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Abstract

Economists often estimate treatment effects in experiments using remotely sensed
variables (RSVs), e.g. satellite images or mobile phone activity, in place of directly
measured economic outcomes. A common practice is to use an observational sample to
train a predictor of the economic outcome from the RSV, and then to use its predictions
as the outcomes in the experiment. We show that this method is biased whenever the
RSV is post-outcome, i.e. if variation in the economic outcome causes variation in the
RSV. In program evaluation, changes in poverty or environmental quality cause changes
in satellite images, but not vice versa. As our main result, we nonparametrically identify
the treatment effect by formalizing the intuition that underlies common practice: the
conditional distribution of the RSV given the outcome and treatment is stable across
the samples. Based on our identifying formula, we find that the efficient representation
of RSVs for causal inference requires three predictions rather than one. Valid inference
does not require any rate conditions on RSV predictions, justifying the use of complex
deep learning algorithms with unknown statistical properties. We re-analyze the effect
of an anti-poverty program in India using satellite images.
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1 Introduction

While traditional program evaluations rely on surveys to measure impact, important economic

outcomes such as living standards and environmental quality may be costly or infeasible to

collect. As a consequence, researchers increasingly estimate treatment effects on economic

outcomes using remotely sensed variables (RSVs). Examples include night lights as a measure

of local economic activity (Chen and Nordhaus, 2011; Henderson et al., 2012; Asher et al.,

2021); roofing material as a measure of housing quality (Marx et al., 2019; Michaels et al.,

2021; Huang et al., 2021); and satellite images as a measure of air pollution (Currie et al.,

2023), deforestation (Jayachandran et al., 2017; Assuncao et al., 2023), fires (Jack et al., 2025;

Balboni et al., 2024), flooding (Chen et al., 2017; Patel, 2024), and local poverty (Jean et al.,

2016; Aiken et al., 2022).1 Our research question is how researchers should rigorously estimate

treatment effects from remotely sensed outcomes.

A recurring empirical practice appears in about 50% of the papers in general interest

economics journals from 2015-2024 that use remotely sensed outcomes.2 The common practice

is to predict the economic outcome from the RSV, and then to use the predicted outcome in

lieu of a true outcome measurement in an experimental sample. Researchers often form such

predictions using an auxiliary, observational sample collected in some other context, which

contains the RSV and linked outcome measurements. The predictor is typically complex, e.g.

a deep learning algorithm with unknown statistical properties.

As motivation, we prove that this intuitive method can lead to positive or negative bias

in the estimated treatment effect when the RSV is a post-outcome variable. Using the

predicted outcome in lieu of the true outcome implicitly uses the RSV as a surrogate between

the treatment and the outcome. However, in many empirical applications using RSVs, the

opposite is more plausible: the treatment affects the outcome, and both may affect the RSV.

The bias is fundamentally due to this reversal; it is present even without machine learning.

As an example, consider a binary outcome indicating whether a plot of land has been burned
1Figure 8 illustrates the rapid rise of papers published in economics journals and general interest science

journals using RSVs. Of those published in economics journals, we find that 90% use high-dimensional satellite

images as RSVs, and 40% use the RSVs as the main outcome in their empirical analysis. See also Burke et al.

(2021) and Jack and Walker (2023) for recent reviews on the empirical uses of RSVs.
2We survey AEA journals, Econometrica, Journal of Political Economy, Quarterly Journal of Economics,

and Review of Economic Studies. The other 50% use a similar logic, but without an explicit formula for data

combination.
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(Balboni et al., 2024; Jack et al., 2025), and an RSV summarizing the color saturation in a

satellite image. Fires cause changes in satellite images, but not vice versa; the color saturation

of satellite images is post-outcome. A common practice is to predict fires in the experimental

sample, using a machine learning algorithm trained on labeled satellite images from an obser-

vational sample, and then to compute the difference of predicted outcomes between treated

and control units in the experimental sample. Because the RSV is post-outcome, this method’s

estimand combines two quantities: the desired effect of the treatment on the outcome, and the

correlation between the RSV and the outcome. In the extreme case where the RSV fails to pre-

dict the outcome—when an ideal method should report infinite standard errors—this popular

method will instead report a precise estimate at zero, regardless of the true treatment effect.

Our main contribution is a novel formula to nonparametrically identify treatment effects

using RSVs by combining (i) an experimental sample where the outcome is missing, and

(ii) an observational sample in which the treatment is non-randomized and possibly missing.

Our key assumption formalizes the logic underlying the examples above: the conditional

distribution of the RSV given the outcome and the treatment is stable across both samples.

Consequently, the relationship between the RSV and the outcome can be learned from the

observational sample and transported to the experimental sample. If the treatment is missing

in the observational sample, then we need an additional assumption to restore identification:

the treatment only affects the RSV through the outcome.

Our main identifying assumptions are jointly testable and lend themselves to simple

diagnostics, allowing researchers to assess their plausibility in applications. Of independent

interest, we propose a diagnostic to evaluate whether an RSV is relevant enough for an

economic outcome to use it for program evaluation.

Our secondary contribution is to characterize the optimal representation of the RSV

for inference on the treatment effect. Given our main result, the techniques are standard

and hence straightforward to implement; our contribution is to point out the connection

between modern remote sensing and classical conditional moments (Chamberlain, 1987;

Newey, 1993), and to interpret its consequences. We find that three predictions are necessary

for semiparametrically efficient downstream causal inference based on RSVs: predictions of

the outcome, the treatment, and the sample indicator given the RSV. By contrast, common

practice only predicts the outcome given the RSV.

Because modern remote sensing typically involves unstructured data and complex machine

learning, we derive valid n−1/2 inference without rate conditions, and without complexity
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restrictions, on RSV-based predictions. Valid inference only requires that (i) a learned RSV

representation has some limit; (ii) the limit predicts the outcome of interest, and for this we

provide a diagnostic. More precise predictions improve efficiency of program evaluation.

Finally, we conduct a semi-synthetic exercise, calibrated to an existing randomized control

trial in India, which we merge with existing satellite images. Following Muralidharan et al.

(2016, 2023), we study the effect of Smartcards, a biometrically authenticated payments

infrastructure, on village level poverty measures. We use the geographic coordinates of each

village to extract nighttime luminosity and high-dimensional embeddings of satellite images.

Compared to an unbiased benchmark, estimated from true outcomes in the experiment, our

method recovers similar treatment effects with similar precision, despite using remotely sensed

variables to compensate for missing experimental outcomes.3 By contrast, common practice

can have positive or negative bias for the treatment effect. Conservative cost calculations

suggest that using remotely sensed outcomes, instead of directly surveyed outcomes, can

recover the treatment effect of interest, while saving about $3 million dollars in survey costs.

1.1 Related work

Compared to various auxiliary variable models in causal inference, we study a different auxil-

iary variable. Whereas a surrogate is a mediator between the treatment and outcome (Athey

et al., 2024; Kallus and Mao, 2024), the RSV is a post-outcome variable in our framework.

We show that misusing a post-outcome RSV as a surrogate leads to arbitrary biases for

treatment effects. The negative control literature extends the surrogacy framework to deal

with unobserved confounding (Ghassami et al., 2022; Imbens et al., 2024), yet such extensions

face the same limitation. See Remark 1 for details.

Compared to a vast literature on data combination e.g. Cross and Manski (2002); Ridder

and Moffitt (2007); Bareinboim and Pearl (2016); D’Haultfœuille et al. (2025) and nonclassical

measurement error e.g. Chen et al. (2011); Schennach (2020), we place what appears to be

a different key assumption. Several influential works handle measurement error in moment

condition models by using auxiliary data and assuming that the conditional distribution of

the variable of interest, given the imperfect measurement, is stable across samples (Chen

et al., 2005, 2008; Graham et al., 2016), akin to the surrogacy framework. Our key identifying

assumption is the opposite: the conditional distribution of the imperfect measurement, given
3Experimental outcomes may be missing for a random half of villages, or for all treated villages.
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the variable of interest, is stable across samples. This leads to a novel identifying formula.

The main difference between our RSV framework and the prediction powered inference

(PPI) framework (Angelopoulos et al., 2023; Lu et al., 2025; Kluger et al., 2025) is also along

these lines: the PPI framework uses machine learning predictions as surrogates (Ji et al., 2025).

Another difference concerns data availability. In our terminology, the PPI approach would

require the researcher to observe the treatment, outcome, and RSV for a random subsample

of experimental units. The data requirements in other works are similar to those in the PPI

literature (Fong and Tyler, 2021; Allon et al., 2023; Gordon et al., 2023; Egami et al., 2024).

By contrast, we allow the researcher to observe no outcomes for any experimental units.

Our results do not require a correctly specified generative model of how treatments and

outcomes affect RSVs, which may be prone to mis-specification when the RSV is a satellite

image. Several previous works propose methods based on generative modeling (possibly in

combination with PPI) that do require correct specification (Gentzkow et al., 2019; Alix-Garcia

and Millimet, 2023; Proctor et al., 2023; Battaglia et al., 2024). Similarly, methods for causal

inference on outcomes that are latent concepts require a generative model (Egami et al., 2022;

Knox et al., 2022; Stoetzer et al., 2024).

Section 2 formalizes our main assumption: stability of the RSV. Section 3 proves our main

result: nonparametric identification. Section 4 characterizes the optimal representation, and

provides inference without rate or complexity restrictions. Section 5 shows that our method

outperforms common practice in evaluating an anti-poverty program from satellite images.

2 Model and assumptions

2.1 Goal: Identification using remotely sensed outcomes

The researcher observes units in two samples, indicated by the variable S ∈ {e, o}: an

experimental sample (S=e) and an observational sample (S=o).

Within the experimental sample (S=e), we observe pre-treatment covariates X∈X and

a binary treatment D ∈ {0,1}. However, the outcome Y ∈ Y is missing.4 In its place, we

have access to a remotely sensed outcome variable R∈R. We typically think of R as high

dimensional (e.g., unstructured data such as satellite images), but it can be low dimensional

(e.g., the output of some pre-trained machine learning algorithm). The researcher would like
4For ease of exposition, we focus on the case where the outcome Y is completely missing in the experimental

sample. Remark 3 gives the extension where Y is only partially missing in the experimental sample.
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to use the remotely sensed variable (RSV) as an imperfect measurement of the outcome in

the experimental sample, without placing parametric assumptions on their relationship.

The causal parameter of interest is the effect of the treatment D on the outcome Y in the

experimental sample. Though the outcome Y is unobserved in the experimental sample, we

may still define its potential outcomes Y (d) and define our object of interest.

Definition 1 (Causal parameter). The average treatment effect (ATE) in the experimental

sample is θ :=µ(1)−µ(0), where µ(d) :=E{Y (d) |S=e}.

Without further assumptions, point identification for this causal parameter is impossible

(Horowitz and Manski, 1995). Even if R can predict Y with great accuracy, if the prediction is

at all imperfect, then an assumption is necessary. We therefore place additional structure on

the problem, inspired by recent empirical work in environmental and development economics.

A popular practice in environmental and development economics is to use an auxiliary

data set of outcomes and RSVs, e.g. of labeled satellite images. We refer to the auxiliary

dataset as the observational sample (S=o). For these units, we observe baseline covariates

X, the outcome Y , and the remotely sensed variable R. We may or may not observe the

treatment D. If we do, we denote it by D∈{0,1} and refer to this scenario as having “complete”

cases. If we do not, or if treatment is deterministic in the observational study, we set D=0

for all units in the observational study and refer to this latter scenario as having “incomplete”

cases.5 As we discuss below, incomplete cases will require stronger assumptions.

Table 1 summarizes the setting. Each unit is characterized by the random vector

(S,X,D,Y (0),Y (1),R), which we assume to be independent and identically distributed.6 For

units in the experimental sample (S=e), we observe (X,D,R); for units in the observational

sample (S=o), we observe (X,D,Y,R) in complete cases or (X,Y,R) in incomplete cases.

Example 1 (Environmental impacts). Consider a randomized experiment that offers cash

payments to households in order to incentivize environmental conservation (i.e., “payments for

ecosystem services” or PES). Access to PES contracts is often randomized at the village level.

We would like to measure whether access to PES contracts D reduces harmful environmental
5Incomplete cases in the observational sample may refer to three scenarios. First, the treatment status

may be missing. Second, the treatment status may be present, and all observational units are untreated,

hence D=0. Third, the treatment status may be present, and all observational units are treated. Redefining

treatment gives D̃ :=1−D=0.
6Independence is not used to derive our main identification argument, and our framework directly extends

to weakly dependent data, as long as a central limit theorem applies.
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Table 1: Summary of the data environment.

Sample S Covariate X Treatment D Outcome Y Remotely sensed R

Experimental ✓ ✓ Missing ✓

Observational: Complete ✓ ✓ ✓ ✓

Observational: Incomplete ✓ Missing or deterministic ✓ ✓

Notes: Here, ✓ denotes the variable is observed. When treatment is missing or deterministic in the

observational sample, we encode it as D=0 in the observational sample.

