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1 Introduction

The growing availability of large datasets has led to a renewed interest in the use

of large-scale time-series models in economics. In univariate settings, Giannone,

Lenza, and Primiceri (2021) show that densely parameterized models equipped with

appropriate shrinkage priors typically outperform sparse alternatives in terms of

predictive accuracy. In multivariate settings, Bańbura, Giannone, and Reichlin (2010)

and Koop (2013) have demonstrated that Bayesian shrinkage enables the estimation of

large vector autoregressions (VARs) without compromising out-of-sample performance,

and more recently, Crump, Eusepi, Giannone, Qian, and Sbordone (2025) show how

this approach can be used for policy analysis. These insights have direct implications for

structural vector autoregressions (SVARs)—one of the major workhorses for studying

the propagation of structural shocks in macroeconomics. If prediction tasks are better

handled by large models, then inference on structural shocks using SVARs should

similarly benefit from broader information sets, in line with early arguments in favor

of using large SVARs to understand the macroeconomic effects of monetary policy

(e.g., Leeper, Sims, and Zha, 1996; Bernanke, Boivin, and Eliasz, 2005).

Within the SVAR paradigm, sign restrictions have become a particularly popular

method for identifying the parameters of interest, typically impulse responses. The

conventional Bayesian approach to implementing sign restrictions—pioneered by Faust

(1998), Canova and De Nicoló (2002), and Uhlig (2005) and extended by Rubio-Ramı́rez,

Waggoner, and Zha (2010)—relies on sampling from the reduced-form posterior and

a uniform prior over the set of orthogonal matrices, combined with an accept-reject

approach to impose the restrictions. The method is straightforward to implement

and produces independent draws. However, it becomes increasingly infeasible in

large systems due to the vanishing probability of sampling admissible orthogonal

matrices—especially as the number of sign restrictions needed to identify multiple

structural shocks increases, tightening the identified set.1 Recent work by Chan,

Matthes, and Yu (2025) introduces algorithmic refinements by exploiting symmetry and

permutation invariance in the space of orthogonal matrices, but even these improved

methods face limitations under tight identification. Notably, such computational

burdens are not unique to high-dimensional models. These challenges have coincided

1We use the term admissible to refer to orthogonal matrices that satisfy the sign restrictions
given the reduced-form parameters.
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with advances in identification strategies that also lead to tighter identified sets—

even in low-dimensional SVARs—such as ranking restrictions and elasticity bounds

(Kilian and Murphy, 2012; Amir-Ahmadi and Drautzburg, 2021), as well as narrative

sign restrictions (Antoĺın-Dı́az and Rubio-Ramı́rez, 2018; Ludvigson, Ma, and Ng,

2021). These approaches go beyond traditional sign restrictions while preserving their

intuitive appeal and further reducing the volume of the admissible space of orthogonal

matrices. Together, these trends—the adoption of larger information sets and the

use of tighter identification strategies—and the limitations of accept-reject sampling

methods underscore the need for alternative algorithms for Bayesian inference in

SVARs identified with sign restrictions.

In this paper, we break with the accept-reject tradition and show that embedding

the elliptical slice sampling method of Murray, Adams, and MacKay (2010) within a

Gibbs sampler delivers substantial gains in computational speed, rendering previously

infeasible applications tractable. Like in the conventional approach, using the uniform

prior over the set of orthogonal matrices, our goal is to draw from the posterior

distribution of the orthogonal reduced-form parameters conditional on sign restrictions.

However, by eliminating the accept-reject step and directly conditioning on the sign

restrictions within the Gibbs sampler, our algorithm overcomes the bottlenecks that

arise under tight identification—thus enabling dynamic structural analysis with big

data and rich identification schemes. To illustrate the advantages of our approach, we

consider a very simple example similar to the one in Granziera, Moon, and Schorfheide

(2018) and demonstrate that the efficiency of the accept-reject algorithm hinges

critically on the size of the identified set. As the identified set becomes tighter, the

accept-reject algorithm slows down dramatically. In contrast, our Gibbs sampler

efficiently shrinks the support of the candidate impulse responses toward the identified

set, maintaining speed even under stringent restrictions.

For clarity and comparability with the literature, when describing our proposed

Gibbs sampler algorithm, we adopt the conjugate normal-inverse-Wishart prior for

the reduced-form parameters as our baseline. While this prior is popular due to

its analytical convenience, it precludes cross-variable shrinkage. To address this

limitation, we extend our algorithm to accommodate alternative priors, including

the independent normal-inverse-Wishart and the asymmetric prior of Chan (2022),

both of which support cross-variable shrinkage. We evaluate the performance of our

approach using two applications. In the first, we replicate Kilian and Murphy (2014),
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a model of the world oil market in which the standard accept-reject algorithm fails.

To address this infeasibility, Kilian and Murphy (2014) adopt an approach similar to

that of Chan, Matthes, and Yu (2025), exploiting permutations and sign alternations.

Our algorithm handles this application multiple times faster than the accept-reject

approach, though the computational times of both approaches are within a range

most practitioners would find acceptable. However, once we tighten the identified set

by adding a restriction on the price elasticity of oil demand—motivated by Caldara,

Cavallo, and Iacoviello (2019)—the difference in performance becomes substantial:

The accept-reject algorithm moves from requiring about 20 minutes to produce 1,000

draws to nearly eight hours, whereas the computational time of our Gibbs sampler

remains roughly constant, increasing only from about 2 minutes to 5 minutes for the

same number of effective draws. In the second application, we revisit the structural

analysis in Chan, Matthes, and Yu (2025), who use Crump et al.’s (2025) large SVAR

model of the U.S. economy to identify eight structural shocks. While the latter uses

the Minnesota prior, the former relies on the asymmetric prior of Chan (2022). To

simplify the comparison, we revert to the Minnesota prior when applying both the

accept-reject algorithm and the Gibbs sampler. We show that as the number of shocks

under analysis increases, the efficiency of the algorithm in Chan, Matthes, and Yu

(2025) declines markedly, eventually becoming impractical. With ten shocks, it would

take several days to obtain 1,000 draws. In contrast, the computational time of our

Gibbs sampler is largely insensitive to the number of identified structural shocks. Even

with ten shocks, it would take only a few minutes to obtain 1,000 effective draws.

We also show that these striking differences are robust to using the asymmetric prior

instead of the Minnesota prior.

We need to highlight the contemporaneous contribution of Read and Zhu (2025),

who also propose an algorithm based on the slice sampling method but it is limited to

the use of the conditionally uniform prior described in Uhlig (2017) and Amir-Ahmadi

and Drautzburg (2021). While this prior can deliver substantial speed gains without

the need of a Gibbs sampler, it does not satisfy the requirements set out in Arias,

Rubio-Ramı́rez, and Waggoner (2025). As we explain in Section 8, this has important

consequences: it implicitly alters the prior over the impulse responses in a way that

depends on the identification scheme. This entanglement of inference and identification

makes it difficult to know whether differences in posterior inference reflect genuine

differences in identification or are merely artifacts of unintended changes in the prior
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distribution. By contrast, the uniform prior over orthogonal matrices satisfies the

requirements in Arias, Rubio-Ramı́rez, and Waggoner (2025) and, therefore, guarantees

that inference remains invariant to the set of imposed restrictions and allows researchers

to cleanly separate the role of prior beliefs from the role of identification assumptions.

The remainder of the paper is organized as follows. Sections 2 through 4 introduce

the SVAR model, the sign restrictions, and the baseline conjugate uniform-normal-

inverse-Wishart (UNIW) prior. Section 5 describes the problem in a simple environ-

ment. Section 6 presents our Gibbs sampler featuring the elliptical slice sampling and

outlines its theoretical properties. Section 7 applies the algorithm to two empirical

settings: a small SVAR model of the world oil market and a large SVAR model of the

U.S. economy. Section 8 shows the shortcomings of the conditionally uniform prior.

Section 9 concludes. The Appendix adapts the algorithm to two popular priors in

SVAR analysis, the independent normal-inverse-Wishart prior and the asymmetric

prior proposed by Chan (2022), and it does some robustness analysis.

2 The Model

Consider the SVAR with the general form,

y′tA0 = x
′
tA+ ε

′
t, 1 ≤ t ≤ T, (1)

where A′+ = [A
′
1 ⋯ A′p c′] and x′t = [y

′
t−1 ⋯ y′t−p 1] for 1 ≤ t ≤ T , and where yt is

an n × 1 vector of endogenous variables, εt is an n × 1 vector of exogenous structural

shocks, Aℓ is an n × n matrix of parameters for 0 ≤ ℓ ≤ p with A0 invertible, c is

a 1 × n vector of parameters, p is the lag length, and T is the sample size. Hence,

the dimension of A+ is m × n, where m = np + 1. The vector εt, conditional on past

information and the initial conditions y0, . . . ,y1−p, is Gaussian with mean zero and

covariance matrix In, the n × n identity matrix.

The reduced-form representation implied by Equation (1) is

y′t = x
′
tB+u

′
t, for 1 ≤ t ≤ T, (2)

where B = A+A
−1
0 , u′t = ε

′
tA
−1
0 , and E [utu′t] = Σ = (A0A

′
0)
−1
. The matrices B and

Σ are the reduced-form parameters, while A0 and A+ are the structural parameters.

