs, i.e., that elasticity and curvature are positively correlated. If manifolds are downward

sloping this can only happen if an infinitesimal price difference separating strong and weak market

results in local demands with drastically different demand curvatures, e.g., for instance, shifting

horizontally s1 to s′1 on the σ = −0.5 manifold and w1 to w′
1 on the σ = 1 manifold (gray arrows

and nodes on the downward sloping manifolds of Figure 1). This is consistent with the theoretical

work on this subject for the past century.14

3.3 Implications for Empirical Analysis

To ensure robust output and welfare predictions associated to 3DPD , applied economists should

turn to more flexible demand specifications that do not restrict the behavior of demand curvature

and allow for sufficient heterogeneity across local markets, for instance by introducing nonlinear

price effects interacted with city or region market demographics.

Parameter σ captures this additional flexibility in the Pollak demand system. A different

σ for strong and weak local markets may reverse the less desirable effects of a downward sloping

manifold with a common σ, i.e., a reduction of output and welfare relative to uniform pricing. For

other demand systems, market-specific estimates of demand parameters behind demand curvature

might also drive a wedge between the curvature of demand in weak and strong markets. This is

not possible at all when demand manifolds are invariant with respect to all parameters of demand.

If manifold invariance does not involve all parameters, it is possible to accommodate demand

curvature heterogeneity across local markets if the econometric specification is flexible enough.

Manifold Invariance and Negative Output and Welfare of 3DPD. There are some impor-

tant demand specifications where jumps across demand manifolds are not possible at all because the

value of the parameter driving curvature properties is a constant common across weak and strong

markets. This is perhaps the most interesting result of using the manifold framework in relation

with the empirical analysis of 3DPD : to show that regardless of the data generating process,

the choice of some common demand specifications determines necessarily the negative output and

welfare prediction associated to 3DPD . This is a direct consequence of the manifold invariance

result of MN[§ II.B].

14For instance, Robinson (1933, §15.5) compares linear demands in one market with either a concave or a convex
demand in the other. This is also the case in ACV[Example 1], where the authors consider an exponential demand
in for the strong market and a linear one over the weak market.
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Demand shifts or rotations respond to changes in local demographics or other primitives of

each market. In general, we should expect that such changes in demand in the (p, x) space also affect

the shape and position of the corresponding demand manifold in the (ε, ρ) space. MN[Proposition 2]

present a set of technical conditions ensuring that a change of an arbitrary demand parameter ϕ

does not change the shape or position of the associated demand manifold. The demand manifold

is then invariant with respect to parameter ϕ.15

I illustrate this result with the particular linear case, x = γ + δp. Note that differences in

income or price responsiveness across local markets result in different intercept-slope combinations

{γ, δ}, where demand shifts and rotations reflect the particular local market demand conditions.

However, all linear demands belong to the same elasticity-curvature manifold σ = −1 in Figure 1,

with a zero-curvature, which in the end lead to the well-known welfare reduction predictions under

3DPD .

In addition to linear demands, there are other important demand systems with demand

manifolds that are invariant to local demand shifts with respect to all parameters include the

Stone-Geary’s linear expenditure system, x = γ + δ/p; CARA, x = γ + δ log(p); and translog

demand specifications, x = (γ + δ log(p)) /p. For all these cases, even if the econometrician takes

great care and estimates separate specifications of these convex demand functions for each local

market, the estimated intercepts and slopes across locations correspond to different elasticity-

curvature combinations belonging to a single downward sloping manifold. Thus, as discussed in

the homogeneous curvature case of Section 3.2, regardless of the data generating process, any of

these manifold invariant demand specifications will predict that 3DPD does not increase output

and reduces welfare.

Curvature Restrictions of Common Demand Systems. Most demand specifications, even if

they are not manifold invariant with respect to all demand parameters, impose important curvature

restrictions that determine the sign of correlation between elasticity and curvature estimates that

drive the output and welfare effects of 3DPD . I now documents the manifold curvature properties

of nine widely used demand systems. The demand manifolds of the first eight families are downward

sloping. Thus, if applied economists fail to model curvature heterogeneity in a sufficiently flexible

manner, they may likely conclude that 3DPD leads to reductions in total sales and welfare. The

only exception is the ninth family: logit demand.

Table 1 presents a wide selection of demand families commonly used in empirical research

and describes their manifold features, with most of them being almost always downward sloping,

i.e., dε/dρ ≤ 0. The table includes each analytical demand specification, particular cases, important

desirable properties, the expression of their demand manifolds and, most importantly, the slope of

this manifold for each demand family. See the Appendices of MN for further technical details.