(a) Experimental units only. (b) Auxiliary sample: Observational units.

Figure 1: We illustrate the two samples that we will use to evaluate an anti-poverty program

in Andhra Pradesh, India (Muralidharan et al., 2023). With experimental units alone and

completely missing outcomes, point identification is impossible. Therefore we introduce an

auxiliary sample of observational units. See Section 5 for further details.

behaviors Y , such as deforestation (Jayachandran et al., 2017) or crop burning (Jack et al.,

2025). In a separate observational sample, we link satellite images R to direct measurements

Y of deforestation or crop burning e.g. Hansen et al. (2013); Walker et al. (2022). While it is

expensive to hire surveyors to record measurements of tree cover or crop management practices

in rural areas, it is cheap to collect satellite images. We investigate how to combine these data

sources and thereby identify the effect of the PES contracts in the experimental sample. ▲

Example 2 (Household poverty). Consider a randomized experiment evaluating an anti-

poverty program, such as an unconditional cash transfer (Egger et al., 2022) or biometrically

authenticated payment (Muralidharan et al., 2023). Treatment is often randomized at the

7



village level. We would like to study the effect of the anti-poverty program D on village-level

poverty Y . In a separate observational sample, we link satellite images R to census statistics

on village-level poverty Y . It is well documented that poverty can be predicted from satellite

images, with some error e.g. Jean et al. (2016); Rolf et al. (2021). For example, Huang

et al. (2021) use deep learning methods to predict household wealth in Kenya from roof

quality. While it is expensive to collect poverty measures through in-person surveys in the

experimental sample, it is cheap to collect satellite images. We identify the effect of the

anti-poverty program in the experimental sample.

Figure 1 illustrates an example of incomplete cases, using data from an evaluation of an

anti-poverty program in India, where we apply our method in Section 5. ▲

2.2 Main assumption: Stability

We formalize this causal setting via three assumptions. The first is standard.

Assumption 1 (Experimental unconfoundedness). Suppose the following:

i. SUTVA: Y =DY (1)+(1−D)Y (0) almost surely.

ii. Randomization: D |= {Y (0),Y (1)}|X,S=e.

iii. Overlap: Pr(D=1 |X,S=e) is bounded away from zero and one almost surely.

In many empirical applications involving RSVs, such as Examples 1 and 2, Assumption 1

is satisfied by design: experimental units are chosen as aggregates without spillovers, e.g.

villages, and the treatment is randomly assigned for these experimental units.

Under Assumption 1, if we were to observe the outcome in the experimental sample, the

ATE could be identified using standard arguments. However, the outcome is not observed

in the experiment; instead, we have an RSV.

We resolve this measurement issue by leveraging the observational sample. Intuitively,

Assumption 2 allows us to learn the relationship between the RSV and the outcome of interest

in the observational sample, and to “transport” it to the experimental sample.

Assumption 2 (Stability of the remotely sensed variable). Suppose the following:

i. Stability: S |= R |X,D,Y .

ii. Common support: for some outcome support Y , Pr(Y ∈Y |S=e,X)=1 almost surely,

and Pr(Y =y |S=o,X) is bounded away from zero almost surely for all y∈Y .
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iii. Coverage: Pr(R=r |S,X,D) is bounded away from zero almost surely for all r∈R.

iv. Two samples: Pr(S=e|X) is bounded away from zero and one almost surely.

Assumption 2(i) is the main assumption of our framework: the conditional distribution

of the remotely sensed variable R, given (X,D,Y ), is stable across the experimental and

observational samples. This allows us to “transport” the measurement error distribution

from the observational sample to the experimental sample. Importantly, this condition does

not require stability on the underlying treatment effects, which may differ across samples.

See Remark 1 for comparisons between Assumption 2(i) in the RSV model and alternative

assumptions in alternative models.

Returning to our two leading examples, Assumption 2(i) requires that the conditional

distribution of tree cover pixels R, given environmental outcomes Y and interventions D (as

well as other pre-treatment covariates), is stable across the experimental and the observational

samples. Analogously, it requires that the conditional distribution of the satellite image R,

given village-level poverty Y and the anti-poverty program D (as well as other pre-treatment

covariates), is stable across the experimental and observational samples.

Our main assumption is empirically plausible, as illustrated by Figure 2. We use data

from an anti-poverty program in India, where outcomes are observed.

If Assumption 2 holds, then the conditional densities of the RSV given the outcome and

treatment should be the same across the experimental and observational samples. They

appear to coincide in this empirical setting. 7

The remaining aspects of Assumption 2 are weak regularity conditions. Assumption 2(ii)

requires that the outcome in the observational sample has a common (or larger) support than

the outcome in the experiment. Assumption 2(iii) ensures that the RSV distribution does

not degenerate for any stratum. Assumption 2(iv) requires that we observe some data from

both the experimental and observational samples.

Assumptions 1 and 2 imply identification when the observational sample has complete cases.
7When X=∅, Assumption 2 imposes four equalities: Pr(R |S=e,D=d,Y =y)=Pr(R |S=o,D=d,Y =y)

for d∈{0,1} and y∈{0,1}. Each equality can be evaluated with a diagnostic plot if outcome data are available.

For example, using the experimental and observational units satisfying D=0 and Y =0 in Figure 2a, we

can visualize whether the density of R |S=e,D=0,Y =0 aligns with the density of R |S=e,D=0,Y =0 in

Figure 2b. Since R is high dimensional, we simplify the visualization by comparing the densities of its first

principal component.
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(a) Units with D=0 and Y =0. (b) Densities of R |S, D=0, Y =0.

(c) Units with D=0 and Y =1. (d) Densities of R |S, D=0, Y =1.

Figure 2: Our main assumption (Assumption 2(i)) is plausible in real data. We compare

Pr(R |S=e,D=0,Y =0) with Pr(R |S=o,D=0,Y =0) in Figure 2b, and Pr(R |S=e,D=

0,Y =1) with Pr(R |S= o,D=0,Y =1) in Figure 2d, using data from Muralidharan et al.

(2023) that we analyze in Section 5. Because the satellite image R∈R4000 is high dimensional,

we visualize the density of its standardized first principal component on the right hand side,

for units highlighted on the left hand side.

When the observational sample has incomplete cases, we require a further assumption.

In other words, if the treatment is missing or deterministic in the observational sample, then

a further restriction is necessary for point identification.

Assumption 3 (Observational completeness). Suppose that either condition holds:

i. Complete cases: Pr(D=1 |S=o,X) is bounded away from zero and one almost surely;

10



D Y R

Figure 3: Causal graph of Assumptions 3(i) versus 3(ii). Complete cases allow the dotted line.

ii. No direct effect: D |= R |X,Y .

Assumption 3 imposes only one of two conditions.

Assumption 3(i) implies that we have access to complete cases, i.e. some observations

of (X,D,Y,R) where D has variation. Within the observational sample, the treatment is

observed and varies, although it may suffer from unobserved confounding.

Whenever we have complete cases, under Assumption 3(i), no further causal assumptions

are needed. In particular, the treatment D may have a direct effect on the remotely sensed

variable R. In Example 1, this would allow the environmental program to affect satellite

images both indirectly, i.e. via crop burning, and directly, e.g. via visible investments in farm

equipment.

If Assumption 3(i) is violated, then we have no complete cases, i.e. no observations of

(X,D,Y,R) where D is variable. Without joint observations of the outcome and treatment,

a further restriction is needed. Assumption 3(ii) fills this gap, requiring that the treatment

D only affects the remotely sensed variable R via its effect on the outcome Y . In Example 1,

we may be comfortable assuming that the PES contract has no direct effect on the specific

infrared band used to measure charred soil in satellite images.

Assumption 3(ii) may become more plausible when Y is a vector of outcomes. Several

outcomes may approximate all mechanisms though which the treatment affects the RSV. For

readability, we focus on scalar outcomes in the main text, and vector outcomes in Appendix E.

Together, Assumption 2(i) and Assumption 3(ii) imply that (S,D) |= R |X,Y . In the next

section, we show that Assumptions 2(i) and 3(ii) are jointly testable, even when no outcome

is observed from the experimental sample (Remark 2).

Figure 3 illustrates our identifying assumptions as a causal graph. The treatment affects

the outcome, which in turn affects the RSV. Depending on which version of Assumption 3 is

imposed, the treatment may also have a direct effect on the RSV, as illustrated by the dotted

line. Table 3 summarizes the implications of our main assumptions.
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3 Main result: Identification

In this causal setting, a commonly used procedure may lead to causal estimates with arbitrary

bias. Motivated by this negative result, we prove a positive one: we nonparametrically identify

the causal parameter by combining the experimental and observational samples differently.

To streamline notation, we initially focus on the setting where Assumption 3(ii) holds,

then return to the setting where Assumption 3(i) holds at the end of this section. We will

also assume the outcome is binary, i.e. Y={0,1}. Appendices E and F extend our results

to (multivalued) discrete and continuous outcomes, respectively.

3.1 Current practice may have positive or negative bias

In empirical research, it is common for researchers to use RSVs in two steps: (i) researchers train

a predictor of the outcome Y from the remotely sensed variable R in the observational sample;

(ii) the predictor is applied on the experimental sample, and its predictions are used as surrogate

outcomes to estimate treatment effects. While intuitive, this empirical strategy can lead to

arbitrary bias in the downstream causal estimate, i.e. for the ATE in the experimental sample.

Suppose there are no pre-treatment covariates for simplicity. The widely used two-

step estimation procedure implicitly targets the estimand θ̃ = µ̃(1)− µ̃(0), where µ̃(d) :=

E{E(Y |R,S=o) |D=d,S=e} for d∈{0,1}. Within this expression, the first step estimates

the conditional expectation function E(Y | R = r,S = o). The second step evaluates and

averages this function on the treated and untreated subgroups in the experimental sample.

If the RSV fails to predict the outcome, i.e. if E(Y |R,S = o) = E(Y |S = o), then the

implicit target θ̃ is zero regardless of the true treatment effect. Common practice would return

a precise estimate of zero, even though the RSV provides no information about treatment

effects in this case.

More importantly, even if the RSV does predict the outcome, the implicit target θ̃ can

incur biases with arbitrary signs for the ATE in the experimental sample, even if units are

randomly allocated between the experimental and observational samples.

Proposition 1 (Bias of common practice). Suppose Assumptions 1, 2, and 3(ii) hold with

X=∅, and further Pr(D=1 |S=o)=0 and S |= (Y,R) |D. Then, the following hold.

1. The bias is θ̃− θ = µ̃(1)−µ(1) = µ(1)
∫
{w(r)− 1}Pr(R = r|Y = 1,S = e)dr, where

w(r)= Pr{Y (0)=1|S=e}Pr(R=r|D=1)
Pr{Y (1)=1|S=e}Pr(R=r|D=0)

.
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2. There exists a data-generating process satisfying the above restrictions with θ̃−θ>0,

and a different data-generating process with θ̃−θ<0.

Proposition 1 derives the bias of current empirical practice, which uses the RSV as a

surrogate outcome. Under Assumptions 2 and 3(ii), the conditional distribution of the RSV

Pr(R |Y,S=o) is stable across the experimental and the observational samples. Existing

practice attempts to transport the predictions Pr(Y |R,S=o) into the experimental sample.

By Bayes’ rule, this induces a bias due to differences in the marginal distributions of the

outcomes and RSVs across the samples.

Remark 1 (Comparison to the surrogacy framework). Proposition 1 provides a direct compari-

son to the surrogacy framework. Within the surrogacy framework, the implicit target of empiri-

cal practice θ̃ recovers the causal parameter θ if (D,S) |= Y |R,X, i.e. if surrogacy and surrogate

compatibility are satisfied (Prentice, 1989; Athey et al., 2024). These assumptions are non-

nested with our Assumptions 2 and 3. The surrogacy assumptions state that the surrogate fully

mediates the effect of the treatment on the outcome, and so the surrogate is pre-outcome. As-

sumptions 2 and 3 imply the opposite: the outcome mediates the effect of the treatment on the

RSV, either partially (Assumption 3(i)) or fully (Assumption 3(ii)); the RSV is post-outcome.

Below, we argue that the RSV model is more plausible in environmental and development

applications with satellite images. Figure 9 illustrates the difference via a causal graph.

The surrogacy framework can be viewed as a version of the moment condition model with

auxiliary data studied by e.g. Chen et al. (2005), Chen et al. (2005), and Graham et al. (2016).

In our terminology, those works require that the conditional distribution of the outcome given

the RSV and treatment is stable across samples. By contrast, we require that the conditional

distribution of the RSV given the outcome and treatment is stable across samples. Figure 2 sug-

gests that our assumption is plausible in a real development application with satellite images.