While B is an m×n matrix, Σ belongs to the set S(n), which is the set of n×n positive
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definite matrices. It will be useful to partition B as follows: B = [B′1 ⋯ B′p d′]
′
where

Bℓ is an n×n matrix of parameters for 1 ≤ ℓ ≤ p, and d is a 1×n vector of parameters.

It is well known that for linear Gaussian models of the type studied in this paper,

(A0,A+) and (Ã0, Ã+) are observationally equivalent if and only if they have the same

reduced-form representation. This implies that the structural parameters (A0,A+)

and (Ã0, Ã+) are observationally equivalent if and only if A0 = Ã0Q and A+ = Ã+Q

for some Q ∈ O(n), where O(n) is the set of all n × n orthogonal matrices. To

solve the identification problem, one often imposes sign restrictions on either the

structural parameters or some function of the structural parameters, such as the

impulse responses. To simplify the notation, we summarize the sign restrictions by

SS(A0,A+) > 0, and let [SS(A0,A+) > 0] be an indicator function that equals one if

the sign restrictions are satisfied and zero otherwise.

3 The Orthogonal Reduced-Form Parameterization

Equation (1) represents the SVAR in terms of the structural parameterization, which is

characterized by (A0,A+). The SVAR can alternatively be written in what we call the

orthogonal reduced-form parameterization; see Arias, Rubio-Ramı́rez, and Waggoner

(2018). This parameterization is characterized by the reduced-form parameters (B,Σ)

together with an orthogonal matrix Q, and is given by the following equation:

y′t = x
′
tB+ε

′
tQ
′ h(Σ), for 1 ≤ t ≤ T, (3)

where the n × n matrix h(Σ) is any decomposition of the covariance matrix Σ sat-

isfying h(Σ)′h(Σ) = Σ. We take h to be the Cholesky decomposition, though any

differentiable decomposition would suffice.

Given Equations (1) and (3), we can define a mapping between (B,Σ,Q) and

(A0,A+) by

f(B,Σ,Q) = (h(Σ)−1Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A0

,Bh(Σ)−1Q
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A+

).

This mapping makes clear how the structural parameters depend on the reduced-form

parameters and orthogonal matrices. Given the reduced-form parameters, each value

of Q ∈ O(n) can be viewed as a particular choice among observationally equivalent

structural parameters. Thus, we can always write the sign restrictions in terms of
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the orthogonal reduced-form parameterization. Hence, let [SR(B,Σ,Q) > 0] be an

indicator function in terms of the orthogonal reduced-form parameterization that

equals one if the sign restrictions are satisfied and zero otherwise, where SR(B,Σ,Q) =

SS(f(B,Σ,Q)).

We can also define the impulse responses. Let ut = L0 εt for 1 ≤ t ≤ T , where L0 is

an n×n invertible matrix that represents impulse responses at horizon zero. Given L0

and B, it is possible to obtain the impulse responses beyond horizon zero recursively

as

Lℓ =

min{ℓ,p}

∑
k=1

B′k Lℓ−k, ℓ > 0. (4)

We combine the impulse responses from horizons one through p and the constant

term c into a single matrix, L+ = [L
′
1 ⋯ L′p c′]

′
, where the maximum horizon of the

impulse response in L+ matches the lag length in Equation (1). The impulse response

parameterization is characterized by (L0,L+). Given the function f and Equation (4),

we can also define a mapping from (B,Σ,Q) to (L0,L+) by

ϕ(B,Σ,Q) = (h(Σ)′Q
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

L0

, [L1(B,Σ,Q)′ ⋯ Lp(B,Σ,Q)′ Q′(h(Σ)−1)′d′]
′

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
L+

), (5)

where Lℓ(B,Σ,Q) for 1 ≤ ℓ ≤ p is implicitly defined by Equation (4). The functions f

and ϕ are invertible, and f , ϕ, and their inverses are differentiable.

4 Conjugate Priors and Posteriors

For the reduced-form representation in Equation (2), the normal-inverse-Wishart

family of distributions is conjugate. A conjugate normal-inverse-Wishart distribution

over the reduced-form parameters is characterized by four parameters: a scalar ν ≥ n,

an n × n symmetric and positive definite matrix Φ, an m × n matrix Ψ, and an

m ×m symmetric and positive definite matrix Ω. We denote this distribution by

NIW (ν,Φ,Ψ,Ω) and its density by NIW(ν,Φ,Ψ,Ω)(B,Σ). Furthermore,

NIW(ν,Φ,Ψ,Ω)(B,Σ) ∝ ∣det(Σ)∣−
ν+n+1

2 e−
1
2
tr(ΦΣ−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
inverse-Wishart

∣det(Σ)∣−
m
2 e−

1
2
vec(B−Ψ)′(Σ⊗Ω)−1 vec(B−Ψ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
conditionally normal

.

6



If the prior distribution over the reduced-form parameters is NIW (ν̄, Φ̄, Ψ̄, Ω̄), then

the posterior distribution over the reduced-form parameters is NIW (ν̃, Φ̃, Ψ̃, Ω̃),

where

ν̃ = T + ν̄,

Ω̃ = (X′X + Ω̄
−1
)−1,

Ψ̃ = Ω̃(X′Y + Ω̄
−1
Ψ̄),

Φ̃ =Y′Y + Φ̄ + Ψ̄
′
Ω̄
−1
Ψ̄ − Ψ̃

′
Ω̃
−1
Ψ̃,

for Y = [y1 ⋯ yT ]
′ and X = [x1 ⋯ xT ]

′.

The conjugate normal-inverse-Wishart prior is widely used in Bayesian VARs due

to its computational convenience and desirable properties (see Uhlig, 1994; Faust,

1998; Uhlig, 2005; Sims and Zha, 1998; Rubio-Ramı́rez, Waggoner, and Zha, 2010;

Kilian and Murphy, 2012, 2014). When combined with the conventional accept-reject

approach, it produces independent draws from the posterior, which makes it especially

attractive. However, it also imposes a Kronecker structure on the prior distribution of

B, thereby constraining its covariance matrix, and it rules out cross variable shrinkage.

Consequently, researchers oftentimes consider: (i) the independent normal-inverse-

Wishart prior, which avoids the Kronecker covariance structure and allows for greater

flexibility; and (ii) the asymmetric priors proposed by Chan (2022), which is becoming

popular because it accommodates cross-variable shrinkage. Even though, we will

present the methodology using the conjugate normal-inverse-Wishart prior, due to its

prevalence in the literature, in Appendix II.2 we also adapt the algorithm to these

alternative priors.

Given the results in Arias, Rubio-Ramı́rez, and Waggoner (2025), we will combine

the conjugate prior with the following uniform density over the set of orthogonal

matrices:

π(Q ∣ B,Σ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

κ if Q ∈ O(n),

0 otherwise,

where ∫O(n) κdQ = 1. This choice can be motivated by the fact that it assigns

equal prior weight to both observationally equivalent vectors of impulse responses

and observationally equivalent structural parameters (see Arias, Rubio-Ramı́rez, and

Waggoner, 2025). We call this combination the conjugate uniform-normal-inverse-
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Wishart distribution over the orthogonal reduced-form parameterization; denote it

by UNIW (ν,Φ,Ψ,Ω), and denote its density over the orthogonal reduced-form

parameterization by UNIW(ν,Φ,Ψ,Ω)(B,Σ,Q). It is the case that

UNIW(ν,Φ,Ψ,Ω)(B,Σ,Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

κNIW(ν,Φ,Ψ,Ω)(B,Σ) if Q ∈ O(n),

0 otherwise.
(6)

Inference Based on Sign Restrictions

Our objective will be to draw from the posterior of the orthogonal reduced-form

parameters conditional on the sign restrictions,

p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0] UNIW (ν̃, Φ̃, Ψ̃, Ω̃)

Pr (SR(B,Σ,Q) > 0 ∣ (yt)
T
t=1)

, (7)

and then use f and ϕ to transform the draws to the desired vector of objects of

interests such as the structural parameters or impulse responses. The traditional

approach to obtain draws from Equation (7) uses the following accept-reject algorithm:

Algorithm 1. This algorithm independently draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) >

0) as described in Equation (7).

1. Draw (B,Σ) independently from the NIW (ν̃, Φ̃, Ψ̃, Ω̃) distribution.

2. Draw Q independently from the uniform distribution over O(n).

3. Keep (B,Σ,Q) if [SR(B,Σ,Q) > 0] = 1.

4. Return to Step 1 until the required number of draws has been obtained.

As mentioned above, while this algorithm has been widely adopted, it is well known

that there are cases in which the identified set is narrow, limiting the efficiency of the

algorithm (see e.g., Kilian and Murphy, 2014; Baumeister and Hamilton, 2024; Chan,

Matthes, and Yu, 2025; Read and Zhu, 2025). In the next section, we use a simple

example to show its shortcomings. We will also show how a carefully designed elliptical

slice sampling algorithm is not subject to this limitation and delivers dramatic speed

gains. Importantly, Chan, Matthes, and Yu (2025) show a new numerically efficient

version of Algorithm 1 that facilitates the drawing for a large number of structural
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restrictions. Therefore, when comparing our algorithm to the traditional accept-reject

approach, we will use this efficient version as the benchmark.