15Formally, for demand manifold to be invariant with respect to demand parameter ϕ, elasticity and curvature should
depend on (x, ϕ) or (p, ϕ) through a common sub-function of either F (x, ϕ) or G(p, ϕ).
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The first row of Table 1 begins with the subset of convex Pollak demands, with manifolds

that are decreasing hyperbolas, e.g., Figure 1. This family includes the linear, CES , linear

expenditure system (Stone-Geary), and CARA demand functions as particular cases. The Inverse

PIGL, which includes the inverse translog, have manifolds that are all downward sloping straight

lines crossing at (ε, ρ) = (1, 2), the locus of the Cobb-Douglas demand function. Next, the isoconvex

demand is the important constant pass-through family of Bulow and Pfleiderer (1983), with vertical

manifolds and elasticitcy-invariant curvature across local markets. As in the linear demand case,

total output does not change but welfare decreases with 3DPD .16

The second row of Table 1 includes the case of demands with constant revenue elasticity

of marginal revenue, CREMR of Mrázová, Neary and Parenti (2021), with downward sloping

concave manifolds converging at (ε, ρ) = (1, 2). Demands with constant proportional pass-through,

CPPT , have downward sloping convex manifolds always crossing at (ε, ρ) = (1, 2). Last, the price

independent generalized linear (PIGL) demand system of Muellbauer (1975), which includes the

translog demand and the Almost Ideal (AIDS ) system of Deaton and Muellbauer (1980), have

demand manifolds that are downward sloping for nearly all (ε, ρ) combinations.17

The first two cases of the last row of Table 1 present demand systems also characterized

by downward sloping demand manifolds for all or a wide range of parameters. The manifold of

demands with quadratic mean of order r (Diewert, 1976), QMOR, is very similar to the manifold of

the Pollak family depicted in Figure 1. They are hyperbola-like manifolds that are decreasing for

r < 2, i.e., for convex demands “to the right” of the linear case, r = 2. As for the inverse exponential

family, it has downward sloping manifolds if demand is log-concave but not necessarily if they are

log-convex. Thus, output might increase with price discrimination for very convex demands.

The ninth family of Table 1, the logistic demand function, is always log-concave and the only

case where manifolds are always upward sloping and asymptotic to ρ = 1. Thus, any estimate of a

multinomial logit model not only imposes an incomplete pass-through rate (Miravete et al., 2023,

§4), but also, if used to evaluate the effects of price discrimination, predicts, by construction, that

3DPD leads to increases in output and welfare, a case already noted by Cowan (2016). The analysis

of this section indicates, however, that predictions regarding 3DPD of the logistic demand are not

necessarily robust, as they are implied by its curvature properties rather than by the behavior of

the data. This is an important result to remember given the widespread use of the logit demand

in empirical work nowadays because it may lead to an abundance of non-robust evidence showing

that 3DPD increases output and thus wrongly convey the idea that the output and welfare effects

of 3DPD are overwhelmingly positive.

16This includes Cowan (2007) with demand xj = aj + b · f(pj), for j = {w, s} as curvatures in the weak and strong
markets are arbitrarily close when δ = ps−pw is sufficiently small. Thus, total output does not change with 3DPD
and welfare decreases. This welfare reduction should also be predicted by the empirical analysis of Atkin and
Donaldson (2015) and Butters, Sacks and Seo (2022), both of whom estimate or assume an isocurvature demand
specification.

17 I show in the Appendix that PIGL manifolds become upward sloping only for a very small subset of very elastic
and concave demands.
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4 Evaluating Output and Welfare Curvature Conditions

Policymakers might be interested in restricting supermarkets’ ability to price discriminate across

local stores. This might occur after a merger if the new consolidated firm is perceived to have

excessive market power. We therefore need to evaluate the optimality of uniform pricing vs. price

discrimination ex ante, which requires adopting a structural approach for researchers to compute

counterfactuals under alternative pricing regimes and predict their output and welfare effects.

The analysis of Section 3 higlights the serious limitations that common parametric demand

models impose on output and welfare predictions of 3DPD . Even if we specify demand in such a

way that allows for sufficient demand curvature heterogeneity across local markets solving a full

structural model thousands of times might be prohibitive. But this analysis of demand curvature

conditions also eases the empirical task: IRC and conditions ACV1, ACV2, and ACV4 can be

directly evaluated on demand estimates once we determine the optimal uniform pricing, pu. This

is a much simpler problem than solving a full counterfactual evaluation of output and welfare.

My approach, detailed below, could thus allow antitrust authorities to evaluate ex-ante whether

uniform pricing or 3DPD are socially preferable based on curvature properties of demand obtained

using the actual prices charged by chains in each store.

4.1 Estimation: Demand, Costs, and Optimal Uniform Pricing

The estimation focuses on the residual demand of each product in each location, as in DellaVigna

and Gentzkow (2019). Consumers are assumed not to change the brand they purchase or the store

they purchase them from when evaluated at alternative prices. This restrictive assumption avoids

having to estimate a full multiproduct discrete choice demand across stores for all products, but

allows me to test local curvature conditions for tens of thousands of chain-store-products.