The surrogacy model, and related models which lead to the estimand θ̃, have been extended

to include negative controls e.g. Ghassami et al. (2022); Imbens et al. (2024). As generalizations

of the surrogacy model, they suffer from the same drawback formalized in Proposition 1.

Similar to the RSV framework, the single negative control framework (Park et al., 2024) has

one auxiliary variable. The frameworks have two key differences. Unlike the single negative

control model, we allow the treatment D to affect both the outcome Y and the auxiliary

variableRwhen Assumption 3(i) holds. When no complete cases exists, i.e. the setting covered

by Assumption 3(ii), the single negative control model provides no guidance of how to proceed.
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3.2 Example: Current practice may underestimate environmental

impacts

We revisit an experiment conducted by Jack et al. (2025) that studied whether payments

for ecosystems services (PES) contracts can incentivize farmers to reduce crop burning. We

measure the average treatment effect θ of being offered a PES contract D ∈ {0,1} on the

likelihood that a farmer burns their fields Y ∈{0,1}. Here, Y =1 means not burning, so a

positive θ means environmental benefit.

It is costly to measure whether the crop residue on a particular field has been burned,

requiring a professional surveyor. Therefore, it is natural to turn to a remotely sensed variable

R for the outcome Y . To construct such a remotely sensed variable, Jack et al. (2025) link

surveyor-collected measurements of crop burning to satellite-based spectral indices and then

train a supervised learning algorithm to predict whether these fields have been burned. Here,

R∈{0,1} is a classifier for whether a field has not been burned, which applies a threshold

rule to a machine learning prediction of the probability that a field has not been burned.8

Our causal assumptions are plausible in this setting. Because burning crops would alter

satellite images, but altering satellite images would not burn crops, R is a post-outcome

variable rather than a pre-outcome variable. Since access to PES contracts was randomized at

the village level, Assumption 1 is satisfied by design. Since the authors conducted randomized

spot checks, surveying the outcome Y for randomly selected fields, Assumption 2 is also

satisfied by design, if we define the observational sample S= o as the fields in which these

random spot checks occurred. Finally, since specific infrared bands are used to form R, it

is plausible that PES contracts only affect these specific infrared bands via crop burning, so

Assumption 3(ii) is reasonable. Figure 10 illustrates the two samples used in our re-analysis.

We implement the common empirical practice: we use the RSV as a surrogate for crop

burning. Column (1) of Table 2 estimates θ̃. Offering any PES contract to farmers appears

to reduce crop burning by 7.9%.9

8Jack et al. (2025) construct two binary RSVs for crop burning by applying two alternative threshold

rules to the estimated probability a field has not been burned. We use their “max accuracy” RSV in the main

text, and we report analogous results in Table 4 using the authors’ “balanced accuracy” RSV.
9We modify the main specification of Jack et al. (2025) in two ways. First, while they distinguish between

two types of PES contracts, we define the treatment as whether any PES contract was offered. Second, the

authors’ analyze the effects of the PES contracts by defining a farmer-level outcome, whereas we analyze

effects at the field level.
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Table 2: Underestimation of treatment effects in crop burning experiment.

Common practice Bias Causal parameter

Estimand θ̃ β θ

Estimate 0.079* 0.530*** 0.148*

(0.041) (0.072) (0.084)

Notes: The RSV is the field-level “maximum accuracy” label defined by Jack et al. (2025), which applies a

threshold rule to the predicted probability of not being burned. The “observational sample” has fields that

received a random spot check, and the “experimental sample” has other fields. For illustration, we conduct

linear estimation, controlling for stratum fixed effects. Standard errors are based on 5000 bootstrap

replications clustered at the village level.

However, by Proposition 1, θ̃ is typically biased for θ. To quantify the magnitude of its bias,

we estimate β :=E(R |Y =1)−E(R |Y =0) using information collected through random spot

checks of the fields. Under Assumption 3(ii), an algebraic argument in Appendix B.1 yields

θ̃=βθ in linear settings. Column (2) of Table 2 reports the estimate of β. It suggests that

θ̃ understates the treatment effect of being offered any PES contract by approximately 47%.

3.3 Main result: A novel formula

Our main result nonparametrically identifies the ATE in the experimental sample, without

a parametric model that restricts the distribution or dimensionality of the RSV. We derive

a novel formula for combining experimental and observational data.

To begin, we express the RSV distribution in the experimental sample as a mixture of

potential outcomes. The mixture weights are identified by the observational sample.

Lemma 1 (Identification as generative model). Suppose Assumptions 1, 2, and 3(ii) hold.

Then, for any d∈{0,1}, x∈X , and r∈R, δed(r,x)={δo1(r,x)−δo0(r,x)}µ(d,x)+δo0(r,x) where

µ(d,x) :=E{Y (d) |S=e,X=x} is the conditional average potential outcome in the experiment,

while δed(r,x) :=Pr(R=r |S=e,X=x,D=d) and δoy(r,x) :=Pr(R=r |S=o,X=x,Y =y) are

RSV distributions.

By Lemma 1, we recover the ATE in the experimental sample by combining (i) how the

RSV varies with the treatment in the experimental sample, with (ii) how the RSV varies with

the outcome in the observational sample. This combination leverages our key assumption:

stability of the RSV across samples.
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While Lemma 1 identifies the ATE in the experimental sample, it suggests a challenging esti-

mation problem: it involves the conditional distribution of the high dimensional RSV. One pos-

sible way forward is to develop a complex parametric model, e.g. a generative model of the satel-

lite image distribution conditional upon poverty measurements or environmental outcomes.

Even if such a generative model could be developed, it would be prone to mis-specification.

We follow a different path that does not require a generative model onR. We use Bayes’ rule

to rewrite Lemma 1 as a conditional moment equation. This transformation avoids estimation

of the RSV’s conditional distribution and recovers a classic econometric estimation problem.

Let θ(x) :=E{Y (1)−Y (0) |S=e,X=x}=µ(1,x)−µ(0,x) denote the conditional average

treatment effect in the experimental sample.

Theorem 1 (Identification as conditional moment). Under the conditions of Lemma 1,

for any x∈X , E{∆e(x)−∆o(x)θ(x) |X=x,R}=0 almost surely, where

∆e(x) := 1{D=1,S=e}
Pr(D=1,S=e|X=x)

− 1{D=0,S=e}
Pr(D=0,S=e|X=x)

, ∆o(x) := 1{Y=1,S=o}
Pr(Y=1,S=o|X=x)

− 1{Y=0,S=o}
Pr(Y=0,S=o|X=x)

.

Theorem 1 identifies the treatment effect as the solution to a set of conditional moment

equalities. Intuitively, the conditional average treatment effect θ(x) balances treatment varia-

tion from the experimental sample∆e(x) and outcome variation from the observational sample

∆o(x), so that their projections onto the remotely sensed variable R match. Consequently,

we can leverage a celebrated literature on conditional moment equalities e.g. Chamberlain

(1987); Newey (1993) for estimation and inference.

For identification, Theorem 1 implies that we may introduce representations of the RSV.

Such representations can be arbitrary, as long as they predict outcome variation.

Corollary 1 (Identification as representation). Under Lemma 1’s conditions, θ(x) =

E{H(x,R)∆e(x)|X=x}
E{H(x,R)∆o(x)|X=x} for any representation H(x,R) with E{H(x,R)∆o(x) |X=x} ̸=0.

By Corollary 1, many representations of the RSV provide identification. However, naive

choices may be inefficient, producing needlessly large standard errors. Section 4 asks: what is

the optimal representation of the RSV for downstream causal inference? Our answer develops

a connection between “representation learning” e.g. Johannemann et al. (2019); Vafa et al.

(2024) and classical results for conditional moment equalities.

Remark 2 (Testable implication). Our main identifying assumptions are jointly testable. By

Corollary 1, any predictive representation H(x,R) identifies θ(x). If different representations

16



yield significantly different estimates, then we can reject our identifying assumptions. Future

work may develop bounds under violations of our identifying assumptions.

So far, we have focused on the setting of Assumption 3(ii), which allows incomplete cases

but disallows direct effects of the treatment on the RSV. Our main result also holds for the

setting of Assumption 3(i), which requires complete cases yet allows direct effects of the

treatment on the RSV. Recall that µ(d,x) :=E{Y (d) |S=e,X=x} is the conditional average

potential outcome in the experimental sample.

Theorem 2 (Identification as conditional moment with direct effects). Suppose Assumptions

1, 2, and 3(i) hold. Then, for any d∈{0,1} and any x∈X ,

E{∆̃e(d,x)−∆̃o(d,x)µ(d,x) |R,X=x}=0 almost surely, where

∆̃e(d, x) := 1{D=d,S=e}
Pr(D=d,S=e|X=x)

− 1{Y=0,D=d,S=o}
Pr(Y=0,D=d,S=o|X=x)

, and ∆̃o(d, x) := 1{Y=1,D=d,S=o}
Pr(Y=1,D=d,S=o|X=x)

−
1{Y=0,D=d,S=o}

Pr(Y=0,D=d,S=o|X=x)
.

Once again, the causal estimand reconciles treatment variation from the experimental

sample with outcome variation from the observational sample, so that their projections onto

the remotely sensed variable R match. Theorem 2 allows direct effects; the key assumption

in our framework is stability in Assumption 2. Corollary 1 and Remark 2 extend accordingly.

Remark 3 (Some experimental outcomes). In some empirical applications, researchers may

additionally collect outcomes for a small subsample of the experimental sample. This infor-

mation can be directly incorporated into our procedure for estimation and inference. For this

extension, define the extended sampling indicator as S̃∈{{e,o},e,o}. Here, S̃={e,o} indicates

that a unit is experimental, and we have Y for this unit. S̃=e indicates that a unit is exper-

imental but we do not have Y . Finally, S̃=o indicates that a unit is observational. To apply

our results, replace the expression S=e with e∈ S̃, and replace the expression S=o with o∈ S̃.

Remark 4 (Multi-valued outcomes). Our identification, estimation, and inference results

generalize to discrete and continuous outcomes. Appendix E extends our identification result

to discrete outcomes. We generalize the conditional moment equations. Estimation and

inference remain essentially the same, under a minimum rank condition that requires the

RSV to predict each outcome value well.

Appendix F extends our results to continuous outcomes. We describe how researchers

can conduct estimation and inference using a discrete approximation, and characterize the
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worst-case bias of that discrete approximation. Intuitively, more complexity of Y must be

compensated by additional regularity elsewhere.

4 Estimation and inference

As a secondary contribution, we demonstrate that our main contribution (Theorem 1) implies

an optimal representation of the RSV for downstream causal estimation and inference. The

techniques are standard; we simply point out and interpret the connection between modern

remote sensing and classical conditional moment analysis. Using well known techniques, we

derive valid n−1/2 inference without rate conditions and without complexity restrictions on the

researcher’s RSV-based predictions, justifying the use of complex deep learning algorithms.

For clarity, we focus on the case in which the outcome is binary, there are no pretreatment

covariates, and Assumption 3(ii) holds. A more general case is straightforward to implement

by incorporating additional moment conditions, as discussed in Appendix E.

4.1 Optimal representation for program evaluation

In this setting, Theorem 1 and Corollary 1 simplify. The causal parameter satisfiesE(∆e−∆oθ |

R) = 0 and hence E{(∆e−∆oθ)H(R)} = 0 for any predictive representation H(R). The

treatment and outcome variation simplify to scalars:

∆e=
1{D=1,S=e}
Pr(D=1,S=e)

− 1{D=0,S=e}
Pr(D=0,S=e)

,∆o=
1{Y =1,S=o}
Pr(Y =1,S=o)

− 1{Y =0,S=o}
Pr(Y =0,S=o)

. (1)

Since (S,D,Y ) are binary, the denominators can be estimated by simple counts.

While any predictive representation H gives inference, different choices have different

efficiency properties. We appeal to classical ideas in econometrics to derive the optimal

representation H∗, which achieves the semiparametric efficiency bound. Write the conditional

moment as the regression ∆e=∆oθ+ϵ with E(ϵ |R)=0. The optimal representation is then

H∗(R)= E(∆o|R)
σ2(θ,R)

, where σ2(θ,R) :=E{(∆e−∆oθ)2 |R} (Chamberlain, 1987; Newey, 1993).

For downstream causal inference, the optimal representation of the high dimensional

remotely sensed variable R ∈R is a scalar H∗(R) ∈ R. Concretely, H∗(R) is the optimal

compression of a satellite image for the task of program evaluation. Interestingly, different

causal estimands imply different optimal compressions.

This connection has another consequence for empirical practice: to optimally use the

RSV, we should not only predict the outcome Y using observational data, but also predict
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the treatment D using experimental data, and predict the sample indicator S using all data.

The first prediction is part of common practice, but the second and third are not. By using

all three predictions, we use the RSV most efficiently.