5 The Problem with Accept-Reject Sampling

For the purposes of demonstrating the limitations of the accept-reject approach, it

suffices to work with a simple example similar to the one explored by Granziera, Moon,

and Schorfheide (2018). Thus, consider the following SVAR, with n = 2 and m = 0,

written under the orthogonal reduced-form parameterization:

y′t = (yt,1, yt,2) = ε
′
t(ΣtrQ)

′,

where we let Σtr = h(Σ)′. Initially, we assume Σtr is known, but we will later relax

this assumption. Let σtr,ij denote the i-th row and j-th column entry of Σtr. For

simplicity, we set σtr,11 = σtr,22 = 1 and σtr,21 = −0.9. Note that the contemporaneous

impact matrix L0 is defined as L0 = ΣtrQ. Henceforth, we focus on the impulse

responses to the first shock—it is straightforward to extend our analysis to the second

shock.

Given the above, it is easy to see that the impact of the first shock on yt,1 and

yt,2 can be written as ℓ11 = q11 and ℓ21 = −0.9q11 + q21, where ℓi1 and qi1 are the (i,1)

entries of L0 and Q, respectively. We now impose sign restrictions requiring that

ℓ11 and ℓ21 are nonnegative. These sign restrictions imply q11 ≥ 0 and q21 ≥ 0.9q11.

Figure 1a illustrates this setup graphically. The green circle represents the domain of

Q1 = (q11, q21)
′
, while the red arc highlights the identified set that satisfies the imposed

sign restrictions.

When using the popular accept-reject sampling approach described in Algorithm 1,

obtaining a draw from the posterior distribution of impulse responses satisfying the

sign restrictions involves drawing a 2 × 1 vector x1 from a N(0, I2) distribution and

converting it into a unit vector q1 via the normalization q1 = x1 /∣∣x1 ∣∣. The draw

is accepted only if q1 satisfies the sign restrictions. Unrestricted draws (q11, q21)
′
lie

uniformly on the entire unit circle (depicted in green), whereas the accepted draws

are uniformly distributed only over the subset of the unit circle that meets the sign

restrictions (the red arc).

The efficiency of the posterior simulator based on this type of accept-reject algo-
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(a) Identified set (b) Number of Q1 draws vs. arc length

Figure 1: (a) Identified set (red) and domain of (q11, q21)
′
(green). (b) Expected

number of draws required to meet the sign restrictions as a function of the identified
set size (arc length).

rithm depends heavily on the size of the identified set. As the identified set becomes

tighter, we naturally expect to discard a larger number of draws. Indeed, the expected

number of draws required to satisfy the sign restrictions is inversely proportional to

the probability of meeting those restrictions. Figure 1b illustrates this relationship

analytically: the green line plots the expected number of draws needed to satisfy the

sign restrictions as a function of the size of the identified set (i.e., the length of the

red arc). More specifically, we generate smaller identified sets by gradually moving

the left endpoint of the red arc toward its right endpoint. As shown in the figure,

the expected number of draws required increases hyperbolically as the identified set

shrinks. In realistic scenarios, as illustrated later in our empirical applications, the

number of draws required can become quite large, rendering the algorithm inefficient.

In this paper, we propose a Gibbs sampling algorithm based on the elliptical

slice sampling, which draws from the identified set more efficiently. This method can

be viewed as an adaptive Metropolis-Hastings algorithm that transitions from the

previous draw x
(0)
1 to a new draw using the following elliptical proposal:

x
(⋆)
1 = ν sin(θ) + x

(0)
1 cos(θ), where θ ∈ [0,2π],
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where ν is a 2×1 vector drawn from N(0, I2). The scalar parameter θ controls the step

size of the proposed move. For instance, when θ is close to 0, the proposal is closer to

the previous draw x
(0)
1 , whereas when θ approaches π/2, the proposal is closer to the

newly drawn random vector ν. Unlike a conventional Metropolis-Hastings algorithm,

the elliptical slice sampling adaptively searches for a suitable step size to guarantee

acceptance of the proposed draw at every iteration. Intuitively, given that the previous

draw lies within the identified set, the elliptical slice sampling ensures that the new

proposal x
(⋆)
1 also remains within the identified set by uniformly drawing θ from a

candidate set that shrinks exponentially. Under appropriate regularity conditions, this

procedure ensures the validity and convergence of the Gibbs sampling algorithm as long

as the random variable of interest, in this case q1, can be written as a transformation

of a normally distributed random variable (see Murray, Adams, and MacKay, 2010;

Natarovskii, Rudolf, and Sprungk, 2021, for details).

The fact that the candidate set for θ shrinks exponentially is an appealing feature,

as it significantly reduces the number of candidate draws of q1 needed to satisfy the

restrictions. This efficiency gain becomes particularly important as the dimension

of the model increases, since generating new draws of q1 is computationally costly.

Figure 1b (red line) displays the average number of trials required by the elliptical slice

sampling to generate an accepted draw of q1 within the identified set as a function of

the length of the identified set. The number of required trials for the conventional

accept-reject sampler grows hyperbolically, whereas that for elliptical slice sampling

increases at a much slower rate.2

In the following section, we extend this simple example into a more realistic

and useful setting by: (1) identifying multiple shocks simultaneously rather than

just a single shock; (2) allowing sign restrictions to take a general form; and (3)

developing a Gibbs sampling algorithm that uses the elliptical slice sampling and

targets the posterior of the orthogonal reduced-form parameters conditional on the

sign restrictions.

2To make a fair comparison, one should account for the serial correlation introduced by the Gibbs
sampling algorithm, since the accept-reject algorithm generates independent draws. As demonstrated
in Section 7, we compute the effective sample size and find that in this example the number of draws
required to obtain one effective draw ranges from 1.04 to 1.35. Therefore, this adjustment does not
alter the main conclusion illustrated in the figure.
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6 An Algorithm

In this section, we propose a Gibbs sampler algorithm that employs the elliptical

slice sampling to draw from the posterior of the orthogonal reduced-form parameters

conditional on the sign restrictions defined in Section 4. The algorithm relies on

Assumption 1.

Assumption 1. The following conditions hold:

1.1 For almost all (B,Σ), the set {Q ∈ O(n) ∶ SR(B,Σ,Q) > 0} has positive mea-

sure.

1.2 For almost all (B,Q), the set {Σ ∈ S(n) ∶ SR(B,Σ,Q) > 0} has positive mea-

sure.

1.3 For almost all (Σ,Q), the set {B ∈ Rm×n ∶ SR(B,Σ,Q) > 0} has positive mea-

sure.

As noted above, the algorithm is formulated under a conjugate prior over the

reduced-form parameters. Given the choice of a conjugate uniform-normal-inverse-

Wishart prior distribution over the orthogonal reduced-form parameters, the posterior

can be expressed as in Equation (7). Using this equation, we derive the conditional

posterior distributions satisfying the sign restrictions for each component of the

orthogonal reduced-form parameterization. Crucially, as will be shown below, we

sample from each of these conditional distributions using the elliptical slice sampling.

This is feasible because each conditional posterior can be represented by a distribution

featuring a Gaussian kernel, thereby permitting the use of the elliptical slice sampling.

Conditional Posterior for Q. We first derive the posterior for Q conditional on

the reduced-form parameters and the sign restrictions. Equation (7) implies:

p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0]NIW(ν̃,Φ̃,Ψ̃,Ω̃)(B,Σ)

∫O(n)[SR(B,Σ,Q) > 0]NIW(ν̃,Φ̃,Ψ̃,Ω̃)(B,Σ)dQ

=
[SR(B,Σ,Q) > 0]

∫O(n)[SR(B,Σ,Q) > 0]dQ
∝ [SR(B,Σ,Q) > 0].
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The first equality follows from Bayes’ rule. The second equality holds because

NIW(ν̃,Φ̃,Ψ̃,Ω̃)(B,Σ) is independent of Q. The proportionality follows from Assump-

tion 1.1.

To sample from p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0), we exploit the mapping

from X ∼ N(0n×n, In, In) to Q via the QR decomposition, denoted Q = γ(X). This

ensures that Q is uniformly distributed with respect to the Haar measure. Hence,

if we draw X from [SR(B,Σ, γ(X)) > 0]p(X) and transform it using Q = γ(X), we

obtain draws from the desired distribution. Since X is Gaussian, sampling can be

performed using the elliptical slice sampling.

Conditional Posterior for Σ. We next derive the posterior of Σ conditional on

(B,Q) and the sign restrictions:

p(Σ ∣ B,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)

∫S(n)[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)dΣ

∝ [SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ).

The factorization comes from the decomposition NIW = N × IW , which is conve-

nient because it highlights the Gaussian kernel. The proportionality follows from

Assumption 1.2.

To sample from p(Σ ∣ B,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0), we exploit the mapping

Σ = ς(R) = (RR′)−1, where R ∼ N(0n×ν̃ , Φ̃
−1
, Iν̃). This ensures that Σ is inverse-

Wishart. Hence, if we draw R from [SR(ς(R),Σ,Q) > 0]N(Ψ̃,Ω̃,ς(R))(B)p(R) and

transform it using Σ = ς(R), we obtain draws from the desired distribution. Since R

is Gaussian, sampling can be performed using the elliptical slice sampling.