Data consists of price and quantity observations (p, x) for each product j (UPC) and

store s of chain r over t weeks. I adopt flexible demand specifications capable of accommodating

curvature heterogeneity across local markets to avoid the limitations discussed in Section 3.3 and

estimate the followingH-degree Stone-Weierstrass polynomial approximation for each store-product

combination:18

x(psjt) = β0 +

H∑
h=1

βh ·(psjt)h + τt + εsjt , (15)

where τt denotes the week-of-the-year fixed effects. To address price endogeneity concerns I use

Hausman (1996) instruments consisting of the average prices of product j of stores in the own chain

s ∈ s(r) located in other geographic markets. This polynomial regression makes use of the panel

data structure to predict store-product estimates for demand and its derivatives, x̂(p), x̂′(p) and

18This approach allows for nonlinear price effects that may vary across local markets as demand is estimated for
each store-product combination. Data availability conditions this modeling choice. If pooling the data across local
markets, another valid approach is to interact local socioeconomic indicators with nonlinear price effects.
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x̂′′(p), which allows computing estimates of elasticity and curvature, ε̂(p) and ρ̂(p) characterizing

the demand of each product in each store. These are the key ingredients necessary to test for

IRC , ACV1, ACV2, ACV4 and determine whether 3DPD increases output and welfare relative to

uniform pricing.

The potential for biased predictions of polynomial specifications far from the sample average

of the regressors is well-known (Fan and Gijbels, 1996, §1.1). The time span of the IRI data limits

the possibility of using other, more flexible nonparametric estimation methods. The number of

observations required to nonparametrically estimate derivatives increases exponentially with each

additional derivative order (Pagan and Ullah, 1999, §4), something that I cannot credibly achieve

with a maximum of 208 weekly observations per store-product combination.

On the positive side, the evaluation of x̂(p), x̂′(p), and x̂′′(p) takes place either at the chain

uniform price or at the store price, both of which are very close to the price sample mean, as

supermarket pricing is very similar across locations. Results are very similar for both, a cubic

(H = 3) and fourth-degree polynomial (H = 4) to evaluate the first two derivatives of demand.

Results are very similar when I repeat the analysis using the Müntz-Szász approximation, which

Barnett and Yue (1988) favor as it reduces the risk of overfitting the data because it is globally

regular (concave) at all orders of approximaiton:19

x(psjt) = β0 +

H∑
h=1

βh ·(psjt)1/2h + τt + εsjt . (16)

Marginal Costs. I assume a common constant marginal cost crj for each product j across all

stores s(r) of a chain r. Since prices are not always exactly uniform across stores, I assume that

each period t, supermarket chain r sets store prices of product j to maximize total chain profits:

{p⋆sjt} ∈ argmax
{psjt}

Πrjt

(
p1jt, p2jt, . . . ps(r)jt

)
=

∑
s(r), j

(psjt − crj)x(psjt) . (17)

There are nr×t first order profit maximization conditions similar to (14) for each chain, with an

identical number of store pricing equations, where nr is the number of stores in chain r and t the

number of weeks when store sales of product j are available for this supermarket chain. After

estimating demand for each store-product and computing its predicted store-product-week sales,

x̂(psjt), and elasticity estimate ε̂sj [x̂(psjt)], I use the single-product profit maximization condition

19The Stone-Weierstrass approximation theorem ensures that a linear combination of functions {1, p, p2, p3, . . . }
used in (15) uniformly approximates any continuous demand x(p) on a compact support [p, p] ⊂ R. The
Müntz-Szász theorem ensures that demand can be uniformly approximated by a linear combination of functions
{1, pλ1 , pλ2 , pλ3 , . . . } if

∑
h∈N λ

−1
h = ∞ (Rudin, 1966, §15). I use half the harmonic sequence (1, 1/2, 1/3, . . . , 1/h)

for the power elements of demand specification (16) to approximate demand x(p) with a linear combination of
concave functions in [p, p] ⊂ R as each term λh = 1/2h ∈ [0, 1] (Barnett and Jonas, 1983).
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for each store of a chain and average the s(r) weekly store marginal revenue estimates over all nr×t
store-weeks to obtain an equilibrium estimate of chain r’s marginal cost for each product j:

ĉrj =
1

nr×t

∑
s(r), j

psjt

(
1− 1

ε̂sjt[x̂(psjt)]

)
. (18)

Optimal Uniform Price. Output and welfare conditions ACV1 and ACV4 are evaluated at the

uniform price purj while ACV2 is evaluated at the store price psj . Although supermarket chains

price very similarly across stores and time, there are still small differences that need to be taken into

account to compare the curvatures of the weak and strong markets. In order to reduce the number

of comparisons across weeks, I define psj , the price of product j in store s as the sales-weighted,

weekly average of psjt in that store. Thus, x̂(psj) and ε̂j(psj) denote the within sample prediction

of weekly average sales and average elasticity of product j in store s∈s(r), respectively, where both

are evaluated at the sales-weighted average store price psj . Similarly, ρ̂j(psj) and χ̂j(psj) represent

the average curvature and average temperance estimates evaluated at the same sales-weighted,

weekly average store price.