We confirm this connection by further developing the expression for H∗(R): the numerator

E(∆o |R) contains Pr(Y =1,S=o|R) while the denominator σ2(θ,R) contains Pr(D=1,S=

e|R); see Lemma 2 below. Finally, by the definition of conditional probability, Pr(Y =1,S=

o|R)=Pr(Y =1|S=o,R)Pr(S=o|R) and Pr(D=1,S=e|R)=Pr(D=1|S=e,R)Pr(S=e|R).

4.2 Inference with learned representations

For simplicity, we describe our inferential procedure using sample splitting with train and

test folds, though our proofs in Appendix D allow for cross fitting with any fixed number

of folds. We first state our inferential procedure at a high level before filling in the details:

1. Divide the sample into train and test folds.

2. Learn the optimal representation on train: Ĥ(R).

• Train predictors of Y , D, and S: predY (R), predD(R), predS(R).

• Construct an initial causal estimate, by regressing Ê(∆e|R) on Ê(∆o|R): θ̂init.

• Combine these into the optimal representation: Ĥ(R).

3. Construct an efficient causal estimate on test: θ̂.

The overall structure is familiar (Angrist et al., 1999; Chernozhukov et al., 2018). To

simplify the algorithm statement, we introduce some notation for simple events and an

algebraic identity.

Let Etrain=
1

|train|
∑

i∈train(·) and Etest=
1

|test|
∑

i∈train(·). Slightly abusing notation,

the counting operation, countevent, can be Etrain(1event) in the second step or Etest(1event)

in the third step, which will be clear from the context.

Lemma 2. (∆e−∆oθ)2= 1{D=1,S=e}
Pr(D=1,S=e)2

+ 1{D=0,S=e}
Pr(D=0,S=e)2

+θ2
[

1{Y=1,S=o}
Pr(D=Y,S=o)2

+ 1{Y=0,S=o}
Pr(Y=0,S=o)2

]
.

Algorithm 1 (Inference). Given {Si,1{Si=e}Di,1{Si=o}Yi,Ri}:

1. Divide the sample into train and test folds.

2. Learn the optimal representation on train: Ĥ(R).
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(a) Count marginals: countY=1,S=o, countY=0,S=o, countD=1,S=e, countD=0,S=e.

(b) Train predictors: predY (R) estimates Pr(Y = 1|S = o,R), predD(R) estimates

Pr(D=1|S=e,R), and predS(R) estimates Pr(S=e|R), using machine learning.

(c) Initially estimate θ̂init=argminθEtrain[{Ê(∆e|R)−Ê(∆o|R)θ}2], where Ê(∆e|R) and

Ê(∆o|R) are constructed from the marginal probabilities and predictors according to (1).

(d) Learn the optimal representation: Ĥ(R)= Ê(∆o|R)

σ̂2(θ̂init,R)
where σ̂2(θ̂init,R) is constructed

from the marginal probabilities, predictors, and initial estimate via Lemma 2.

3. Construct an efficient causal estimate on test: θ̂.

(a) Count marginals: countY=1,S=o, countY=0,S=o, countD=1,S=e, countD=0,S=e.

(b) Construct an efficient causal estimate: θ̂= Etest{∆̂eĤ(R)}
Etest{∆̂oĤ(R)}

where ∆̂e and ∆̂o are con-

structed from marginal probabilities according to (1).

(c) Bootstrap its confidence interval: θ̂±cαv̂n
−1/2, where cα is the 1−α/2 quantile of the

standard Gaussian and v̂n−1/2 is the bootstrap standard error of θ̂ while fixing Ĥ(R).

See Appendix D for explicit computations of Ê(∆e|R), Ê(∆o|R), and σ̂2(θ̂init,R) in terms

of the marginal probabilities, predictors, and initial estimate.

Sample splitting may be eliminated under complexity restrictions that tolerate simple

machine learning procedures. See e.g. Chernozhukov et al. (2020) for a recent summary.

4.3 Robustness to mis-specification

In empirical research, the RSV is typically unstructured and high dimensional, e.g. a satellite

image. The prediction is typically conducted by a complex machine learning algorithm,

e.g. a deep convolutional neural network. For this realistic setting, rates of convergence are

often unknown. In other words, we have no reason to believe that predY (R) converges to

Pr(Y =1|S=o,R), nor that Ĥ(R) converges to H∗(R). Even carefully crafted architectures

positing a generative model would typically be mis-specified.

For this reason, we place a weaker regularity condition: the predictions, and hence the

representation estimator, have some probability limit; they may be mis-specified.

Assumption 4 (Limit). The learned representation has some mean square limit: ER[{Ĥ(R)−

H̃(R)}2]= op(1), where E{H̃(R)2} is finite, and possibly H̃(R) ̸=H∗(R). This limit is cor-

related with outcome variation: E{H̃(R)∆o} is bounded away from zero.

20



Assumption 4 does not require any complexity restriction, nor any rate of convergence.

The moment restriction in Theorem 1 is infinite-order Neyman orthogonal (Mackey et al., 2018;

Chen et al., 2020), so Algorithm 1 enjoys the best of both worlds: no complexity restriction

(Chernozhukov et al., 2018, 2023), and no rate requirement (Chamberlain, 1987; Newey, 1993).

In the following statements, we refer to Pr(D=1,S=e), Pr(D=0,S=e), Pr(Y =1,S=o),

and Pr(Y =0,S=o) as the marginal probabilities.

Proposition 2 (Inference with known counts). Suppose Theorem 1’s conditions and As-

sumption 4 hold. If the marginal probabilities are known and bounded away from zero, then

n1/2(θ̂−θ)⇝N
(
0,E{(∆

e−θ∆o)2H̃(R)2}
[E{∆oH̃(R)}]2

)
. Moreover, if H̃(R)=H∗(R), then θ̂ is semiparamet-

rically efficient for θ satisfying the conditional moment in Theorem 1.

Proposition 3 (Inference with unknown counts). Suppose Theorem 1’s conditions and

Assumption 4 hold. If the marginal probabilities and their counting estimators are bounded

away from zero, then n1/2(θ̂−θ)⇝N
(
0, V

[E{∆oH̃(R)}]2

)
, where V is defined in Lemma D.6.

When marginal probabilities are known, the asymptotic variance is standard (Proposi-

tion 2). When marginal probabilities are unknown, the asymptotic variance is weighted by

them (Proposition 3). For the latter, it is simpler to use a bootstrap than an analytic variance

estimator.

Theorem 2 allows direct effects of the treatment on the remotely sensed variable, as long as

treatment is non-missing and non-deterministic in the observational sample. We have already

derived the conditional moment equations. Estimation and inference remain essentially the

same.

5 Program evaluation using satellite images

To empirically validate our method, we conduct three semi-synthetic exercises that are

increasingly realistic. We use real RSV distributions, together with

• synthetic treatment effects and synthetic sample definitions;

• real treatment effects and synthetic sample definitions; or

• real treatment effects and real sample definitions.

Across the exercises, we use data from an experiment analyzed in Muralidharan et al. (2016,

2023), illustrated in Figure 1. The authors collect data in an experimental sample and an
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observational sample of villages in Andra Pradesh, India. The treatment D is the early intro-

duction of Smartcards, which are a biometrically authenticated payments infrastructure. The

outcome Y is a measure of village-level poverty. See Appendix G for details on the experiment.

We use the geographic coordinates of each village to extract a remotely sensed variable R,

from free, open-access databases. The RSV concatenates luminosity (a scalar) (Asher et al.,

2021) and satellite images (a high-dimensional, pre-trained embedding vector in R4000) (Rolf

et al., 2021). These variables have been extensively validated as predictors of poverty (Hender-

son et al., 2011; Jean et al., 2016; Stoeffler et al., 2016; Michaels et al., 2021; Huang et al., 2021;

Sherman et al., 2023). Our framework allows us to test their relevance for program evaluation,

similar to a “first stage” exercise in instrumental variable analysis. In our semi-synthetic

exercises, we will evaluate how well we can conduct program evaluation using this real RSV.

In terms of our identification framework, the semi-synthetic settings have incomplete cases

(Assumption 3(ii)): the treatment is missing in the observational sample. The settings also have

some experimental outcomes (Remark 3). We will be explicit about sample definitions below.

5.1 Our method outperforms current practice across effect sizes and

sample sizes

We impose all of our assumptions in a calibrated, synthetic data generating process (DGP).

First, we simulate the binary treatment D as a fair coin toss (Assumption 1). If D=0, we

simulate the binary outcome Y as a weighted coin toss, calibrated to the empirical probability

of Y =1 among untreated experimental units in the real data. If D=1, we simulate Y as a

different weighted coin toss, calibrated to the empirical probability of Y =1 among treated

experimental units in the real data.

In this baseline version of the DGP, the synthetic treatment effect is calibrated to the real

one: 0.07. We consider additional synthetic treatment effect values θ=0.07+τ by augmenting

the probability of Y =1 when D=1 for alternative values of τ .

Next, we draw RSV values from the real data. If Y =0, we draw R from the empirical

distribution of R|Y =0 in the real experimental data. Likewise, we draw R when Y =1. This

imposes no direct effects (Assumption 3(ii)). For computational feasibility, we use luminosity

and only the initial 1,000 satellite image features as our RSV.

Finally, to mimic a setting with missing outcomes, we delete Y if D = 1. In terms of
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(a) n=1000. (b) n=2000. (c) n=3000.

Figure 4: In the first exercise, our method outperforms common practice in terms of average

bias. For each value of the synthetic treatment effect θ and each sample size n, we conduct

500 replications.

(a) n=1000. (b) n=2000. (c) n=3000.

Figure 5: In the first exercise, our method outperforms common practice in terms of root

mean square error. For each value of the synthetic treatment effect θ and each sample size n,

we conduct 500 replications.

Remark 3, we set S̃=e when D=1 and S̃={e,o} when D=0.10 This imposes stability across

samples (Assumption 2). Recent methods with machine learning predictions as outcomes,

e.g. prediction powered inference (Angelopoulos et al., 2023), provide no guidance for this

DGP, because no treated unit has an observed outcome.

Figures 4 and 5 demonstrate that our method outperforms common practice across treat-

ment effect values and sample sizes. We consider treatment effect values θ=0.07+τ with
10For simplicity, we do not have S̃=o. This could be easily done: if D=0, toss a coin to determine whether

S̃={e,o} or S̃=o. Either way, Theorem 1 applies: use e∈ S̃ instead of S=e in ∆e, and o∈ S̃ instead of S=o

in ∆o.
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τ ∈{0,0.1,...,0.5} and sample sizes n∈{1000,2000,3000}. By varying these aspects of the

synthetic DGP, we evaluate relative performance for different signal-to-noise ratios.

We compare the bias and root mean square error of the two methods. Whereas the bias of

our method is always small and vanishing with sample size, the bias of the common practice

is typically very large and constant across sample sizes. Common practice has positive or

negative bias for the treatment effect. While the variance of our method is similar to the

variance of the common practice, our method’s large improvement in bias translates into

similar improvement in mean square error when the sample size is large enough.

This exercise has clear consequences for empirical practice. If the goal is to conduct valid in-

ference on the treatment effect, common practice can be misleading due to large bias that does

not vanish as the sample size increases. It can return the wrong sign, as foreshadowed by Propo-

sition 1. By contrast, our method reports unbiased estimates, with valid asymptotic inference.

5.2 Our method recovers the true effect with randomly missing

outcomes

While our first exercise involves synthetic treatment effects, our second exercise involves real

treatment effects. We now ask: compared to an unbiased benchmark, how does our method

perform? The benchmark is the difference-in-means estimate and confidence interval an

economist would obtain if they could observe both treatments and outcomes in the experiment.

Our method gives an estimate and confidence interval using treatments and RSVs in an

experiment, and outcomes and RSVs in an observational sample.11

We conduct this exercise with three possible poverty measurements: (i) is the village

in the bottom quartile of villages for per capita consumption, (ii) does a village have only

low income households, and (iii) does a village have only low and middle income households.

While (i) is a measure of average consumption, (ii) and (iii) describe the income distribution

using formal categories from Indian administrative data; see Appendix G for details.12

In this exercise, we now use the full RSV: luminosity, and the full, 4000-dimensional

embedding of satellite images.

In a semi-synthetic way, we classify villages into the samples described in Assumption 3(ii)

and Remark 3. We classify the real observational villages as S̃ = o, for which we observe

(Y,R). Among the real experimental villages, we randomly classify some as S̃=e, for which
11Following Remark 3, we also observe some outcomes in the experiment, as described below.
12We used the low consumption outcome (i) in the first semi-synthetic exercise.
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(a) Low consumption. (b) Low income. (c) Low and middle income.

Figure 6: Satellite images are relevant to the poverty outcomes. Each plot is for a poverty

outcome. Within each plot, we report En{Ĥ(R)∆̂o} and its 90% confidence interval using our

learned representation. In light blue, we visualize the relevance of our learned representation

in the second exercise (“synthetic samples”). In dark blue, we visualize the relevance of our

learned representation in the third exercise (“real samples”). Bootstrap standard errors, based

on 1000 replications, are clustered at the sub-district level.

we observe (D,R), and some as S̃={e,o}, for which we observe (D,Y,R). In other words, for

real experimental villages, we randomly delete half of their outcomes.