Conditional Posterior for B. Finally, the posterior of B conditional on (Σ,Q)

and the sign restrictions is:

p(B ∣Σ,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)

∫Rm×n[SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B)IW(ν̃,Φ̃)(Σ)dB

∝ [SR(B,Σ,Q) > 0]N(Ψ̃,Ω̃,Σ)(B).

The proportionality follows from Assumption 1.3. Notably, the conditional posterior

contains a Gaussian kernel, making the elliptical slice sampling applicable.
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Gibbs Sampler. Having defined the three conditional posteriors, we can now outline

the Gibbs sampler:

Algorithm 2. This algorithm draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) as

described in Equation (7).

1. Set I > 1, initialize i = 1, and assign initial values to (Bi−1,Σi−1
).

2. Draw Qi from

p(Q ∣ Bi−1,Σi−1, (yt)
T
t=1,SR(B

i−1,Σi−1,Q) > 0) ∝ [SR(B
i−1,Σi−1,Q) > 0].

3. Draw Σi from

p(Σ ∣ Bi−1,Qi, (yt)
T
t=1,SR(B

i−1,Σ,Qi
) > 0) ∝ [SR(B

i−1,Σ,Qi
) > 0]N(Ψ̃,Ω̃,Σ)(B

i−1
)IW(ν̃,Φ̃)(Σ).

4. Draw Bi from

p(B ∣Σi,Qi, (yt)
T
t=1,SR(B,Σi,Qi

) > 0) ∝ [SR(B,Σi,Qi
) > 0]N(Ψ̃,Ω̃,Σi)(B).

5. If i < I, increment i and return to Step 2.

As mentioned above, we have used the conjugate normal-inverse-Wishart prior

over the reduced-form parameters to describe the algorithm. Appendix I discusses

how to set initial values for the algorithm, and Appendices II.1 and II.2 show that the

approach can be easily adapted to two alternative priors: the independent normal-

inverse-Wishart prior and the asymmetric conjugate priors of Chan (2022), respectively.

7 Applications

We now illustrate the performance of our algorithm using two empirical applications.

The first is a small-scale SVAR of the global oil market, based on the model in

Kilian and Murphy (2014), which identifies flow supply, flow demand, and speculative

demand shocks using a combination of sign and elasticity bounds. The tight identifying

assumptions in this model render traditional accept-reject methods computationally

intensive, whereas our algorithm improves efficiency while replicating the main results.
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The second application revisits the large-scale SVAR model of the U.S. economy

developed by Crump, Eusepi, Giannone, Qian, and Sbordone (2025) and analyzed

structurally by Chan, Matthes, and Yu (2025), which includes 35 macroeconomic and

financial variables and identifies up to eight structural shocks. We show that our

algorithm remains computationally stable as the number of restrictions increases, in

contrast to the exponential rise in computation time exhibited by the accept-reject

method. Both applications highlight the scalability of our approach in distinct empirical

settings. For each application, we first demonstrate that our approach replicates the

main results reported in the original papers and then analyze the computational

timing to show that our method can be more efficient than the traditional accept-

reject algorithm.

7.1 Small SVAR of the World Oil Market

In our first application, we replicate the results of Kilian and Murphy (2014), who

extend the framework of Kilian and Murphy (2012) by incorporating oil inventories to

identify speculative demand shocks. The identification strategy in Kilian and Murphy

(2014) relies on tight sign and elasticity bound restrictions, which result in a small

identified set and may render standard accept-reject algorithms slow. Notably, Kilian

and Murphy (2014) adopt an approach similar to that of Chan, Matthes, and Yu

(2025), relying on permutations and sign alternations. Therefore, when using the same

set of sign and elasticity bound restrictions, the computation times we report for the

accept-reject algorithm are comparable to those in the original study and similar to

those obtained with our approach. However, when an additional elasticity bound is

introduced, the accept-reject approach becomes computationally unfeasible, while the

Gibbs sampler remains as fast, highlighting the speed advantages of our algorithm in

such settings.

Model Specification and Impulse Responses

We begin by describing the model specification in Kilian and Murphy (2014). They

model the global market for crude oil using a four-variable SVAR featuring the

percent change in global crude oil production, a measure of global real activity, the

real price of crude oil, and the change in global above-ground crude oil inventories.

The SVAR is specified at a monthly frequency, with an estimation sample covering
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1973:M2–2009:M8. The model includes 24 lags, a constant, and seasonal dummies

to remove seasonal variation. Kilian and Murphy (2014) adopt a weak conjugate

normal-inverse-Wishart prior distribution (see, e.g., Uhlig, 2005) for the reduced-form

parameters.

Turning to identification, the goal of Kilian and Murphy (2014) is to identify three

structural shocks using a combination of sign restrictions on impact impulse responses,

sign restrictions at horizons 1 through 12, and elasticity bounds. Table 1 summarizes

the identifying assumptions. The structural shocks are labeled flow supply shock, flow

demand shock, and speculative demand shock.

Sign Restrictions on Impact Impulse Responses

Variable/Shock Flow supply Flow demand Speculative demand
Oil production −1 +1 +1
Real activity −1 +1 −1
Real price of oil +1 +1 +1
Inventories +1

Elasticity Bounds

Flow supply shock Flow demand shock Speculative demand shock
Price Elasticity of Oil Supply (0, 0.025) (0, 0.025)

Sign Restrictions on Impulse Responses at Horizons 1 through 12

Flow supply shock Flow demand shock Speculative demand shock
Real activity −1
Real price of oil +1

Table 1: Sign and Elasticity Bound Restrictions

Note: All shocks raise the real oil price. ±1 indicates positive or negative sign restrictions;
blanks indicate no restriction.

We adopt the exact same specification and use Algorithm 2. We obtain one

million draws, saving one every 10; hence, the figures are produced using one hundred

thousand draws. Figure 2 presents the impulse responses to the three shocks. The

results broadly match those in Kilian and Murphy (2014). In particular, a negative

flow supply shock causes a persistent decline in global economic activity and oil

inventories, and a persistent increase in the real price of oil. The response of oil

production is persistently negative. A positive flow demand shock is associated with a

persistent increase in global economic activity, a persistent increase in the real price

of oil, and a positive response of oil production. Oil production increases sluggishly,

given the imposed elasticity bounds, and peaks at about one year after the shock

before declining to pre-shock levels. Finally, a positive speculative demand shock

causes a persistent increase in the real price of oil and a large increase in inventories.

Global real activity and oil production decline persistently in response to this shock,
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although the effects are modest.
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Figure 2: Impulse Responses

Note: The solid red lines depict the pointwise posterior median; the dashed blue lines depict
the pointwise 68 percent posterior probability bands.

Timing

We next compare the computational time of our Gibbs sampler to that of the accept-

reject algorithm. Table 2 reports the time (in hours) per 1,000 effective draws—defined

as total computation time divided by the effective sample size and scaled by 1,000—
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using Algorithm 2 and the accept-reject method.3 As highlighted above, we implement

the efficient variant of the accept-reject algorithm proposed by Chan, Matthes and

Yu. We approximate the effective sample size using the multivariate effective sample

size metric of Vats, Flegal, and Jones (2019), which is well suited for SVAR analysis

where inference often targets high-dimensional objects such as vectors of impulse

responses. In particular, we estimate effective sample size under the impulse response

parameterization using the multivariate batch means approach described in that work,

with a batch size of N1/4, where N denotes the number of stored draws.4 Because the

accept-reject algorithm produces independent draws, effective draws and sample size

are the same.

The column “Benchmark Model” in Table 2 compares the time (in hours) required

to obtain 1,000 effective draws under the specification of Kilian and Murphy (2014).

As shown in the table, the Gibbs sampler requires less than 2 minutes to produce

1,000 effective draws. In contrast, the accept-reject algorithm takes approximately

20 minutes to achieve the same number of draws.5 To further illustrate the gains of

our proposed Gibbs sampler, we consider a scenario in which a researcher imposes an

additional restriction on the price elasticity of oil demand in response to a flow supply

shock. As emphasized by Caldara, Cavallo, and Iacoviello (2019), such a restriction

is empirically important in SVAR models of the oil market. Following their work,

we constrain the price elasticity of crude oil demand to lie within a narrow interval

around the point estimate of −0.08 reported by Caldara, Cavallo, and Iacoviello

(2019); specifically, we impose the restriction that the elasticity must lie in the interval

(−0.09, ,−0.07). The column “Benchmark Model + Additional Restriction” in Table 2

reports the results under this added constraint. The time under the Gibbs sampler is

under 6 minutes, while the performance of the accept-reject algorithm deteriorates

sharply, requiring nearly 8 hours to obtain 1,000 draws.

These results indicate that, for this model, the accept-reject algorithm is already

near its computational limit under the benchmark specification, and that introducing

even a single additional restriction dramatically reduces its efficiency. In contrast, the

3Since the accept-reject approach produces independent draws, the number of effective draws
equals the total number of draws in that case.

4We consider the first three columns of the impulse response parameters, which correspond to
the shocks of interest in this application. Results are robust to using impulse responses for all shocks.