The estimate ĉrj is necessary to figure out the uniform price that maximizes supermarket

chain r’s profits of product j. I use the estimated parameters of the chain-store-product demands

to predict x̂(purj), the weekly average sales of product j in store s ∈ s(r) evaluated at the optimal

uniform chain price purj . I search among the set of prices ensuring non-negative predicted sales for

every chain-store to find the optimal uniform price that maximizes chain profits:

purj ∈ argmax
pj

Πu
rj(pj) =

∑
s(r),j

(pj − ĉrj) x̂(pj) · 1 [x̂(pj) ≥ 0] . (19)

Maximizing this objective function mimics the premises of the theoretical model by focusing on cases

where all local markets are covered both under uniform pricing and 3DPD . Since in practice I need

to solve this optimal uniform price for nearly twenty-three thousands chain-product combinations,

I proceed as follows. I first evaluate the weekly average store sales for each price given by a

thousand elements of a uniform sequence between the highest and lowest sales-weighted average

price observed in the data, psj ∈ (p
sj
, psj), for any store in a given chain. I then select purj as the

price securing the highest profits on (p
sj
, p◦sj ], where p◦sj , is the highest price in the sequence where

sales in all chain stores are positive.

4.2 Testing for Local Demand Curvature

After finding the optimal uniform price purj , I can test for IRC , output, and welfare conditions for

each store-product within a chain. The IRC regularity condition must hold for all local markets

evaluated at the local price. As I document below in Table 6, IRC fails most of the time. Thus, I

only evaluate local versions of the output and welfare conditions. If ACV’s conditions fail locally,

their global versions also fail.
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Generalizing ACV1, ACV2, and ACV4 for more than two markets requires that they hold for

all weak and strong markets, i.e., for all pairwise demand curvature comparisons between each store

in the weak markets and each store in the strong market. Since ps > pu > pw and εs < εu < εw,

all pairwise comparisons hold if the infimum of the left hand side of conditions ACV1, ACV2,

and ACV4 exceeds the supremum of the right hand side of these conditions. If they hold for the

particular pairwise combination where the output and welfare conditions are more similar for weak

and strong markets, they will hold for all others. If they do not, there there is at least one pairwise

comparison that would violate the curvature condition. I thus evaluate the following hypotheses

empirically:

1. ACV1. 3DPD reduces welfare if IRC holds for all local markets plus:

min{rs[x̂(pu)] = εs[x̂(pu)] · ρs[x̂(pu)]} ≥ max{εw[x̂(pu)] · ρw[x̂(pu) = rw[x̂(pu)]} . (20)

2. ACV2. 3DPD increases welfare if IRC holds for all local markets plus:

min{(2− ρs[x̂(ps)]) · εs[x̂(ps)]/ps} ≥ max{(2− ρw[x̂(pw)]) · εw[x̂(pw)]/pw} . (21)

3. ACV4(+). 3DPD increases output if both direct and indirect demands are more convex in

the weak than in the strong market:

min{rw[x̂(pu)]} > max{rs[x̂(pu)]} and min{ρw[x̂(pu)]} > max{ρs[x̂(pu)]} . (22)

4. ACV4(−). 3DPD decreases output and welfare if both direct and indirect demands are more

convex in the strong than in the weak market:

min{rs[x̂(pu)]} ≥ max{rw[x̂(pu)]} and min{ρs[x̂(pu)]} ≥ max{ρw[x̂(pu)]} . (23)

4.3 Supermarket Data

I use weekly sales data from the IRI Marketing Data Set for ten product categories across nearly one

thousand stores belonging to seventy-one supermarket chains in fifty medium/large metropolitan

areas in the U.S. between 2008 and 2011. Most households purchase one or many of the products

included in the IRI Marketing Data Set (Bronnenberg, Kruger and Mela, 2008, Table 2). Products

are defined by UPC and they differ by size, flavor, and other attributes. Product categories include

beer, breakfast cereal, carbonated beverages, coffee, frozen dinners/entrees, household cleaning

products, salty snacks, soup, and yogurt.20

20Einav, Leibtag and Nevo (2010) document the similarity of the IRI and Nielsen datasets. I restrict the attention
to the period 2008-2011 with unique product identifiers across years as in Luco and Marshall (2020).
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zá

sz
se
ri
es

ex
p
a
n
si
o
n
sp

ec
ifi
ca

ti
o
n
o
f
d
em

a
n
d
o
f
T
a
b
le

6
.
T
h
e
co

effi
ci
en

t
o
f
v
a
ri
a
ti
o
n
is

th
e
ra
ti
o
o
f

th
e
w
it
h
in

ch
a
in

st
a
n
d
a
rd

d
ev

ia
ti
o
n
o
f
p
ri
ce
s
d
iv
id
ed

b
y
th

e
m
ea

n
ch

a
in

p
ri
ce

×
1
0
0
.
T
h
e
la
st

co
lu
m
n
p
re
se
n
ts

a
si
m
p
le

a
v
er
a
g
e/

to
ta
l
a
cr
o
ss

p
ro
d
u
ct

ca
te
g
o
ri
es
.
T
h
e
n
u
m
b
er

o
f
re
g
re
ss
io
n
s
eq

u
a
ls

th
e
st
o
re

a
v
er
a
g
e
n
u
m
b
er

o
f
U
P
C
s
ti
m
es

th
e
to
ta
l
n
u
m
b
er

o
f
st
o
re
s,

w
h
ic
h
is

th
e
n
u
m
b
er

o
f
es
ti
m
a
te
d
st
o
re
-p
ro
d
u
ct

d
em

a
n
d
s.