This exercise satisfies the key assumptions of our framework. The real treatment variable

was randomized in the real experiment (Assumption 1). Stability of the RSV conditional

distribution is plausible, as demonstrated in Figure 2 (Assumption 2). Finally, because the

real data have incomplete cases, we must argue that the treatment only affects the RSV via

the outcome (Assumption 3(ii)). As supporting evidence, Figures 11 and 12 show that the

distribution of R|Y =y,D=1 visually matches the distribution of R|Y =y,D=0.

Another requirement in our framework is that the RSV is relevant: E{H(R)∆o} ≠ 0

in Corollary 1. Intuitively, the representation of the RSV H(R) used for inference should

be correlated with outcome variation ∆o. This requirement is testable; for our learned

representation in Algorithm 1, we can test whether the empirical analogue En{Ĥ(R)∆̂o} is

significantly nonzero. Figure 6 confirms that our RSV is relevant.

We further interpret and compare our learned representation of the satellite image in Ap-

pendix G. Our optimal representation is based on three predictions: the outcome, treatment,

and sample indicator given the RSV. By contrast, common practice only uses the prediction of

the outcome given the RSV. Interestingly, our optimal representation allows for extrapolation,
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(a) Low consumption. (b) Low income. (c) Low and middle income.

Figure 7: Our method recovers the unbiased benchmark estimate and its 90% confidence

interval. Each plot is for a particular poverty outcome. Within each plot, we visualize the

benchmark in black versus our method in blue. The benchmark is the difference-in-means an

economist would obtain if they could observe treatments and outcomes in the experiment.

Our method uses treatments and RSVs in an experiment, and outcomes and RSVs in an

observational sample. In light blue, we visualize our method in the second exercise, where we

observe outcomes for a random subset of experimental villages (“synthetic samples”). In dark

blue, we visualize our method in the third exercise, where we observe outcomes for only the

untreated experimental villages (“real samples”). Bootstrap standard errors, based on 1000

replications, are clustered at the sub-district level.

i.e. negative weights on villages, whereas common practice does not.

Figure 7 (“synthetic samples”) shows that our method recovers the treatment effect

estimated by the unbiased benchmark in this exercise. For each poverty outcome, our

treatment effects have the same signs and magnitudes as the benchmark, i.e. as if the economist

could observe treatments and outcomes in the experiment. These effects are consistent with

the findings in Muralidharan et al. (2023): early adoption of Smartcards reduces poverty.

Compared to the benchmark, our confidence intervals are similar, and sometimes shorter;

efficiently using the additional information in RSVs can boost statistical power.13

These findings have a practical implication: our method may allow economists to signifi-

cantly reduce survey costs. In this exercise, we mimic what would happen if an economist paid

surveyors to collect outcomes for half of the experimental villages, and relied on free satellite

images for the other half. We can calculate the savings, compared to paying surveyors to
13Assumption 3(ii) is an additional restriction that may improve asymptotic precision. Relative magnitudes

of standard errors may also reflect finite sample estimation error.
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collect outcomes for all of the experimental villages. If surveying each individual in a village

conservatively costs $0.50, our results suggest savings of $3.6 million.14

5.3 Our method recovers the true effect in a realistic setting

Finally, as our third exercise, we use the data of Muralidharan et al. (2016, 2023) as realistically

as possible. The third exercise is identical to the second exercise, except that we classify

villages in a more realistic way. As before, we classify the real observational villages as S̃=o,

for which we observe (Y,R). Among the real experimental villages, we now classify the treated

ones as S̃= e, for which we observe (D,R), and the untreated ones as S̃= {e,o}, for which

we observe (D,Y,R). In other words, for real experimental villages, we systematically delete

the outcomes of all treated villages. Methods based on missingness-at-random provide no

guidance in this setting.

As before, this exercise appears to satisfy our identifying assumptions. The real treatment

variable was randomized in the real experiment (Assumption 1). The conditional distribution of

the RSV appears stable in Figure 2 (Assumption 2). There do not appear to be direct effects in

Figures 11 and 12 (Assumption 3(ii)). Moreover, the RSV is relevant in Figure 6 (Corollary 1).

In this more challenging exercise, we find qualitatively similar results. Our learned represen-

tations allow efficient extrapolation in Figure 13. Our method recovers similar estimates and

confidence intervals to the benchmark in Figure 7 (“real samples”), consistent with prior work.

6 Recommendations for practice

Common empirical practice can be highly biased if the remotely sensed variable is post-outcome,

i.e. caused by the outcome of interest. For example, changes in satellite images are caused by

fires or variation in local income, but not vice versa. Theoretically, we demonstrate that the

resulting bias can be positive or negative. Empirically, we demonstrate that common practice

may attenuate the treatment effect in a real environmental application, and it may have

positive or negative bias for the treatment effect in a semi-synthetic development application.

However, the intuition underlying empirical work is powerful: the conditional distribution

of the RSV given the outcome and treatment is stable across samples. We use such an
14Table 5 summarizes the number of experimental villages and the populations in experimental villages,

which we use to calculate savings. This calculation is extremely conservative; Viviano and Rudder (2024) find

that phone surveys in Pakistan cost $7 per individual, rather than $0.50.

27



assumption to nonparametrically identify treatment effects, and derive a novel formula. We

demonstrate that it is empirically plausible in a real development application. Finally, we

characterize the optimal way to use remotely sensed outcomes for program evaluation.

Our findings inform how to conduct program evaluation with RSVs in practice.

• Auxiliary sample. Collect RSVs with linked outcomes in an auxiliary, observational

sample. In this sample, the treatments may be missing or deterministic. It is helpful,

but unnecessary, to collect some outcomes in the primary, experimental sample. The

distribution of RSVs given outcomes and treatments should be stable across samples.

• Three predictions. Use machine learning to predict not only the outcome, but also the

treatment and sample indicator, given the RSV. Researchers can use complex machine

learning methods with unknown statistical properties, while remaining agnostic about

how the RSV is generated.

• Robust inference. Use Algorithm 1 to aggregate the three predictions into an efficient

representation of the RSV for program evaluation. Algorithm 1 is robust to mis-

specification; it provides valid inference as long as the learned representation converges

at any rate to any limit that is correlated with outcome variation.

Our framework clarifies the key diagnostics that empirical researchers should assess.

• RSV relevance test. Evaluate whether the learned RSV representation is correlated

with outcome variation. Tests for weak instruments can detect weak RSVs.

• Stability and no direct effect joint test. If the treatment effects estimated with

two different RSV representations are significantly different, then reject the null hy-

pothesis that both conditions hold: stability (Assumption 2), and no direct effects

(Assumption 3(ii)).

• RSV density plots. If possible, collect some experimental outcomes. If the conditional

density of theRSVgiven the outcome and treatment is similar across experimental and ob-

servational units, then stability (Assumption 2) is plausible. If it is similar across treated

and untreated experimental units, then no direct effects (Assumption 3(ii)) is plausible.

In summary, researchers may substantially reduce research costs by using post-outcome

RSVs instead of directly measured outcomes, without compromising valid inference.
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Our framework poses new questions, e.g. how to jointly design experiments (treatment

assignment), surveys (outcome collection), and sensors (RSV extraction) to optimally estimate

treatment effects, subject to cost constraints. Our main result (Theorem 1) may inform not

only the use of satellite images, but also the design of cheap, noisy surveys. Future work may

also extend our inference guarantees (Propositions 2 and 3) to accommodate high dimensional

outcomes.

As remote sensing expands the frontier of data availability in economics, our framework

provides practical principles for its use in program evaluation.
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A Related work and model details

Figure 8: Remotely sensed variables are increasingly popular in published papers.

Figure 8 illustrates the increasing popularity of RSVs in empirical research. First, we

collected papers published in the AEA Journals, Econometrica, Quarterly Journal of Eco-

nomics, Review of Economic Studies and Journal of Political Economy using a keyword search

of “remotely sensed variables”, “mobile phone”, “satellite”, “machine learning”, and “drones

/ aerial” on their websites. Next, we collected papers published in Nature and Science using

a keyword search of “remotely sensed variables” on their websites. We subsetted to the papers

with RSVs in their main empirical analysis.

D R Y

Figure 9: Causal graph of surrogacy model.

Figure 9 illustrate the causal graph associated with the surrogacy identifying assumptions

(Prentice, 1989; Athey et al., 2024): the surrogate R fully mediates the effect of the treatment

D on the outcome Y . Our RSV identifying assumptions are the opposite, as illustrated by

Figure 3.

Table 3: Implications of RSV identifying assumptions.

Assumption Quantity Experimental Observational Description

1 Pr{Y (d)|S,X,D} Pr{Y (d)|S=e,X} Pr{Y (d)|S=o,X,D} Differs across samples

2 Pr(R|S,X,D,Y ) Pr(R|X,D,Y ) Pr(R|X,D,Y ) Stable across samples

3(i) Pr(R|S,X,D,Y ) Pr(R|X,D,Y ) Pr(R|X,D,Y ) Differs across treatments if complete cases

3(ii) Pr(R|S,X,D,Y ) Pr(R|X,Y ) Pr(R|X,Y ) Stable across treatments if incomplete cases

Table 3 summarizes the implications of our identifying assumptions. Our identifying

assumptions allow the propensity score Pr(D=1 |S,X) to differ across samples.
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B Crop burning illustration

B.1 Characterizing bias with binary variables

Assumption B.1 (Binary setting). Suppose X=∅, and D,Y,R∈{0,1}.

Lemma B.1 (Linear representations). Suppose Assumptions 1, 2, and 3(ii) hold, as well as

Assumption B.1. Then, without loss of generality, E(Y |R,S=o)= β̃0+β̃R, E(R|Y,D,S=e)=

β0+βY , and θ0=E(Y |D=1,S=e)−E(Y |D=0,S=e) for some scalars (β̃0,β̃,β0,β).

Proof. The conditional distribution of binary variables is summarized by their correlation,

with appropriate scaling by the variance.

Proposition B.1 (Bias of common practice: Binary). Under the conditions of Lemma B.1,

θ̃= β̃βθ0.

Proof. By the surrogate formula, Lemma B.1, and law of iterated expectations,

θ̃=E{E(Y |R,S=o)|D=1,S=e}−E{E(Y |R,S=o)|D=0,S=e}

= β̃{E(R|D=1,S=e)−E(R|D=0,S=e)}

= β̃[E{E(R|Y,D=1,S=e)|D=1,S=e}−E{E(R|Y,D=0,S=e)|D=0,S=e}]

= β̃β{E(Y |D=1,S=e)−E(Y |D=0,S=e)}= β̃βθ0.

Corollary B.1 (Bias of common practice: Binary constrained). Under the conditions of

Lemma B.1, if β̃=1, then θ̃=βθ0.

Proof. The result is immediate from Proposition B.1.

Proposition B.2 (Binary). Under the conditions of Lemma B.1,

θ0=β−1{E(R|D=1,S=e)−E(R|D=0,S=e)}.

Proof. Within the proof of Proposition B.1, we have shown

β̃{E(R|D=1,S=e)−E(R|D=0,S=e)}= β̃βθ0.

Within the main text, we take β̃ = 1 so that θ̃= βθ0 by Corollary B.1 since Jack et al.

(2025) directly plug-in the RSV R as the outcome in the experiment.
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Table 4: Underestimation of treatment effects in crop burning experiment: Revisited.

Common practice Bias Causal parameter

Estimand θ̃ β θ

Estimate 0.074 0.601*** 0.123

(0.049) (0.068) (0.086)
Notes: The RSV is the field-level “balanced accuracy” label defined by Jack et al. (2025), which applies a

threshold rule to the predicted probability of not being burned. The “observational sample” has fields that

received a random spot check, and the “experimental sample” has other fields. For illustration, we conduct

linear estimation, controlling for stratum fixed effects. Standard errors are based on 5000 bootstrap

replications clustered at the village level.

B.2 Implementation details

We present details for the empirical example in Section 3.2, based on Jack et al. (2025). We

classify a field as experimental (S=e) if it did not receive a random spot check. We classify

a field as observational (S=o) if it received a random spot check. This example has complete

cases (Assumption 3(ii)); the treatment varies in the observational sample.

In Section 3.2, we define R ∈ {0,1} as the authors’ “maximum accuracy” classifier for

whether a field has not been burned. Jack et al. (2025) construct another “balanced accuracy”

classifier based on an alternative threshold rule. We find similar results in Table 4, now

defining R∈{0,1} as the authors’ “balanced accuracy” classifier.