5All computations were performed in MATLAB on an Intel Xeon Platinum 8488C processor with
16 active cores running at 2.4 GHz on an x86 64 architecture.
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Specification Benchmark Model Benchmark Model +
Additional Restriction

Gibbs Sampler 0.03 0.10
Accept-Reject 0.33 7.92

Table 2: Time (Hours) Per 1,000 Effective Draws

Gibbs sampler maintains its performance even as additional identifying restrictions

are introduced.

7.2 Large SVAR of the U.S. Economy

In our second application, we replicate and extend the analysis of Chan, Matthes, and

Yu (2025), who build on the large-scale SVAR framework of Crump, Eusepi, Giannone,

Qian, and Sbordone (2025) to study the structural dynamics of the U.S. economy. Their

model incorporates 35 macroeconomic and financial variables commonly monitored by

the Federal Reserve and identifies eight structural shocks using an extensive set of

sign and ranking restrictions. Chan, Matthes, and Yu (2025) employ an accept-reject

algorithm, which becomes computationally intensive as the number of identifying

restrictions increases.6 As we show below, our algorithm is more efficient.

To demonstrate this, we extend the baseline model by identifying two additional

shocks—an oil price shock and a consumer sentiment shock—bringing the total number

of sign restrictions from 105 to 129. This provides a stringent test of our algorithm’s

performance relative to the accept-reject method. Importantly, Chan, Matthes, and

Yu (2025) use the asymmetric priors defined in Chan (2022) for the reduced-form

parameters, instead of the Minnesota prior used in Crump, Eusepi, Giannone, Qian,

and Sbordone (2025). To simplify the comparison, we revert to the Minnesota prior

when applying both the accept-reject algorithm and the Gibbs sampler. Appendix III

compares both approaches under the asymmetric prior.

Model Specification and Impulse Responses

The SVAR used in this section is specified at a quarterly frequency, includes a constant

and five lags, and uses an estimation sample that spans from 1973:Q2 until 2019:Q4.

As mentioned, we assume a Minnesota prior for the reduced-form parameters and

6We thank Christian Matthes for sharing their replication files and data with us.
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set the hyperparameters following Giannone, Lenza, and Primiceri (2015). Turning

to the identification, Table 3 summarizes the variables and the sign and ranking

restrictions imposed on the contemporaneous impulse responses. Chan, Matthes,

Sign restrictions Dem Inv Fin Mon Gov Tec Lab Wag Oil Con

GDP +1 +1 +1 -1 +1 +1 +1 +1 +1 +1
PCE 0 0 0 0 0 +1 0 0 +1 +1
Residential investment 0 0 0 0 0 0 0 0 0 +1
Nonresidential investment 0 +1 0 0 0 +1 0 0 +1 +1
Exports 0 0 0 0 0 0 0 0 0 0
Imports 0 0 0 0 0 0 0 0 0 0
Government spending 0 0 0 0 +1 0 0 0 0 0
Fed. budget surplus/deficit 0 0 0 0 -1 0 0 0 0 0
Fed. tax receipts 0 0 0 0 +1 0 0 0 0 0
GDP deflator +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
PCE index +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
PCE index less F&E +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
CPI index +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
CPI index less F&E +1 +1 +1 -1 +1 -1 -1 -1 -1 +1
Hourly wage 0 0 0 0 0 +1 -1 -1 +1 0
Labor productivity 0 0 0 0 0 +1 0 0 +1 0
Utilization-adjusted TFP 0 0 0 0 0 +1 0 0 +1 0
Employment 0 0 0 -1 0 0 -1 0 0 0
Unemployment rate -1 -1 -1 +1 -1 -1 +1 -1 +1 +1
Industrial production index +1 +1 +1 -1 0 0 0 0 0 0
Capacity utilization +1 +1 +1 -1 0 0 0 0 0 0
Housing starts 0 0 0 0 0 0 0 0 0 0
Disposable income 0 0 0 0 0 0 0 0 0 0
Consumer sentiment 0 0 0 0 0 0 0 0 0 0
Fed funds rate +1 +1 +1 +1 +1 0 0 0 0 0
3-month T-bill rate +1 +1 +1 +1 +1 0 0 0 0 0
2-year T-note rate 0 0 0 +1 0 0 0 0 0 0
5-year T-note rate 0 0 0 +1 0 0 0 0 0 0
10-year T-note rate 0 0 0 +1 0 0 0 0 0 0
Prime rate +1 +1 +1 +1 +1 0 0 0 0 0
Aaa corporate bond yield 0 0 0 +1 0 0 0 0 0 0
Baa corporate bond yield 0 0 0 +1 0 0 0 0 0 0
Trade-weighted US index 0 0 0 0 0 0 0 0 0 0
S&P 500 0 -1 +1 -1 0 0 0 0 0 +1
Spot oil price 0 0 0 0 0 0 0 0 -1 0

Ranking restrictions

Nonresidential investment/GDP -1 +1 +1 0 0 0 0 0 0 0
Government spending/GDP -1 -1 -1 0 +1 0 0 0 0 0

N0 of restrictions 14 15 15 19 14 12 8 8 13 11
Cum. N0 of restrictions 14 29 44 63 77 89 97 105 118 129

Table 3: Sign restrictions, ranking restrictions and identified shocks

Note: The mnemonics for the shocks are as follows. Dem: demand, Inv: Investment, Fin:
Financial, Mon: Monetary Policy, Gov: Government Spending, Tec: Technology, Lab: Labor
Supply, Wag: Wage Bargaining, Oil: Oil Price, Con: Consumer Sentiment.
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and Yu (2025) consider only the first eight shocks (demand, investment, financial,

monetary, government spending, technology, labor supply, and wage bargaining).

In total, 105 sign restrictions are imposed in their baseline specification. We have

added two additional shocks (labeled oil price and consumer sentiment) to assess

the performance of our algorithm. With the inclusion of these two shocks, the total

number of sign restrictions increases to 129. When using the Gibbs sampler, we obtain

one million draws and retain one every 10.

(a) Demand shock (b) Investment shock

Figure 3: Impulse Responses

Let us begin by describing the selected impulse responses to a unit standard

deviation expansionary demand shock, shown in Figure 3a. Red lines depict point-wise

posterior medians, and shaded areas represent point-wise 68% posterior probability

bands. The signs of the impact responses of real GDP, the PCE price index, the federal

funds rate, and the unemployment rate are restricted. The remaining horizons, as well

as the responses of non-residential investment and the real wage, are unrestricted. As

can be seen, the demand shock causes a transient increase in output and prices, and a

decrease in the unemployment rate. The federal funds rate increases in response to the

shock. The restrictive stance of monetary policy eventually lowers economic activity,
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as seen, for example, in the decline of non-residential investment. The real wage

decreases in the short run in response to the shock, as nominal wage increases are not

sufficient to offset higher prices—possibly due to sluggish nominal wage adjustment.

The investment shock, shown in Figure 3b, appears similar to the demand shock

in terms of economic consequences for real GDP, the federal funds rate, the price

level, and the unemployment rate. However, the impulse response of non-residential

investment is substantially different. In particular, the investment shock causes a

short-run boom in non-residential investment. This finding partly reflects the ranking

restriction requiring that the impact response of non-residential investment be larger

than the impact response of real GDP. As with the demand shock, the investment

shock causes a persistently negative response of the real wage.

(a) Financial shock (b) Monetary policy shock

Figure 4: Impulse Responses

Turning to the financial shock, shown in Figure 4a, it is worth highlighting that

this shock is identified using the same sign restrictions as the investment shock, except

for the impact response of the S&P 500, which is assumed to be positive instead

of negative. Overall, the impulse responses are similar, except that the decline in

non-residential investment after five quarters is slightly less pronounced under the
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(a) Government spending shock (b) Technology shock

Figure 5: Impulse Responses

financial shock, consistent with the positive response of asset prices.

The impulse responses to a unit standard deviation contractionary monetary policy

shock are depicted in Figure 4b. This shock causes the federal funds rate to remain

above zero for more than two years, reflecting inertia in the conduct of monetary

policy. Real GDP and prices decline persistently, and the unemployment rate jumps

upon impact before slowly returning to baseline. Non-residential investment drops

on impact and recovers after about one year, in line with a less restrictive monetary

policy stance. The real wage increases, driven by a decrease in the price level. A

notable aspect of these responses is that they suggest monetary policy can operate

with shorter lags than traditionally assumed under the “long and variable lags” view.

The government spending shock is shown in Figure 5a. An expansionary one unit

standard deviation government spending shock leads to an increase in real GDP for

about two quarters and to a long-lasting increase in the price level. To conclude, we

discuss the impulse responses to the supply-related structural shocks, that is, the

technology, labor supply, and wage bargaining shocks. A unit standard deviation

positive technology shock leads to a protracted increase in real GDP and non-residential
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(a) Labor supply shock (b) Wage bargaining shock

Figure 6: Impulse Responses

investment (see Figure 5b). The higher level of output is accompanied by a sustained

decline in the unemployment rate and a sustained increase in the real wage. The

federal funds rate rises marginally, indicating that monetary policy remains roughly

neutral in response to technology shocks.