T
h
e
n
u
m
b
er

o
f
u
n
if
o
rm

p
ri
ci
n
g
p
ro
b
le
m
s
so
lv
ed

eq
u
a
ls

th
e
ch

a
in

a
v
er
a
g
e
n
u
m
b
er

o
f
U
P
C
s
ti
m
es

th
e
to
ta
l
n
u
m
b
er

o
f
ch

a
in
s,

th
u
s
a
cc
o
u
n
ti
n
g
fo
r
th

e
n
u
m
b
er

o
f
ch

a
in
-p
ro
d
u
ct
s
o
ff
er
ed

.

– 23 –



Following the sample selection criteria of DellaVigna and Gentzkow (2019), I exclude chains

present only in one geographical market as these cases do not allow to exploit within-chain price

variation across markets to compute Hausman instruments and properly estimate demand. I also

exclude stores switching chains over the sample period and store-product combinations with positive

sales for fewer than 104 weeks. To ensure that the estimation uses only products that are widely

available, I only include in the sample those items sold at least 80% of store-weeks across all chains.

The final sample includes over 3,000 UPCs across ten product categories. Store average weekly

price is the result of dividing each store weekly dollar sale by the number of units sold in each store.

Table 2 presents the descriptive statistics of the samples of each product category used

in the estimation. It reports descriptive statistics for prices, price variation, number of products,

stores, chains, and sales at different levels of aggregation. Overall, magnitudes are similar to those

of other retail studies.21 Prices of sample products range from $0.14 for a serving of soup to $23.86

for the most expensive beer. Price dispersion within categories is particularly important for yogurt,

with a coefficient of variation of 0.86 across stores (standard deviation of price over mean price),

but rather limited for breakfast cereal with 0.23. It is interesting to note that price dispersion is

more muted across the stores of a chain, and in many cases nil, with chains frequently charging the

same price across all its stores at a moment in time. Sometimes pricing is substantially different

in specific locations, where some expensive products are offered. This price heterogeneity across

categories is a nice feature of the data. I show that output and welfare conditions are fulfilled in a

similar manner across stores, and thus results are robust to price level and price dispersion.

Store sales are closely related to the number of items available They average only $37.47

per week for the two household cleaning products offered while they amount to an average of $1,438

per week when selling nearly forty varieties of carbonated beverages. The number of products of

each category varies across stores of a chain, e.g., an average of four household cleaning items and

nearly seventy carbonated beverages. Weekly chain average sales range from $398 for household

cleaning products to $43,568 for carbonated beverages. Overall, the data includes information for

3,223 products sold across 964 stores belonging to 71 supermarket chains, with 754 million units

sold for all products across these ten categories. Sales amount to $1.6bn in total.

Table 3 documents how these magnitudes vary across chain size for the case of carbonated

beverages, the category with more units sold and with larger sales. Average prices are lower for

larger supermarket chains, particularly those with a very large number of stores. They also offer

more variety, leading to larger weekly average sales per store. Price dispersion across stores is

similar for all chains except for the largest ones. Pricing is very similar if not identical across many

of their stores, reducing the overall within chain price dispersion. The most common chain has

between eleven and twenty stores. Qualitatively similar, category-specific descriptive statistics are

reported in the Online Appendix for all ten product categories used in the empirical analysis.

21Following DellaVigna and Gentzkow (2019), I also winsorize the sample by dropping the observations with store-
product estimated demand elasticity outside reasonable bounds, ε̂sjt[x̂(psjt)] /∈ [1.2, 7], or with non-concave revenue
function, ρ̂sjt[x̂(psjt)] > 2. Thus, the final sample size varies slightly across polynomial approximations.

– 24 –



Table 3: Descriptive Statistics: Carbonated Beverages

Chain Size (number of stores)

All 2–5 6–10 11–20 21–88

Price ($)
Average Price 2.22 2.35 2.38 2.32 2.04

Standard Deviation 1.21 1.25 1.23 1.22 1.15

Maximum Price 6.00 5.21 5.27 6.00 5.23

Minimum Price 0.23 0.23 0.24 0.24 0.29

Supermarket Stores

Average Number of UPCs 38.4 25.9 31.6 44.3 36.6

Average Weekly Sales (units) 1,438.2 992.8 1,159.1 1,523.8 1,503.1

Average Weekly Sales ($) 3,261.20 2,335.43 2,920.91 3,689.39 3,061.77

Supermarket Chains

Average Number of Stores 13.6 3.1 8.1 15.7 34.9

Average Number of UPCs 67.9 31.6 59.4 91.0 90.7

Average Weekly Sales (units) 19,213.2 2,840.2 9,123.6 23,172.9 50,229.7

Average Weekly Sales ($) 43,568.20 6,681.11 22,990.59 56,105.18 102,316.33

Within Chain UPC Price Dispersion (%)

Average Coefficient of Variation 2.51 2.57 2.37 2.35 2.94

Maximum Coefficient of Variation 25.18 17.43 25.18 15.87 13.40

Minimum Coefficient of Variation 0.00 0.02 0.00 0.00 0.08

Overall Data

Total Number of Chains 71 19 16 25 11

Total Number of Stores 964 58 130 392 384

Total Number of UPCs 908 213 320 604 415

Total Sales (millions of units) 273.3 10.2 29.4 118.8 114.9

Total Sales ($ millions) 619.7 24.0 74.0 287.6 234.1

Average Number of Weeks 192.4 174.5 194.2 192.8 193.3

Observations (millions) 7.13 0.26 0.80 3.35 2.72

Notes: The first block of price information is measured in dollars. The second one reports the average number of products
and sales per store. The third block repeats it by chain and includes also the average number of stores. The next one,
price dispersion, reports the average coefficient of variation across chains. The last block reports totals to give an idea of
the size of the data.