Finally, we visualize the experimental and observational fields, summarized at the village

level. Due to privacy concerns, longitude and latitude coordinates for individual fields in the

experiment are unavailable. Therefore, in Figure 10a, we classify a village as experimental

if less than 50% of its fields received a random spot check. Similarly, in Figure 10b, we classify

a village as observational if more than 50% of its fields received a random spot check.
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(a) Experimental units only. (b) Auxiliary sample: Observational units.

Figure 10: We illustrate the samples in our re-analysis of the crop burning experiment in Jack

et al. (2025), plotting the map of villages in Bathinda and Faridkot, which are two districts in

Punjab, India. Experimental villages are those in which less than 50% of fields received a spot

check. Observational villages are those in which more than 50% of fields received a spot check.

C Identification proofs

C.1 Proof of Proposition 1

To begin, we write the average potential outcome in the experimental sample as

µ(1) :=Pr{Y (1)=1 |S=e}
(1)
=Pr{Y (1)=1 |D=1,S=e}

=Pr(Y =1 |D=1,S=e)

=

∫
Pr(Y =1 |R=r,D=1,S=e)Pr(R=r |D=1,S=e)dr,

where (1) follows by Assumption 1. Next we rewrite the implicit target

µ̃(1) :=

∫
Pr(Y =1 |R=r,S=o)Pr(R=r |D=1,S=e)dr.
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In particular,

Pr(Y =1 |R,S=o)
(1)
=

Pr(R |Y =1,S=o)Pr(Y =1 |S=o)

Pr(R |S=o)

(2)
=

Pr(R |Y =1,D=1,S=e)P (Y =1 |S=o)

Pr(R |S=o)

(3)
=Pr(Y =1 |R,D=1,S=e)

Pr(R |D=1,S=e)Pr(Y =1 |S=o)

Pr(Y =1 |D=1,S=e)Pr(R |S=o)

(4)
=Pr(Y =1 |R,D=1,S=e)

Pr(Y =1 |S=o)

Pr{Y (1)=1 |S=e}
Pr(R |D=1,S=e)

Pr(R |S=o)

where (1) follows by Bayes’ rule; (2) follows since (S,D) |= R |Y under Assumptions 2 and 3(ii);

(3) follows by Bayes’ rule; and (4) applies Assumption 1.

We introduce additional structure to simplify the expression. First, we further as-

sume S |= (R,Y ) |D, which in turn implies S |= Y |R,D. Second, since we further assume

Pr(D=1 |S=o)=0, we have that

Pr(Y =1 |S=o)=Pr{Y (0)=1 |D=0,S=o}=Pr{Y (0)=1 |D=0,S=e}=Pr{Y (0)=1 |S=e},

where the second equality uses S |= Y |D and the third equality uses Assumption 1. Similarly,

Pr(R |D=1,S=e)=Pr(R |D=1) using R |= S |D and

Pr(R |S=o)=Pr(R |D=0,S=o)=Pr(R |D=0)

using Pr(D=1 |S=o)=0 and S |= R |D.

Therefore, we have that µ̃(1) equals

Pr{Y (0)=1 |S=e}
Pr{Y (1)=1 |S=e}

∫
Pr(R=r |D=1)

Pr(R=r |D=0)
Pr(Y =1 |R=r,D=1,S=e)Pr(R=r |D=1,S=e)dr,

and µ̃(1)−µ(1) equals∫ [
Pr{Y (0)=1 |S=e}
Pr{Y (1)=1 |S=e}

Pr(R=r |D=1)

Pr(R=r |D=0)
−1

]
Pr(Y =1 |R=r,D=1,S=e)Pr(R=r |D=1,S=e)dr.

Further rearranging, we can write

Pr(Y =1 |R,D=1,S=e)Pr(R |D=1,S=e)=Pr(R |Y =1,D=1,S=e)Pr{Y (1)=1 |S=e}.

Consequently, under the additional structure introduced, we have that µ̃(1)−µ(1) equals

µ(1)

∫ [
Pr{Y (0)=1 |S=e}
Pr{Y (1)=1 |S=e}

Pr(R=r |D=1)

Pr(R=r |D=0)
−1

]
Pr(R=r |Y =1,D=1,S=e)dr.

We can follow a similar argument for µ̃(0). In particular, µ̃(0) equals∫
Pr(Y =1 |R=r,D=0,S=e)

Pr(Y =1 |S=o)

Pr{Y (0)=1 |S=e}
Pr(R=r |D=0,S=e)

Pr(R=r |S=o)
Pr(R=r |D=0,S=e)dr

=

∫
Pr(Y =1 |R=r,D=0,S=e)Pr(R=r |D=0,S=e)dr=µ(0).
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The first expression uses identical arguments as before, replacing D= 1 with D= 0. The

equality uses Assumption 1, SUTVA, S |= Y |D, and D=0 when S=o to simplify

Pr{Y (0)=1 |S=e}=Pr{Y (0)=1 |D=0,S=e}=Pr(Y =1 |D=0,S=e)

=Pr(Y =1 |D=0,S=o)=Pr(Y =1 |S=o),

as well as Pr(R=r |D=0,S=e)=Pr(R=r |D=0) as before.

Since µ̃(0)=µ(0), we conclude that θ̃−θ= µ̃(1)−µ(1) under the stated conditions.

Next we demonstrate the bias can be positive or negative by constructing the claimed

DGPs. Suppose that R is binary with

R |Y,D,S=

Y with probability 1/2

0 otherwise.

This satisfies both S |= (R,Y ) |D and D |= R |Y (Assumption 3(ii)). Under this DGP,

Pr(R=1 |Y =1,D=1,S=e)=1, Pr(R=0 |Y =1,D=1,S=e)=0.

Consequently, the bias of the implicit target simplifies to[
Pr{Y (0)=1 |S=e}
Pr{Y (1)=1 |S=e}

Pr(R=1 |D=1)

Pr(R=1 |D=0)
−1

]
µ(1).

Furthermore, under this DGP,

Pr(R=1 |Y =1,D=1,S=e)=1, Pr(R=1 |Y =0,D=1,S=e)=
1

2
.

By similar arguments to those above, we therefore have

Pr(R=1 |D=1)=

∫
Pr(R=1,Y =y |D=1,S=e)dy

=

∫
Pr(R=1 |Y =y,D=1,S=e)Pr(Y =y |D=1,S=e)dy

=Pr(Y =1 |D=1,S=e)+
1

2
Pr(Y =0 |D=1,S=e)

=Pr{Y (1)=1 |S=e}+1

2
Pr{Y (1)=0 |S=e}= 1

2
[1+Pr{Y (1)=1 |S=e}]

using the extra structure S |= R |D, the specific DGP, and Assumption 1. Therefore,

Pr(R=1 |D=1)

Pr(R=1 |D=0)
=
1+Pr{Y (1)=1 |S=e}
1+Pr{Y (0)=1 |S=e}

and so we have shown that µ̃(1)−µ(1) equals[
Pr{Y (0)=1 |S=e}
Pr{Y (1)=1 |S=e}

· 1+Pr{Y (1)=1 |S=e}
1+Pr{Y (0)=1 |S=e}

−1

]
Pr{Y (1)=1 |S=e}.
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Lightening notation by writing a :=Pr{Y (0)=1 |S=e} and b :=Pr{Y (1)=1 |S=e},

µ̃(1)−µ(1)=

(
a

b
· 1+b

1+a
−1

)
b=

a−b

a+1
,

which is positive when a>b and negative otherwise.

C.2 Proof of Lemma 1

Let δey,d(r,x) :=Pr(R=r |Y =y,D=d,S=e,X=x). By the law of total probability,

δed(r,x)=δe0,d(r,x)+
{
δe1,d(r,x)−δe0,d(r,x)

}
Pr{Y (d)=1 |D=d,S=e,X=x}

=δe0,d(r,x)+
{
δe1,d(r,x)−δe0,d(r,x)

}
Pr{Y (d)=1 |S=e,X=x}

where the second equality applies Assumption 1. Next, notice that

Pr(R=r |Y =y,D=d,S=e,X=x)=Pr(R=r |Y =y,D=d,S=o,X=x)

=Pr(R=r |Y =y,S=o,X=x),

where the first equality applies Assumption 2 and the second equality applies Assumption

3(ii). Combining the previous two displays,

δed(r,x)=δo0(r,x)+{δo1(r,x)−δo0(r,x)}Pr{Y (d)=1 |S=e,X=x}.

C.3 Proof of Theorem 1

To prove this result, we apply Bayes’ rule to rewrite

δoy(r,x) :=Pr(R=r |Y =y,S=o,X=x)=
Pr(Y =y,S=o |R=r,X=x)Pr(R=r|X=x)

Pr(Y =y,S=o|X=x)
,

δed(r,x) :=Pr(R=r |D=d,S=e,X=x)=
Pr(D=d,S=e |R=r,X=x)Pr(R=r|X=x)

Pr(D=d,S=e|X=x)
.

Applying Lemma 1, we have for d∈{0,1},x∈X and r∈R,

Pr(D=d,S=e |R=r,X=x)

Pr(D=d,S=e|X=x)
−Pr(Y =0,S=o |R=r,X=x)

Pr(Y =0,S=o|X=x)
=

{
Pr(Y =1,S=o |R=r,X=x)

Pr(Y =1,S=o|X=x)
−Pr(Y =0,S=o |R=r,X=x)

Pr(Y =0,S=o|X=x)

}
µ(d,x).

By iterated expectations, this can be further rewritten as

E
[

1{D=d,S=e}
Pr(D=d,S=e|X=x)

− 1{Y =y,S=o}
Pr(Y =y,S=o|X=x)

|R=r,X=x

]
=
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E
[
1{Y =1,S=o}
Pr(Y =1,S=o)

− 1{Y =0,S=o}
Pr(Y =1,S=o)

|R=r,X=x

]
µ(d,x).

Consequently, it immediately follows that

E
[
1{D=1,S=e}
Pr(D=1,S=e)

− 1{D=0,S=e}
Pr(D=0,S=e)

|R=r,X=x

]
=

E
[
1{Y =1,S=o}
Pr(Y =1,S=o)

− 1{Y =0,S=o}
Pr(Y =1,S=o)

|R=r,X=x

]
θ(x),

proving the result as desired.

C.4 Proof of Theorem 2

The proof follows the same steps as the proofs of Lemma 1 and Theorem 1. Applying the

law of total probability, for d∈{0,1} and r∈R, we have

δed(r,x)=δe0,d(r,x)+
{
δe1,d(r,x)−δe0,d(r,x)

}
Pr{Y (d)=1 |S=e,X=x}

for δey,d(r,x) :=Pr(R=r |Y =y,D=d,S=e,X=x). By Assumptions 2 and 3(i),

Pr(R=r |Y =y,D=d,S=e,X=x)=Pr(R=r |Y =y,D=d,S=o,X=x).

Combining the previous two displays, we have

δed(r,x)=δo0,d(r,x)+
(
δo1,d(r,x)−δo0,d(r,x)

)
Pr{Y (d)=1 |S=e,X=x}.

We next apply Bayes’ rule to rewrite

δed(r,x)=
Pr(D=d,S=e |R=r,X=x)Pr(R=r|X=x)

Pr(D=d,S=e|X=x)

δoy,d(r,x)=
Pr(Y =y,D=d,S=o |R=r,X=x)Pr(R=r|X=x)

Pr(Y =y,D=d,S=o|X=x)
.

It therefore follows that, for d∈{0,1} and r∈R,

Pr(D=d,S=e |R=r,X=x)

Pr(D=d,S=e|X=x)
−Pr(Y =0,D=d,S=o |R=r,X=x)

Pr(Y =0,D=d,S=o|X=x)
={

Pr(Y =1,D=d,S=o |R=r,X=x)

Pr(Y =1,D=d,S=o|X=x)
−Pr(Y =0,D=d,S=o |R=r,X=x)

Pr(Y =0,D=d,S=o|X=x)

}
µ(d,x).

By iterated expectations, this can be further rewritten as

E
[

1{D=d,S=e}
Pr(D=d,S=e|X=x)

− 1{Y =0,D=d,S=o}
Pr(Y =0,D=d,S=o|X=x)

|R=r,X=x

]
=

E
[

1{Y =1,D=d,S=o}
Pr(Y =1,D=d,S=o|X=x)

− 1{Y =0,D=d,S=o}
Pr(Y =0,D=d,S=o|X=x)

|R=r,X=x

]
µ(d,x).

The result then follows immediately.
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D Estimation and inference proofs

D.1 Algorithm details

Algorithm D.1 (Inference: Details). Given {Si,1{Si=e}Di,1{Si=o}Yi,Ri}:

1. Divide the sample into train and test folds.

2. Learn the optimal representation on train: Ĥ(R).

(a) Count marginals: countY=1,S=o, countY=0,S=o, countD=1,S=e, countD=0,S=e.

(b) Train predictors: predY (R) estimates Pr(Y = 1|S = o,R), predD(R) estimates

Pr(D=1|S=e,R), and predS(R) estimates Pr(S=e|R), using machine learning.