The responses to a unit standard deviation positive labor supply shock are shown

in Figure 6a. This shock induces a hump-shaped response of real GDP and leads

to persistently lower prices. The responses to a unit standard deviation negative

wage bargaining shock are shown in Figure 6b. The identifying assumptions for this

shock are identical to those of an expansionary labor supply shock, except that the

unemployment rate is assumed to decrease upon impact. When a negative wage

bargaining shock occurs, workers experience a decline in their nominal wage alongside

a decrease in the unemployment rate. The real wage remains unaffected on impact, as

the lower wages are offset by the assumed decrease in the price level. Subsequently,

the price level remains below zero, inducing an increase in the real wage.
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Timing

We begin by comparing the efficiency of the Gibbs sampler algorithm relative to the

accept-reject algorithm when replicating the identification scheme in Chan, Matthes,

and Yu (2025). Figure 7a reports the time (in minutes) per 1,000 effective draws using

Algorithm 2 as a function of the number of identified shocks.7

To assess the computational time as a function of the size of the identified set,

we proceed incrementally: we first obtain draws by identifying only the demand

shock, then add the investment shock, the financial shock, and so on, until all eight

shocks in Table 3 are included. As shown, the time per 1,000 effective draws remains

computationally feasible even as the number of sign restrictions increases.

(a) Gibbs Sampler

1 2 3 4 5 6 7 8

0

0.2

0.4

0.6

0.8

1

(b) Accept-Reject

1 2 3 4 5 6 7 8

0

20

40

60

80

(c) Comparison

1 2 3 4 5 6 7 8
0

20

40

60

80
Gibbs Sampler

Accept-Reject

Figure 7: Time Per 1,000 Effective Draws

Figure 7b replicates the same figure but using the efficient accept-reject version of

Algorithm 1 proposed by Chan, Matthes, and Yu (2025). In this case, the computation

time increases dramatically, as shown in the figure. Although the runtime will vary

depending on the hardware architecture and the number of variables, the main

conclusion from comparing Figures 7a–7b remains unchanged: the performance of the

accept-reject algorithm can deteriorate sharply as the identified set narrows. Figure 7c

combines the timings to facilitate visual comparison.

To further emphasize this point, we now consider additional shocks to illustrate

that the accept-reject approach can eventually become impractical. Specifically, we

extend the number of shocks identified in Chan, Matthes, and Yu (2025) by adding the

oil price shock and the consumer sentiment shock described in Table 3. Figures 8a–8d

replicate the exercise shown in Figures 7a–7b for the cases of nine and ten shocks.8

7When computing the multivariate effective sample size, we only consider the columns of the
impulse response parameters corresponding to the shocks of interest in this application.

8The runtime of the accept-reject algorithm for the nine- and ten-shock cases is extrapolated
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(a) Gibbs Sampler Shocks (1 to 9)
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(c) Accept-Reject Shocks (1 to 9)
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Figure 8: Gibbs Sampler vs. Accept-Reject

Note: The time of the accept-reject algorithm for shocks 9 and 10 is extrapolated based on
10 draws.

As the reader can see, computation time does not increase exponentially when we

use the elliptical slice sampling approach. In contrast, when we consider nine shocks

under the accept-reject approach, the times are now measured in hours, and when

we consider ten shocks, the times are measured in days—Figures 8c and 8d provide

the detailed timings. To facilitate the comparison, Figure 9 overlays both sets of

timings to make clear that our algorithm can handle settings (in terms of the number

of variables and shocks) that the traditional accept-reject approach cannot.

based on ten draws.
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(a) Comparison Shocks (1 to 9)
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(b) Comparison Shocks (1 to 10)
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Figure 9: Gibbs Sampler vs. Accept-Reject

8 Pitfalls of the Conditionally Uniform Prior

The main computational cost of our approach stems from running the Gibbs sampler,

particularly in large models, since it produces auto-correlated draws. As a result,

one might be tempted to bypass this cost and instead address the bottleneck issues

inherent in the accept-reject approach by employing the conditionally uniform prior

approach described in Uhlig (2017), Amir-Ahmadi and Drautzburg (2021), and Read

and Zhu (2025), among others. The main appeal of this simpler approach is that,

like the accept-reject algorithm, it generally yields independent draws. While such a

simplification is indeed attractive due to its lower computational burden, it is essential

for the researcher to be aware of a critical drawback, which we will explain in this

section. Before turning to this pitfall, we first describe the conditionally uniform prior

and outline the main algorithmic steps commonly used in its implementation.

Let Qn(B,Σ) = {Q ∈ Qn ∶ SR(B,Σ,Q) > 0} and define ∫Qn(B,Σ) κ(B,Σ)dQ = 1.

The prior underlying the conditionally uniform approach is then given by:

CUNIW(ν,Φ,Ψ,Ω)(B,Σ,Q) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

κ(B,Σ)NIW(ν,Φ,Ψ,Ω)(B,Σ) if Q ∈ Qn(B,Σ),

0 otherwise.
(8)

Crucially, κ(B,Σ) depends on (B,Σ), while κ in Equation (6) does not. This is

due to the fact that the conditionally uniform approach combines the conjugate

normal-inverse-Wishart prior over the reduced-form parameters with π(Q ∣ B,Σ) of
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the form:

π(Q ∣ B,Σ) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

κ(B,Σ) if Q ∈ O(n)(B,Σ),

0 otherwise.

This conditional uniform prior has the property that it overweights reduced-form

parameters with smaller identified sets, measured by κ−1(B,Σ) (see Uhlig, 2017).

Unlike the prior in Equation (6), the prior in Equation (8) cannot be justified using

the results of Arias, Rubio-Ramı́rez and Waggoner (2025), who aim to construct priors

that, among other things, separate inference from identification, as it is undesirable for

the prior to change when the restrictions are modified, since this makes it impossible

to determine whether differences in results stem from changes in the prior or from

changes in the identification restrictions.

Under the conditional uniform prior, the objective is to draw from the follow-

ing posterior of the orthogonal reduced-form parameters conditional on the sign

restrictions:

p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) =

[SR(B,Σ,Q) > 0] CUNIW (ν̃, Φ̃, Ψ̃, Ω̃)

Pr (SR(B,Σ,Q) > 0 ∣ (yt)
T
t=1)

, (9)

and then use f and ϕ to transform the draws to the desired vector of objects of

interests such as the structural parameters or impulse responses. It is straightforward

to adapt the traditional approach described in Algorithm 1 to obtain draws from

Equation (9) as follows:

Algorithm 3. This algorithm independently draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) >

0) as described in Equation (9).

1. Draw (B,Σ) independently from the NIW (ν̃, Φ̃, Ψ̃, Ω̃) distribution.

2. Draw Q independently from the uniform distribution over O(n) until SR(B,Σ,Q) >

0.

3. Repeat Steps 1 and 2 until the desired number of draws is obtained.

While Algorithm 3 does not sample from the posterior distribution defined in

Equation (7), it draws from the posterior distribution defined in Equation (9) and it

can be justified under a prior different from that in Equation (6).

We now illustrate how, under the conditionally uniform prior approach, inference

and identification become intertwined. Consider an SVAR with n = 3 and m = 0,
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that is, without lags or constant terms. Suppose that Researcher A aims to identify

three structural shocks using identification scheme A, as defined in Table 4, while

Researcher B employs identification scheme B, also defined in the same table. Clearly,

any set of impulse responses satisfying scheme B will also satisfy scheme A.

Identification A
Shock 1 Shock 2 Shock 3

Variable 1 +1 +1 +1
Variable 2 +1 −1 +1
Variable 3 +1 −1

Identification B
Shock 1 Shock 2 Shock 3

Variable 1 +1 +1 +1
Variable 2 +1 −1 +1
Variable 3 +1 −1 −1

Table 4: Sign restrictions: +1 and −1 indi-
cate positive and negative sign restrictions,
respectively; blanks indicate no restriction.

Define Qj
n(Σ) = {Q ∈ Qn ∶ S

j
R(Σ,Q) > 0} as the set of valid rotation matrices for

researcher j ∈ {A,B}, with associated κj(Σ) implicitly defined by ∫Qj
n(Σ) κ

j(Σ)dQ = 1.

Even if both researchers specify the same reduced-form prior, changing the identifi-

cation scheme alters the implied prior over the impulse responses. To illustrate, set

ν = 100 and Φ = In, and consider ten values of {Σi
}10i=1 such that when evaluated at the

prior distribution IW(ν,Φ) they all have identical prior density. Let {Li
0}

10
i=1 denote ten

corresponding impact impulse response matrices that happen to satisfy identification

B. Because the volume element from (Σ,Q) to L0 only depends on the determinant

of Σ and we have also restricted {Σi
}10i=1 to have the same determinant, all {Li

0}
10
i=1

are equally favored by the prior before any sign restrictions are imposed. After the

sign restrictions are introduced, we have:

πj(Li
0)

πj(Li′

0 )
=
κj(Σi

)

κj(Σi′
)
for i, i′ = 1, . . . ,10, and j ∈ {A,B},

where πj(L0) is the prior density over impulse responses under researcher j ∈ {A,B}.