4.4 Results: Anticompetitive Potential of 3DPD

Demand estimation results vary slightly across demand specifications. These estimates also affect

the value of the output and welfare conditions, as well as the criteria used to quantify the importance

of violating these conditions, e.g., the share of chains or the share of category sales that fulfill them.

Table 4 reports these statistics for the four demand specifications discussed above, i.e., a

third and fourth degree Stone-Weierstrass polynomial, and a third and fourth Müntz-Szász series

expansion of demand. The third-degree Müntz-Szász series expansion is slightly preferred as fewer

observations get dropped after winsorization, both as a share of chain-products included and as a

share of chain sales within the carbonated beverages category. This specification also produces the

least elastic demand estimates on average, although admittedly, differences are negligible.

I consider both, a local and global version of welfare conditions, ACV1 and ACV2, as

equations (20)-(21) are evaluated either by themselves or together with the IRC condition. A first

important result is that ACV’s IRC condition does not hold as freuently as previously anticipated
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Table 4: Curvature Tests Summary: Carbonated Beverages

Chain Products (#) Chain Sales ($)

S.W.(3) S.W.(4) M.S.(3) M.S.(4) S.W.(3) S.W.(4) M.S.(3) M.S.(4)

Average estimated ε̂ 3.31 3.38 3.29 3.35 3.31 3.38 3.29 3.35

Std.Dev of estimated ε̂ 1.25 1.32 1.27 1.35 1.25 1.32 1.27 1.35

Chain-Products (surviving) 95.15 91.37 96.04 96.15 92.53 86.34 93.76 93.70

IRC holds for all stores in a chain 35.55 49.53 35.89 37.36 38.32 51.90 38.79 40.06

– Welfare decreases globally 8.91 12.52 8.69 9.30 3.91 6.08 3.23 3.48

– Welfare increases globally 9.00 14.36 9.40 9.66 3.13 5.86 4.04 4.20

Potential welfare increase

– Output increases 23.30 25.72 23.08 23.33 9.43 11.01 9.69 9.76

– Output increases enough 16.77 20.78 16.41 16.17 6.13 7.99 5.26 5.14

Potential welfare decrease

– Output decreases 15.80 18.91 15.21 15.68 6.09 9.28 5.07 5.55

– Output does not increase enough 79.17 74.55 78.60 78.58 92.32 89.32 91.97 91.59

Notes: Percentage of chain products or chain sales that fulfill each curvature condition for third and fourth degree Stone-
Weierstrass polynomials and Müntz-Szász series expansion specifications of demand.

in the economic theory literature. IRC fails more often than not, for somewhere between half and

two thirds of chain-products or chain sales. I test whether IRC plus ACV1 hold simultaneously, i.e.,

IRC ∩ACV 1, which occurs only for 8.69%− 12.52% of chain-products and 3.23%− 6.08% of chain

sales. I therefore conclude that data is consistent with a global reduction of welfare associated to

3DPD , only for a few cases. Similarly, it is only possible to show that welfare increases globally with

3DPD , i.e., IRC ∩ACV 2, for a few cases as well: 9%−14.36% of chain-products and 4.04%−5.86%

of chain sales.

This evidence could be read in different ways. First, it could be thought of being incon-

clusive: among the subsample where IRC holds, welfare increases or decreases globally for 25%

of cases, respectively. Results are inconclusive for the remaining 50% of chain-products. Those

ambiguous cases represent nearly two thirds of chain sales. The major hurdle to show that welfare

may increase or decreases globally with 3DPD is that IRC does not hold most of the time. Thus,

data can only prove an unambiguous welfare results for 20% of chain-products and less than 10%

of chain sales. For this reason, the rest of the analysis evaluates output and welfare conditions

locally, only in the neighborhood of the optimal uniform price. As I have argued above, rejection

of ACV’s conditions locally also invalidates them globally.

My preferred reading of the evidence is that data do not support Bork’s opinion that 3DPD

will most likely increase welfare relative to uniform pricing. Remember that Bork’s argument

actually referred to output rather than welfare as he treated total industry sales as a proxy for

welfare. For welfare to increase, it is necessary that output increases, i.e., ACV 4(+) should

hold. But the increase in output should be large enough to compensate the misallocation effect of

excluding some high value consumers in the strong market to increase sales among low valuation

consumers in the weak one, i.e., ACV 4(+) ∩ACV 2.
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Table 5: Chain Size and Curvature Conditions: Carbonated Beverages

No. Chain-Products Chain-Product Sales

No. Stores: All 2–10 11+ All 2–10 11+

Chains (%)