(c) Initially estimate θ̂init=argminθEtrain[{Ê(∆e|R)−Ê(∆o|R)θ}2], where Ê(∆e|R) and

Ê(∆o|R) are constructed from the marginal probabilities and predictors according to (1):

Ê(∆e|R)=

[
predD(R)

countD=1,S=e

− 1−predD(R)

countD=0,S=e

]
predS(R)

Ê(∆o|R)=

[
predY (R)

countY=1,S=o

− 1−predY (R)

countY=0,S=o

]
{1−predS(R)}.

(d) Learn the optimal representation: Ĥ(R)= Ê(∆o|R)

σ̂2(θ̂init,R)
where σ̂2(θ̂init,R) is constructed

from the marginal probabilities, predictors, and initial estimate via Lemma 2:

σ̂2(θ̂init,R)=

[
predD(R)

count2
D=1,S=e

+
1−predD(R)

count2
D=0,S=e

]
predS(R)

+θ̂2init

[
predY (R)

count2
Y=1,S=o

+
1−predY (R)

count2
Y=0,S=o

]
{1−predS(R)}.

3. Construct an efficient causal estimate on test: θ̂.

(a) Count marginals: countY=1,S=o, countY=0,S=o, countD=1,S=e, countD=0,S=e.

(b) Construct an efficient causal estimate: θ̂= Etest{∆̂eĤ(R)}
Etest{∆̂oĤ(R)}

where ∆̂e and ∆̂o are con-

structed from marginal probabilities according to (1):

∆e=
1{D=1,S=e}
countD=1,S=e

− 1{D=0,S=e}
countD=0,S=e

, ∆o=
1{Y =1,S=o}
countY=1,S=o

− 1{Y =0,S=o}
countY=0,S=o

.

(c) Bootstrap its confidence interval: θ̂±cαv̂n
−1/2, where cα is the 1−α/2 quantile of the

standard Gaussian and v̂n−1/2 is the bootstrap standard error of θ̂ while fixing Ĥ(R).
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D.2 Proof of Lemma 2

Since the events in ∆e are exclusive of the events in ∆o,

(∆e−∆oθ)2=(∆e)2−(2θ)∆e∆0+θ2(∆o)2=(∆e)2+θ2(∆o)2.

Similarly, since the events within ∆e are exclusive of each other,

(∆e)2=

[
1{D=1,S=e}
Pr(D=1,S=e)

]2
+

[
1{D=0,S=e}
Pr(D=0,S=e)

]2
=

1{D=1,S=e}
Pr(D=1,S=e)2

+
1{D=0,S=e}
Pr(D=0,S=e)2

.

The argument for (∆o)2 is similar.

D.3 Proof of Proposition 2

To lighten notation, let Y =∆e, X=∆o, U=Y −Xθ, Z=H̃(R), and Ẑ=Ĥ(R). With known

marginal probabilities, the argument uses standard techniques, similar to Mackey et al. (2018);

Chen et al. (2020). In this lighter notation,

n1/2(θ̂−θ)=n1/2

{
En(Y Ẑ)

En(XẐ)
−θ

}
=
n1/2En(UẐ)

En(XẐ)
.

Focusing on the numerator, if n1/2En(UẐ) − n1/2En(UZ) = op(1) and n1/2En(UZ) ⇝

N{0,E(U2Z2)}, then n1/2En(UẐ)⇝N{0,E(U2Z2)} by Slutsky’s theorem .

Focusing on the denominator, if En(XẐ)−En(XZ)=op(1) and En(XZ)=E(XZ)+op(1)

then En(XẐ)=E(XZ)+op(1) by the continuous mapping theorem.

Overall, we conclude that n1/2(θ̂− θ)⇝ N
[
0, E(U2Z2)

{E(XZ)}2

]
by Slutsky’s theorem. In the

following lemmas, we prove these high probability statements.

While proving the results, we use standard notation for cross fitting. Let there be L folds,

each denoted by Iℓ with ℓ∈ [L]. Each fold contains nℓ=n/L observations. The complement of

Iℓ is I−ℓ. If i∈Iℓ, then Ẑi=Ĥℓ(Ri) is constructed from Ĥℓ estimated on the remaining folds I−ℓ.

Lemma D.1. Under Proposition 2’s conditions, n1/2En(UẐ)−n1/2En(UZ)=op(1).

Proof. We express the difference as

n1/2En{U(Ẑ−Z)}=n1/2 1

L

1

nℓ

L∑
ℓ=1

∑
i∈Iℓ

Ui(Ẑi−Zi)=L1/2 1

L

L∑
ℓ=1

n
1/2
ℓ

1

nℓ

∑
i∈Iℓ

Ui(Ẑi−Zi).

Focusing on the foldwise quantity, it suffices to control

E

{n
1/2
ℓ

1

nℓ

∑
i∈Iℓ

Ui(Ẑi−Zi)

}2
=E

E

{n
1/2
ℓ

1

nℓ

∑
i∈Iℓ

Ui(Ẑi−Zi)

}2

|I−ℓ

.
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Due to cross fitting, the inner expectation is

E

{n
1/2
ℓ

1

nℓ

∑
i∈Iℓ

Ui(Ẑi−Zi)

}2

|I−ℓ

=
1

nℓ

E

{∑
i,j∈Iℓ

Ui(Ẑi−Zi)Uj(Ẑj−Zj) |I−ℓ

}

=
1

nℓ

E

{∑
i∈Iℓ

U2
i (Ẑi−Zi)

2 |I−ℓ

}
=E{U2

i (Ẑi−Zi)
2 |I−ℓ}=E{E(U2

i |Zi,I−ℓ)(Ẑi−Zi)
2 |I−ℓ}

≤ σ̄2
UE{(Ẑi−Zi)

2 |I−ℓ}= σ̄2
UR(Ẑ)=op(1).

In the inequality, we use E(U2
i |Zi,I−ℓ)=E(U2

i |Zi)≤ σ̄2
U , where σ̄2

U exists by hypothesis. In

the final equality, we write R(Ẑ)=E{(Ẑi−Zi)
2 |I−ℓ}=op(1) for the mean square limit.

Lemma D.2. Under Proposition 2’s conditions, n1/2En(UZ)⇝N{0,E(U2Z2)}.

Proof. By Theorem 1, E(UiZi)=E{E(Ui|Zi)Zi}=0. Moreover, E(U2
i Z

2
i )=E{E(U2

i |Zi)Z
2
i }≤

σ̄2
UE(Z2

i ) since E(U2
i |Zi)≤ σ̄2

U under our assumptions. The latter is finite by hypothesis, so

we apply the Lindeberg-Levy central limit theorem.

Lemma D.3. Under Proposition 2’s conditions, En(XẐ)−En(XZ)=op(1).

Proof. We express the difference as

En{X(Ẑ−Z)}= 1

L

1

nℓ

L∑
ℓ=1

∑
i∈Iℓ

Xi(Ẑi−Zi)=
1

L

L∑
ℓ=1

1

nℓ

∑
i∈Iℓ

Xi(Ẑi−Zi).

Focusing on the foldwise quantity, it suffices to control

E

{∣∣∣∣∣ 1nℓ

∑
i∈Iℓ

Xi(Ẑi−Zi)

∣∣∣∣∣
}
=E

[
E

{∣∣∣∣∣ 1nℓ

∑
i∈Iℓ

Xi(Ẑi−Zi)

∣∣∣∣∣|I−ℓ

}]
.

The inner expectation is

E

{∣∣∣∣∣ 1nℓ

∑
i∈Iℓ

Xi(Ẑi−Zi)

∣∣∣∣∣|I−ℓ

}
≤E

{
1

nℓ

∑
i∈Iℓ

∣∣∣Xi(Ẑi−Zi)
∣∣∣|I−ℓ

}
≤E

{
X̄

nℓ

·
∑
i∈Iℓ

∣∣∣Ẑi−Zi

∣∣∣|I−ℓ

}

=X̄E
{∣∣∣Ẑi−Zi

∣∣∣|I−ℓ

}
≤X̄[E{(Ẑi−Zi)

2|I−ℓ}]1/2=X̄R(Ẑ)1/2=op(1).

We use |Xi|≤X̄ almost surely, which follows from our assumptions.

Lemma D.4. Under Proposition 2’s conditions, En(XZ)=E(XZ)+op(1).

Proof. By Chebyshev’s inequality, it suffices to bound V(XiZi)≤E(X2
i Z

2
i )≤ X̄2E(Z2

i ). In

summary, we use |Xi|≤X̄ almost surely and E(Z2
i )<∞.
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D.4 Proof of Proposition 3

With unknown marginal probabilities, some extra care is required. Extending the notation

from the proof of Proposition 2, if Ŷ =∆̂e, X̂=∆̂o, and Û= Ŷ −X̂θ, then

n1/2(θ̂−θ)=n1/2

{
En(Ŷ Ẑ)

En(X̂Ẑ)
−θ

}
=
n1/2En(Û Ẑ)

En(X̂Ẑ)
.

Focusing on the numerator, if n1/2En(Û Ẑ)−n1/2En(ÛZ)=op(1) and n1/2En(ÛZ)⇝N (0,V ),

then n1/2En(UẐ)⇝N (0,V ) by Slutsky’s theorem.

Focusing on the denominator, if En(X̂Ẑ)−En(X̂Z)=op(1), En(X̂Z)
p→En(XZ)=op(1),

and En(XZ)=E(XZ)+op(1), then En(XẐ)=E(XZ)+op(1) by the continuous mapping

theorem.

Overall, we conclude that n1/2(θ̂− θ)⇝ N
[
0, V

{E(XZ)}2

]
by Slutsky’s theorem. In the

following lemmas, we prove the remaining high probability statements.

Lemma D.5. Under Proposition 3’s conditions, n1/2En(Û Ẑ)−n1/2En(ÛZ)=op(1).

Proof. The argument is similar to Lemma D.1, using |Ûi|≤ Ū ′ almost surely, which follows

from our assumptions.

Lemma D.6. Under Proposition 3’s conditions, n1/2En(ÛZ)⇝N (0,V ) where V = v⊤Σv,

Σij=cov(Bi,Bj), and

v=



E(B5)
−1

−E(B6)
−1

−θE(B7)
−1

θE(B8)
−1

−E(B1)E(B5)
−2

E(B2)E(B6)
−2

θE(B3)E(B7)
−2

−θE(B4)E(B8)
−2



, B=



1D=1,S=eZ

1D=0,S=eZ

1Y=1,S=oZ

1Y=0,S=oZ

1D=1,S=e

1D=0,S=e

1Y=1,S=o

1Y=0,S=o



.

Proof. We unpack the definition of Û :

Û= Ŷ −X̂θ=∆̂e−∆̂oθ=
1D=1,S=e

En(1D=1,S=e)
− 1D=0,S=e

En(1D=0,S=e)
−
{

1Y=1,S=o

En(1Y=1,S=o)
− 1Y=0,S=o

En(1Y=0,S=o)

}
θ.

Therefore, for h(B)= B1

B5
−B2

B6
−θB3

B7
+θB4

B8
,

n1/2En(ÛZ)=n1/2

[
En(1D=1,S=eZ)

En(1D=1,S=e)
−En(1D=0,S=eZ)

En(1D=0,S=e)
−
{
En(1Y=1,S=oZ)

En(1Y=1,S=o)
−En(1Y=0,S=oZ)

En(1Y=0,S=o)

}
θ

]
=n1/2h{En(B)}.
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We make three observations. First, if E(Z2)<∞, then by the Lindeberg-Levy central

limit theorem, n1/2{En(B)−E(B)}⇝N (0,Σ).

Second, by the conditional moment equation,

h{E(B)}= E(1D=1,S=eZ)

E(1D=1,S=e)
−E(1D=0,S=eZ)

E(1D=0,S=e)
−θ

E(1Y=1,S=oZ)

E(1Y=1,S=o)
+θ

E(1Y=0,S=oZ)

E(1Y=0,S=o)

=E{(∆e−θ∆o)Z}=E[E{(∆e−θ∆o)|Z}]=0.

Third, the derivative is

{∇h(B)}⊤=
(
B−1

5 , −B−1
6 , −θB−1

7 , θB−1
8 , −B1B

−2
5 , B2B

−2
6 , θB3B

−2
7 , −θB4B

−2
8

)
.

Therefore, by the delta method,

n1/2En(ÛZ)=n1/2[h{En(B)}−h{E(B)}]⇝N (0,[∇h{E(B)}]⊤Σ[∇h{E(B)}]).

Lemma D.7. Under Proposition 3’s conditions, En(X̂Ẑ)−En(X̂Z)=op(1).

Proof. The argument is similar to Lemma D.3, using |X̂i|≤X̄ ′ almost surely, which follows

from our assumptions.

Lemma D.8. Under Proposition 3’s conditions, En(X̂Z)
p→En(XZ)=op(1).