This expression implies that any variation in this ratio is solely attributable to
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the additional negative sign restriction on shock 2 to variable 3 associated with

identification scheme B. As shown in Table 5, the difference in the identification

schemes leads to differences in the implied priors. On the one hand, Researcher A’s

prior favors L5
0 1.45 times as much as L1

0, while Researcher B’s prior favors L1
0 about

twice as much as L4
0. On the other hand, Researcher B’s prior favors L3

0 twice as much

as L1
0, while Researcher A’s prior favors L1

0 1.13 times as much as L3
0. These findings

demonstrate that, under the conditionally uniform approach, changing identification

schemes alters the implied prior over parameters of interest (such as impulse responses),

thereby entangling estimation and identification.

Draw 1 2 3 4 5 6 7 8 9 10

πA(Li
0)/π

A(L1
0) 1.00 1.29 0.89 0.62 1.45 1.52 0.46 0.07 1.24 0.41

πB(Li
0)/π

B(L1
0) 1.00 1.60 1.88 0.25 0.58 0.83 0.26 0.03 1.00 0.31

Table 5: Ratio of priors across draws of Li
0.

The reason for this unfortunate result is that κ(Σ) varies across identification

schemes in a way that disproportionately favors L0 values associated with Σ that

induce smaller identified sets. Since different sign restrictions affect the size of the

identified set differently for each Σ, different identification restrictions will imply

different priors over impulse response functions. This problem does not arise under

the uniform prior described in Equation (6), since in that case κ does not depend on

the reduced-form parameters. More broadly, this highlights the cost of not adopting a

uniform prior over the orthogonal matrices as described in Arias, Rubio-Ramı́rez, and

Waggoner (2025). As shown in that paper, specifying a uniform prior over the set of

orthogonal matrices ensures disentangling inference from identification.

9 Conclusion

This paper proposes a Gibbs sampling algorithm for structural vector autoregressions

identified with sign restrictions. We show that the algorithm effectively overcomes

the computational bottlenecks associated with conventional accept-reject methods,

especially as the number of identifying restrictions increases or as the identified set

becomes tight. Our empirical applications illustrate how the proposed algorithm can

extend existing analyses in the literature, including SVARs with a large-number of
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macroeconomic and financial variables. Overall, the paper provides contributions to

the implementation of sign-restricted SVARs, offering tools that are applicable across

a wide range of empirical models.
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Appendix

I Initialization

Our algorithm requires initial values for (B,Σ,Q) that satisfy the sign restrictions

imposed to identify the SVAR. We accomplish this by setting (B,Σ) to the maximum

likelihood estimates and by constructing Q one column at a time such that the sign

restrictions hold, as described in Algorithm 4. This strategy works as long as the

researcher does not imposes cross equation sign restrictions.

Algorithm 4. The following algorithm sequentially builds an orthogonal matrix Q

subject to sign restrictions. Let Σ ∈ S(n) and define Qj = [Q1 ⋯ Qj] for 1 ≤ j ≤ n.

Let [Sj(B,Σ,Qj) > 0] denote sign restrictions associated with shock j for j = 1, . . . , n,

and assume the researcher imposes sign restrictions for the first m ≤ n shocks. The

restrictions are satisfied when ∏
m
j=1[Sj(B,Σ,Qj) > 0] = 1.

1. Let j = 1.

2. Draw xj ∈ Rn independently from a standard normal distribution.

3. If j ≤m, let

xj = xj −Qj−1Q
′
j−1 xj.

and set Qj = xj/ ∥ xj ∥ and return to Step 2 until [Sj(B,Σ,Qj) > 0] = 1.

4. If j >m,

Qj = xj/ ∥ xj ∥ .

5. If j < n, set j = j + 1 and return to Step 2.

The Gaussian draw in Step 2 is invariant to rotations; projecting onto the orthogonal

complement and re-normalizing yields a vector uniformly distributed on the unit sphere

of that subspace. Rejection sampling in Step 3 enforces user-defined sign restrictions.

For columns j >m no restrictions apply.

We note that a similar idea is employed by Amir-Ahmadi and Drautzburg (2021),

who generate draws from the posterior distribution p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) >

0) by sequentially sampling each column qj of Q conditional on the remaining columns,
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that is, from p(qj ∣ Q−j,B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0) for j = 1, . . . , n, where Q−j

denotes the matrix Q with the j-th column removed. In such cases, the projection

step in Algorithm 4 (Step 3) is modified accordingly. In both approaches, if the sign

restrictions are linear in qj (that is, of the form Aqj ≥ 0) sampling efficiency can be

improved. Specifically, these restrictions are satisfied as long asA(I−Qj−1Q
′
j−1)xj ≥ 0,

where xj is a draw from a standard multivariate normal distribution. Hence, one

can generate draws of xj that satisfy the sign restrictions using efficient routines

for sampling from truncated multivariate normal distributions with linear inequality

constraints.

II Alternative Prior Specifications

Our Gibbs sampler algorithm can be adapted to work with two popular priors in

SVAR analysis: the independent normal-inverse-Wishart prior, and the asymmetric

priors proposed by Chan (2022).

II.1 Independent normal-inverse-Wishart Prior

Let us begin showing how to adapt our Gibbs sampler to the case in which a researcher

aims to use an independent normal-inverse-Wishart prior for (B,Σ) of the form

IW(ν̄,Φ̄)(Σ)N(vec(µ̄B),V̄B)(vec(B)). When using this prior, the final objective of the

researcher is to sample from the following posterior:

p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]

×NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ)IW(ν̄,Φ̄)(Σ)N(vec(µ̄B),V̄B)(vec(B))

(A.1)

where NIW(ν̂,Φ̂,Ψ̂,Ω̂)(B,Σ) denotes the likelihood, with ν̂ = T − m − (n + 1), Ω̂ =

(X′X)−1, Ψ̂ = Ω̂X′Y, and Φ̂ = Y′Y−Ψ̂
′
Ω̂
−1
Ψ̂, where Y′ = (y1, . . . ,yt) and X′ =

(x1, . . . ,xt). Table 6 describes the conditional posterior distributions obtained from

Equation (A.1)—using similar arguments than those given in Section 6—where

ν̃ = ν̄ + T,

Φ̃ = Φ̄ + (Y−XB)′(Y−XB),
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Ṽ
−1
B = V̄

−1
B + (Σ

−1
⊗X′X),and

µ̃B = ṼB(V̄
−1
B µ̄B + (Σ

−1
⊗X′X)Ψ̂).

p(Q ∣ B,Σ, (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]

p(Σ ∣ B,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]IW(ν̃,Φ̃)(Σ)

p(B ∣Σ,Q, (yt)
T
t=1,SR(B,Σ,Q) > 0) ∝ [SR(B,Σ,Q) > 0]N(vec(µ̃B),ṼB)(vec(B))

Table 6: Conditional Posterior Distributions

Hence, we now can write a Gibbs Sampler of the following form:

Algorithm 5. This algorithm draws from p(B,Σ,Q ∣ (yt)
T
t=1,SR(B,Σ,Q) > 0) de-

scribed in Equation (A.1).

1. Let I > 1 and set i = 1 and assign initial values to (Bi−1,Σi−1
).

2. Draw Qi from

p(Q ∣ Bi−1,Σi−1, (yt)
T
t=1,SR(B

i−1,Σi−1,Q) > 0) ∝ [SR(B
i−1,Σi−1,Q) > 0].

3. Draw Σi from

p(Σ ∣ Bi−1,Qi, (yt)
T
t=1,SR(B

i−1,Σ,Qi
) > 0) ∝ [SR(B

i−1,Σ,Qi
) > 0]IW(ν̃,Φ̃)(Σ).

4. Draw Bi from

p(B ∣Σi,Qi, (yt)
T
t=1,SR(B,Σi,Qi

) > 0) ∝ [SR(B,Σi,Qi
) > 0]N(vec(µ̃B),ṼB)(vec(B)).

5. If i < I, let i = i + 1 and return to Step 2.

II.2 Asymmetric Priors

Instead of directly working with the typical conjugate normal-inverse-Wishart prior over

the reduced-form parameters (B,Σ), Chan (2022) works with structural parameters

subject to a recursive identification scheme and denotes the resulting parameterization

as (θ,σ2). This parameterization implies a prior over the reduced-form parameters
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(B,Σ) that allows the shrinkage strength for coefficients on own lags to be different

than the shrinkage strength for coefficients on the lag of other variables.

For completeness, we will describe the mapping from (θ,σ2) to (B,Σ). To this

end, it is useful to begin by considering the recursive SVAR proposed by Chan (2022):

AS yt = bS
+BS

1 yt−1 +⋯ +B
S
1 yt−p +ε

y
t , εyt ∼ N(0,Σ

S
) (A.2)

where AS is a lower triangular matrix with ones along the diagonal, bS, BS
1 ,..., B

S
p , de-

note a constant term and the slope coefficients, and ΣS
= diag(σ2) = diag([σ2

1, . . . , σ
2
n]).

Given this representation, we use the following notation: bSi denotes the i-th element

of bS, bS
j,i represents the i-th row of BS

j , βi = (b
S
i ,b

S
1,i, . . . ,b

S
p,i)
′ collects all the VAR

slope coefficients associated with the i-th equation, and αi = (Ai,1, . . . ,Ai,i−1)′ where

Ai,j denotes the i-th row and the j-th column of A.