IRC holds for all stores in a chain 37.36 40.69 23.13 40.06 45.51 36.18

– Welfare decreases globally 9.30 11.35 0.56 3.48 7.88 0.34

– Welfare increases globally 9.66 11.61 1.34 4.20 8.08 1.44

Potential welfare increase

– Output increases 23.33 27.33 6.26 9.76 19.21 3.02

– Output increases enough 16.17 19.30 2.79 5.14 10.94 1.00

Potential welfare decrease:

– Output decreases: 15.68 18.88 2.01 5.55 11.58 1.24

– Output does not increase enough 78.58 74.79 94.75 91.59 83.49 97.37

Notes: Welfare decreases globally when, IRC and ACV1 hold together, i.e., IRC ∩ ACV 1. Similarly welfare increases
globally if IRC ∩ ACV 2. For welfare to increase, it is necessary that output increases, i.e., ACV 4(+) should hold. The
increase in output should be enough to compensate the misallocation effect to ensure that welfare increases, ACV 4(+)∩
ACV 2. Welfare decreases if output decreases, i.e., when ACV 4(−) holds. If output decreases, ACV 4(−), or does not
increase enough, ACV 2 fails, 3DPD has the potential to decrease welfare, i.e., when ACV 4(−) ∪ ACV 2. Results are
based on the the third degree Müntz-Szász series expansion specification of demand.

Results show that output increases between 23.08% and 25.72% of chain-products across

demand specifications, although the increase in output is large enough to expend welfare only

between 16.41% and 20.78% of cases. Similarly, the output proxy criteria predicts an increase of

between 9.43% and 11.01% of chain sales, although this increase is only large enough for welfare

to expand between 5.26% and 7.99% of sales. Thus, most cases are still ambiguous. However,

the evidence is robust across demand specifications which are flexible enough to accommodate

curvature heterogeneity across local markets. The important take-away from this analysis is that

focusing on output as a proxy for welfare exaggerates the potential benefits of 3DPD .

What about possible welfare reductions of 3DPD? Welfare decreases if output does not

increase, when ACV 4(−) holds. If output decreases or does not increase enough, ACV 2 fails.

3DPD has thus the potential to decrease welfare when ACV 4(−) ∪ ACV 2. Results now indicate

that using the output proxy greatly underestimates the potential welfare reduction induced by

3DPD . While output is predicted to decrease between 15.21% and 18.91% of chain-products and

between 5.07% and 9.28% of sales across demand specifications, welfare might get reduced from

74.55% to 79.19% of chain-products and from 89.32% to 92.32% of sales.

Table 5 explores whether these output and welfare conditions are more likely to hold for

smaller or larger chains. IRC fails frequently, but failure is even more common for products sold

by larger chains. This is reasonable as IRC is required to hold for every local store. Demands

estimated for products sold by larger chains are inconclusive in nearly all cases when welfare is

evaluated globally. Output is predicted to increase (decrease) far more often for products sold

by smaller chains. However, using output as a proxy for welfare still exaggerates potential gains

and underestimate potential losses induced by 3DPD , a result that holds regardless of the size of

supermarket chains.
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Finally, Table 6 summarizes ACV’s output and welfare tests for all ten different product

categories for the estimates of the third degree Müntz-Szász series expansion of demand. Average

estimated price elasticity ranges from 3.12 for yogurt to 4.22 for beer, with all categories showing

a very similar empirical distribution of price responsiveness, many of them with a coefficient of

variation close to 0.38. Winsorization and the non-negative demand restriction when evaluated at

the optimal uniform price eliminate observations comprising up to 9% of chain-products and 15%

of sales. Most frequently, however, only 5% of chain-products and 8% of sales are discarded.

IRC fails always for more than half of the chain products and half of the chain sales

across all ten product categories. Using output as a proxy always exaggerates welfare increases

of 3DPD across all product categories, both as share of chain-products or share of chain sales.

The most extreme cases is frozen pizza: 26.29% (output) vs. 16.43% (welfare) for chain-products

and 13.98% vs. 7.29% for chain sales. Similarly to the carbonated beverages case discussed before,

output grossly underestimates the potential welfare reductions of 3DPD , both for products and

sales across all categories. Underestimation of potential welfare losses of 3DPD is most important

for coffee: 14.31% vs. 81.09% for chain-products and 3.37% vs. 92.91% for chain sales.

The picture arising from this analysis is very different from the long-held consensus among

theoretical economists regarding the potential gains of 3DPD that informed Robert Bork’s position

against restricting the practice of price discrimination. I avoid using parametric demand specifi-

cations that might constrain the sign of output welfare predictions. The adopted nonparametric

approach is capable of handling demand curvature heterogeneity across local markets and evidence

hints at 3DPD reducing welfare more often than expanding it. The empirical evidence also supports

in some sense Bork’s view that it is more probably on the whole that 3DPD increases rather than

reduces output. However, Table 6 shows that output predictions are ambiguous for most cases and

also that the output proxy overestimates the benefits and underestimates the potential damages of

3DPD , a result that holds across all product categories.