For i = 1, . . . , n, let θi = [β
′
i,α

′
i]
′
, where βi is a vector containing the slope

coefficients of the i-th equation of a recursive SVAR and αi is a vector containing the

unrestricted elements of the i-th row of the inverse of the impact impulse response

matrix. Furthermore, set θ = (θ′1, . . . ,θ
′
n)
′. If we define wS

i,t = (−y1,t, . . . ,−yi−1,t),

xS
t = (1,y

′
t−1, . . . ,y

′
t−p), xi,t = (wS

i,t,x
S
t ), yi = (yi,1, . . . , yi,T )

′, and Xi = (xi,1, . . . ,xi,T )
′,

then yi =Xi θi +ε
y
i , εyi ∼ N(0, σ

2
i IT ). Importantly, equation (A.2) can be written as

yt = b+B1 yt−1 +⋯ +Bp yt−p +ε
y
t , εyt ∼ N(0,Σ) (A.3)

where b = (AS
)−1bS, Bj = (A

S
)−1BS

j for j = 1, . . . , p, B = [b,B1, . . . ,Bp]
′
, and

Σ = (AS
)−1ΣS

((AS
)−1)′. Hence, we have implicitly defined a mapping from (θ,σ2)

to (B,Σ).

The mapping is invertible. Given (B,Σ) we can obtain (θ,σ2) by using the

Cholesky composition to obtain AS and ΣS, and then we can construct βi by using

bS
=AS b, BS

1 =A
S B1, . . . B

S
p =A

S Bp, for i = 1, . . . , n. Putting the mapping defined

above with the mapping ϕ, we obtain a one-to-mapping between the impulse responses,

that is (L0,L+), and (θ,σ2,Q).

Exploiting Proposition 2 in Arias, Rubio-Ramı́rez, and Waggoner (2025), we will

combine the product of normal-inverse-gamma over (θ,σ2) proposed by Chan (2022),

i.e.,

p(θ,σ2) =
n

∏
i=1

p(θi, σ
2
i ) =

n

∏
i=1

IG(νi,Si)(σ
2
i )N(mi,σ2

i Vi)(θi) (A.4)
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where θ = (θ1, . . . ,θn) and σ2 = (σ2
1, . . . , σ

2
n), with a uniform prior over Q under the

Haar measure in order to induce a prior over (L0,L+). Then, tracing a parallel to the

case in which we work with the orthogonal reduced-form parameters (B,Σ,Q), we

will conduct posterior inference over (L0,L+) subject to sign restrictions by sampling

from the following posterior

p(θ,σ2,Q ∣ (yt)
T
t=1,S(θ,σ

2,Q) > 0) ∝ [S(θ,σ2,Q) > 0]
n

∏
i

IG(ν̃i,S̃i)(σ
2
i )N(θ̃i,σ2

i K
−1
θi
)(θi),

(A.5)

and then converting the draws to the desired parameterization; where ν̃i = νi +
T
2 ,

S̃i = Si+(y′i yi +m
′
iV
−1
i mi −θ̃

′
iKθi

θ̃i)/2, yi = (yi1, . . . ,yiT )
′, yit denotes the i-th entry

of yt, Kθi
=V−1i +X

′
iXi, and θ̃i =K

−1
θi
(V−1i mi +X

′
i yi).

Conditional Posterior for Q. Let us begin by deriving the posterior for Q given

the reduced-form parameters and the sign restrictions. Equation (A.5) implies that

p(Q ∣ θ,σ2, (yt)
T
t=1,S(θ,σ

2,Q) > 0) =
[S(θ,σ2,Q) > 0]

∫O(n)[S(θ,σ
2,Q) > 0]dQ

∝ [S(θ,σ2,Q) > 0].

Hence, we can sample from this conditional posterior as described in Section 6.

Conditional Posterior for σ2. Next, we derive a useful expression for the posterior

of σ2 given (θ,Q) and the sign restrictions. In this case, Equation (A.5) implies that

p(σ2 ∣ θ,Q, (yt)
T
t=1,S(θ,σ

2,Q) > 0) ∝ [S(θ,σ2,Q) > 0]
n

∏
i=1

IG(ν̃σ2,i,S̃σ2,i)
(σ2

i ),

where ν̃σ2,i = νi +
T+ki
2 and S̃σ2,i = S̃i +

1
2(θi −θ̃i)

′Kθi
(θi −θ̃i)/2. Drawing from the

conditional posterior p(σ ∣ θ,Q, (yt)
T
t=1,S(θ,σ

2,Q) > 0) follows straightforwardly

from Section 6 once we notice that IG(ν̃σ2,i,S̃σ2,i)
(σ2

i ) is equivalent to a univariate

inverse-Wishart IW(2ν̃σ2,i,2S̃σ2,i)
(σ2

i ). Given the indicator function [S(θ,σ2,Q) > 0],

we draw σ2
i conditional on the σ2

−i where σ2
−i denotes the vector σ2 excluding its i-th

entry.

Conditional Posterior for θ The third and last conditional posterior corresponds

to the posterior of θ given (σ2,Q) and the sign restrictions. In this case, we use
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Equation (A.5) to obtain:

p(θ ∣ σ2,Q, (yt)
T
t=1,S(θ,σ

2,Q) > 0) ∝ [S(θ,σ2,Q) > 0]
n

∏
i=1

N(θ̂i,σ2
i K

−1
θi
)(θi).

Given the indicator function [S(θ,σ2,Q) > 0], we draw θi conditional on the θ−i

where θ−i denotes the vector θ excluding its i-th entry. Having defined the three

conditional posteriors described above, we now can write a Gibbs Sampler of the

following form:

Algorithm 6. This algorithm draws from p(θ,σ2,Q ∣ (yt)
T
t=1,S(θ,σ,Q) > 0) as

described in Equation (A.5).

1. Let J > 1 and set j = 1 and assign initial values to (θj−1,σ2(j−1)).

2. Draw Qj from

p(Q ∣ θj−1,σ2(j−1), (yt)
T
t=1,S(θ

j−1,σ2(j−1),Q) > 0) ∝ [S(θj−1,σ2(j−1),Q) > 0].

3. Draw σ2(j) from

p(σ2 ∣ θj−1,Qj, (yt)
T
t=1,S(θ

j−1,σ2,Qj
) > 0) ∝ [S(θj−1,σ2,Qj

) > 0]
n

∏
i=1

IG(ν̃σ2,i,S̃σ2,i)
(σ2

i ).

4. Draw θj from

p(θ ∣ σ2(j),Qj, (yt)
T
t=1,S(θ,σ

2(j),Qj
) > 0) ∝ [S(θ,σ2(j),Qj

) > 0]
n

∏
i=1

N(θ̂i,σ2
i K

−1
θi
)(θi).

5. If j < J , let j = j + 1 and return to Step 2.

III Large-SVAR with Asymmetric Priors

To conclude the appendix, we reproduce the analysis in Section 7.2 using the asym-

metric priors proposed by Chan (2022).

39



III.1 Impulse Responses

We begin by reporting the impulse responses with each of the eight structural shocks

identified by Chan, Matthes, and Yu (2025) obtained using the Gibbs sampler described

in Algorithm 6. The results reported in Figures 10a-11d are nearly identical to those

reported in Chan, Matthes, and Yu (2025). Notice that in this case we can extend the

horizon of the impulse responses beyond 5 years without a large increase in posterior

uncertainty. This is because the asymmetric priors used in Chan, Matthes, and Yu

(2025) allow for more flexibility in terms of shrinkage of the slope coefficients of the

reduced-form representation of the SVAR.

III.2 Timing

In this section, we compare the efficiency of our Gibbs sampler algorithm to the one

of the accept-reject when using the asymmetric priors. We highlight three results.

First, there are cases in which when using asymmetric priors with a relatively small

number of sign restrictions, the accept-reject algorithm is somewhat more efficient

than our approach, see for example the timings for. Second, as shown in Figure 12, the

advantage of the accept-reject vanishes as we increase the number of shocks. Notice

that the Gibbs sampler algorithm is faster than the baseline specification in Chan,

Matthes, and Yu (2025), which features 8 structural shocks. Third, as shown in Figure

13, as we continue to increase the number of sign restrictions by adding shocks 9

and 10, respectively, the accept-reject algorithm reproduces the explosive patterns

in Figures 1-14. In contrast, the efficiency of the Gibbs sampler algorithm remains

nearly unchanged.
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(a) Demand shock (b) Investment shock

(c) Financial shock (d) Monetary policy shock

Figure 10: Impulse Responses
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(a) Government spending shock (b) Technology shock

(c) Labor supply shock (d) Wage bargaining shock

Figure 11: Impulse Responses
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(a) Gibbs Sampler
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(c) Comparison
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Figure 12: Time Per 1,000 Effective Draws

(a) Gibbs Sampler Shocks (1 to 9)
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(b) Gibbs Sampler Shocks (1 to 10)
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(c) Accept-Reject Shocks (1 to 9)
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(d) Accept-Reject Shocks (1 to 10)
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Figure 13: Gibbs Sampler vs. Accept-Reject

Note: The time of the accept-reject algorithm for shocks 9 and 10 is extrapolated based on
10 draws.
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(a) Comparison Shocks (1 to 9)
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(b) Comparison Shocks (1 to 10)
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Figure 14: Gibbs Sampler vs. Accept-Reject
Note: The time of the accept-reject algorithm for shocks 9 and 10 is extrapolated based on
10 draws.
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