5 Concluding Remarks

Overall, the results reported in the present paper are not very supportive of 3DPD even though

my evaluation relies on a welfare criteria rather than on a loose definition of fairness. My analysis

provides evidence against 3DPD using Bork’s preferred consumer welfare standard, which might

perhaps be useful to overcome economists’ concerns on the potential anticompetitive effects of

3DPD , if its main effect is to reduce overall sales as a result of market power.

Callaci, Hanley and Vaheesan (2024, § IV.B) dismiss the usefulness of economic models to

understanding the consequences of enforcing the RPA robustly with criticisms that squarely apply

to the present work. Their view is shared by many legal scholars bent on rehabilitating the RPA.

A first complaint is that I only deal with the simple case of price discrimination vs. no

price discrimination that has dominated the economic literature since Robinson (1933) rather than
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addressing secret discounts. There are compelling reasons to defend the current approach. It is

difficult to study discounts that are secret and therefore non-observable to econometricians unless

they use a full-fledged structural model, something that would raise a different kind of concerns

and limit the analysis to a few products sold in a handful of stores.

Next, it could be argued that I am using a misguided framework for evaluating the per-

formance of 3DPD by its output and welfare effects rather than adopting the RPA’s normative

framework “to ensure fair competition and protect suppliers and retailers from unfair exercises

of market power.” Economic welfare is the natural measure of well-being of the different actors

interacting in the market. Any other arbitrary normative criteria could easily be assessed with an

exogenous weighting of profits and consumer rents to incorporate whatever is to be considered fair.

And lastly, I could be reminded of not focusing on intermediate goods markets. The data

of the present study refers to final consumer products rather than intermediate goods transacted

between wholesalers and retailers. Although not the common subject of interest for the RPA,

focusing on final products has some advantages. Theoretical output and welfare predictions are

based on curvature conditions of demands for final products. Showing that output and welfare

might not generally increase with 3DPD has the potential to extend the influence of the RPA

to the analysis of final products, if indeed, price discrimination serves as an effective way for

firms with market power to reduce sales. Furthermore, Bork appealed to Robinson’s analysis of

price discrimination in the market for final goods to justify his legal theory against the RPA.

The present paper provides robust empirical evidence that should replace the theoretical intuition

dating back a hundred years ago used to justify a lenient treatment of 3DPD . Future empirical

analysis using demand for inputs could further test the implications of Katz (1987) and later works

on price discrimination on intermediate goods favoring uniform pricing over 3DPD from a welfare

perspective.

Any empirical work is, by definition, limited in one way or another by the availability of

data and the computational complexity of the estimation method employed. Thus, for instance, I

treat demand for each product in isolation and do not consider consumers’ choice of supermarket

because of lack of individual consumer purchases data. On the one hand, estimating demand for

all retail products sold by a supermarket is not feasible, on the other theoretical models have only

studied welfare conditions for single-product demand models. My approach, similar to DellaVigna

and Gentzkow (2019), produces abundant evidence based on the estimation of tens of thousands

store-product residual demands, which should make results particularly compelling. Of course,

additional evidence is always desirable for policymakers to make fully informed decisions. Thus, for

instance, in a recent work, Asil (2024) attempts to measure the trade-off between lower consumer

prices induced by wholesale discounts to large retailers and the possibility of higher consumer prices

if these discounts induce small retailers to leave the market. I hope the present work inspires other

researchers to continue evaluating output and welfare effects of 3DPD in a wide variety of settings.
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Appendix

A PIGL Demand

The Price Independent Generalized Linear demand system (PIGL) of Muellbauer (1975) is:

x =
γ

p
+ δp−σ , (A.1)

with demand elasticity and curvature given by:

ε =
γp−1 + σδp−σ

γp−1 + δp−σ
> 1 , and ρ =

(σ + 2)ε− σ

ε2
. (A.2)

Now the expenditure function is a translated CES , px = γ + δp1−σ. Among others, PIGL demand

includes the translog (σ → 1) and also the Stone-Geary demand (σ = 0).

Figure A.1: Demand Manifolds: PIGL
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From (A.2) we have:

ε− 1 =
(σ − 1)δp−σ

γp−1 + δp−σ
= (σ − 1)

δp1−σ

γ + δp1−σ
= (σ − 1)

px− γ

px
> 0 , (A.3)

so that sign(σ−1) = sign(δ) = sign(px−γ). In addition, the PIGL curvature (A.2) is increasing in

σ. For σ > 1, δ > 0 and demand is more (less) convex than the translog demand for σ < 1 (σ > 1).

See MN[Appendix B8] for further details on PIGL demands.

Differentiating the PIGL curvature (A.2) the manifolds bend over when dρ/dε = 0, which

happens at ε = 2σ/(σ + 2). After substituting this critical value of ε into (A.2), ρ = (σ + 2)2/4σ.

More interestingly for the analysis of 3DPD , notice that in Figure A.1 manifolds might be upward

sloping. This occurs for large values of ε and very negative values of σ in the non-shaded region of

interest when ε > 2σ/(σ + 2) and σ < −2. For σ = −2, ρ = 0 (linear demand) and the manifold

becomes vertical. For smaller values σ < −2, the manifold becomes upward sloping but demand is

always concave, ρ < 0. The possibility of upward sloping manifolds thus remains limited to the set

of concave and very elastic demands.
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