Proof. We express the difference as

En(X̂Z)−En(XZ)=En{(X̂−X)Z}≤ [En{(X̂−X)2}]1/2{En(Z
2)}1/2.

Since En(Z
2)

p→E(Z2) when E(Z2)<∞ by the weak law of large numbers, it suffices to study

En{(X̂−X)2}= 1

L

L∑
ℓ=1

1

nℓ

∑
i∈Iℓ

(X̂i−Xi)
2=

1

L

L∑
ℓ=1

Eℓ{(X̂i−Xi)
2}, Eℓ(·)= .

1

nℓ

∑
i∈Iℓ

(·).

Unpacking the notation of Eℓ{(X̂i−Xi)
2},

X̂−X=∆̂o−∆o=
1Y=1,S=o

Eℓ(1Y=1,S=o)
− 1Y=0,S=o

Eℓ(1Y=0,S=o)
−
{

1Y=1,S=o

E(1Y=1,S=o)
− 1Y=0,S=o

E(1Y=0,S=o)

}
=1Y=1,S=o

{
1

Eℓ(1Y=1,S=o)
− 1

E(1Y=1,S=o)

}
−1Y=0,S=o

{
1

Eℓ(1Y=0,S=o)
− 1

E(1Y=0,S=o)

}
=1Y=1,S=o

{
E(1Y=1,S=o)−Eℓ(1Y=1,S=o)

Eℓ(1Y=1,S=o)E(1Y=1,S=o)

}
−1Y=0,S=o

{
E(1Y=0,S=o)−Eℓ(1Y=0,S=o)

Eℓ(1Y=0,S=o)E(1Y=0,S=o)

}
.

With population and empirical counts bounded away from zero,

|X̂−X|≲ |E(1Y=1,S=o)−Eℓ(1Y=1,S=o)|+|E(1Y=0,S=o)−Eℓ(1Y=0,S=o)|.
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By Hoeffding’s inequality and the union bound, with probability 1−2δ,

|E(1Y=1,S=o)−Eℓ(1Y=1,S=o)|≤
{
ln(2/δ)

2nℓ

}1/2

, |E(1Y=0,S=o)−Eℓ(1Y=0,S=o)|≤
{
ln(2/δ)

2nℓ

}1/2

.

Therefore with probability 1−δ for all i∈ [n] simultaneously,

|X̂i−Xi|≲2

{
ln(4/δ)

2nℓ

}1/2

≲
ln(4/δ)1/2

n
1/2
ℓ

.

We conclude that, under this union event that holds with probability 1−δ,

Eℓ{(X̂−X)2}≲Eℓ

{
ln(4/δ)

nℓ

}
=
ln(4/δ)

nℓ

.

For all δ>0, this quantities vanishes for large nℓ=n/L, so Eℓ{(X̂−X)2} p→0. The continuous

mapping theorem implies the desired result.

Lemma D.9. Under Proposition 3’s conditions, En(XZ)=E(XZ)+op(1).

Proof. The argument is identical to Lemma D.4.

E Discrete outcomes

Our identification results directly extend from Y={0,1} to Y={y1,...,y|Y|}.

Lemma E.1 (Identification as generative model). Suppose Assumptions 1 and 2 hold.

1. If Assumption 3(i) holds, then

Pr(R=r |D=d,S=e,X)=
∑
y∈Y

Pr(R=r |Y =y,D=d,S=o)Pr{Y (d)=y |S=e,X}.

2. If Assumption 3(ii) holds, then

Pr(R=r |D=d,S=e,X)=
∑
y∈Y

Pr(R=r |Y =y,S=o)Pr{Y (d)=y |S=e,X}.

Proof. By iterated expectations, we write

Pr(R |D=d,S=e,X)=
∑
y∈Y

Pr(R |Y =y,D=d,S=e,X)Pr(Y =y |D=d,S=e,X)

=
∑
y∈Y

Pr(R |Y =y,D=d,S=e,X)Pr{Y (d)=y |S=e,X},

where the second equality uses Assumption 1. Under Assumptions 2 and 3(i), Pr(R |Y =y,D=

d,S=e,X)=Pr(R |Y =y,D=d,S=o,X), delivering the first result. Under Assumptions 2

and 3(ii), it follows that (S,D) |= R |X,Y , and so Pr(R |Y = y,S= e,D=d,X)=Pr(R |Y =

y,S=o,X), delivering the second result.
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The next step is Bayes’ rule. Define the treatment weights in the experimental sample as

πd(X,R) :=
Pr(D=d,S=e |X,R)

Pr(D=d,S=e |X)
,

and the outcome weights in the observational sample as

γy(X,R)=
Pr(Y =y,S=o |X,R)

Pr(Y =y,S=o |X)
or γy,d(X,R)=

Pr(Y =y,D=d,S=o |X,R)

Pr(Y =y,D=d,S=o |X)
.

Lemma E.2 (Bayes’ rule). Suppose Assumptions 1 and 2 hold.

1. If Assumption 3(i) holds, then πd(X,R)=
∑

y∈Yγy,d(X,R)Pr{Y (d)=y |S=e,X}.

2. If Assumption 3(ii) holds, then πd(X,R)=
∑

y∈Yγy(X,R)Pr{Y (d)=y |S=e,X}.

Proof. Consider the first statement. By Bayes’ rule,

Pr(R=r |D=d,S=e,X)=
Pr(D=d,S=e |R,X)

Pr(D=d,S=e |X)
Pr(R=r |X),

Pr(R=r |Y =y,D=d,S=o,X)=
Pr(Y =y,D=d,S=o |R,X)

Pr(Y =y,D=d,S=o |X)
Pr(R=r |X).

Rewriting Lemma E.1.1 and canceling Pr(R=r |X) from both sides yields, as desired,

Pr(D=d,S=e |R,X)

Pr(D=d,S=e |X)
Pr(R=r |X)

=
∑
y∈Y

Pr(Y =y,D=d,S=o |R,X)

Pr(Y =y,D=d,S=o |X)
Pr(R=r |X)Pr{Y (d)=y |S=e,X}.

Consider the second statement. Again, by Bayes’ rule,

Pr(R=r |Y =y,S=o,X)=
Pr(Y =y,S=o |R,X)

Pr(Y =y,S=o |X)
Pr(R=r |X).

The desired result follows by rewriting Lemma E.1.2 and canceling Pr(R=r |X).

The previous two lemmas give the generalization of our main result, expressing the causal

parameter as a conditional moment and unconditional moment.

Theorem E.1 (Identification as conditional moment). Suppose Assumptions 1 and 2 hold.

1. If Assumption 3(i) holds, then, almost surely,

E

[
1{D=d,S=e}

Pr(D=d,S=e |X)
−
∑
y∈Y

1{Y =y,D=d,S=o}
Pr(Y =y,D=d,S=o |X)

Pr{Y (d)=y |X,S=e}|X,R

]
=0.

2. If Assumption 3(ii) holds, then, almost surely,

E

[
1{D=d,S=e}

Pr(D=d,S=e |X)
−
∑
y∈Y

1{Y =y,S=o}
Pr(Y =y,S=o |X)

Pr{Y (d)=y |X,S=e}|X,R

]
=0.
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Proof. The result follows from Lemma E.2 and iterated expectations.

Let θd(X) :=
(
Pr{Y (d)=y1 |S=e,X},...,Pr{Y (d)=y|Y| |S=e,X}

)⊤.

Corollary E.1 (Identification as representation). Suppose Assumptions 1 and 2 hold. Con-

sider any measurable matrix Hd:X×R→RK×1 with K≥|Y|.

1. If Assumption 3(i) holds, then

E
[
Hd(X,R)

1{D=d,S=e}
Pr(D=d,S=e |X)

|X
]
=E{Hd(X,R)∆o(d) |X}θd(X)

for ∆o(d) :=
(

1{Y=y1,D=d,S=o}
Pr(Y=y1,D=d,S=o)

,...,
1{Y=y|Y|,D=d,S=o}
Pr(Y=y|Y|,D=d,S=o)

)
.

2. If Assumption 3(ii) holds, then

E
[
Hd(X,R)

1{D=d,S=e}
Pr(D=d,S=e |X)

|X
]
=E{Hd(X,R)∆o |X}θd(X)

for ∆o :=
(

1{Y=y1,S=o}
Pr(Y=y1,S=o)

,...,
1{Y=y|Y|,S=o}
Pr(Y=y|Y|,S=o)

)
.

As in the main text, Theorem E.1 and Corollary E.1 imply that we can use existing results

on conditional moment restrictions e.g. Chamberlain (1987); Newey (1993) for identification

and inference on the average potential outcomes in the experimental sample. By further

averaging over the conditional distribution R |X, we can construct unconditional moment

restrictions using representations Hd(X,R). Importantly, any choice of representation such

that E{Hd(X,R)∆o(d) |X} or E{Hd(X,R)∆o |X} has full rank suffices for identification

and valid asymptotic inference. The optimal representation is an obvious extension of our

characterization in the main text.

As in the main text, Theorem E.1 and Corollary E.1 provide testable implications of

the identifying assumptions through over-identifying restrictions: we can compare whether

alternative choices of the representationHd yield significantly different estimates of the average

potential outcomes in the experimental sample.

F Continuous outcomes

We extend our results outcomes with a continuous and bounded support.

Assumption F.1 (Bounded outcome). Suppose that Y (d) ∈ [−U,U ]p for some U < ∞.

Suppose that for d∈{0,1} and s∈{e,o}, Y (d) |X,S=s,R has a positive density over [−U,U ]p

almost surely.

49



Let fY (d)|X,S,R(y) denote the conditional density of Y (d) |X,S=s,R.

To extend our analysis to continuous outcomes, we construct bins over the support such that

y∈Yε with By(ε) defining an l∞-ball of radius ε>0 around the value y, meaning ||ỹ−ỹ′||∞≤ε

for any two values ỹ,ỹ′∈By(ε). Consequently, Yε defines an ε-cover of the support [−U,U ]p.

Let Yε={y1,···,y|Yε|} denote the support of the ε-cover. Furthermore, let

γy,d(X,R)=
Pr{Y ∈By(ε),S=o,D=d |R,X}
Pr{Y ∈By(ε),S=o,D=d |X}

and γy(X,R)=
Pr{Y ∈By(ε),S=o,|R,X}
Pr{Y ∈By(ε),S=o,|X}

.

Proposition F.1 (Binning). Suppose Assumptions 1, 2, and F.1 hold.

1. If Assumption 3(i) holds, πd(X,R)=
∑

y∈Ye
γy,d(X,R)Pr{Y (d)∈By(ϵ) |S=e,X}dy.

2. If Assumption 3(ii) holds, πd(X,R)=
∑

y∈Ye
γy(X,R)Pr{Y (d)∈By(ϵ) |S=e,X}dy.

Proof. The proof proceeds analogously to the proofs of Lemmas E.1 and E.2, after replacing

Y =y events with Y ∈By(ε) events. Assumption F.1 and ε>0 guarantee that Y |X,S,R∈By(ε)

has a positive probability.

Consequently, for any fixed ϵ>0, we can estimate and conduct inference on the estimand

θ(ε) :=
∑
y∈Ye

y[Pr{Y (1)∈By(ϵ) |S=e}−Pr{Y (0)∈By(ϵ) |S=e}]

by directly applying the arguments given in Appendix E. The estimand θ(ε) can be interpreted

as a discrete approximation to the ATE on the experimental sample over the ε-cover. Of

course, since ε>0, this estimand will be biased for the ATE in the experimental sample

θ :=

∫
[−U,U ]p

yfY (1)|S=e(y)dy−
∫
[−U,U ]p

yfY (0)|S=e(y).

Nonetheless, we expect that these two estimands will be close to each other for low-dimensional

outcomes. When p=1, we show that the worst-case bias of θ(ε) is no greater than ε>0.

Proposition F.2 (Discretization bias). Under the conditions of Proposition F.1, if p=1

then |θ−θ(ε) |≤ε.

Proof. To prove this result, let fY (d)|S(yd) denote the conditional density of Y (d) given S. As

a first step, let us write

θ(ϵ) :=
∑
ỹ1∈Ye

ỹ1Pr{Y (1)∈Bỹ1(ϵ) |S=e}−
∑
ỹ0∈Ye

ỹ0Pr{Y (0)∈Bỹ0(ϵ) |S=e}

=
∑
ỹ1∈Ye

∫
Bỹ1

(ϵ)

ỹ1fY (1)|S=e(y1)dy1−
∑
ỹ0∈Ye

∫
Bỹ0

(ϵ)

ỹ0fY (0)|S=e(y0)dy0,
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and analogously

θ=

∫
y1fY (1)|S=e(y1)dy−

∫
y0fY (0)|S=e(y0)

=
∑
ỹ1∈Ye

∫
Bỹ1

(ϵ)

y1fY (1)|S=e(y1)dy1−
∑
ỹ0∈Ye

∫
Bỹ0

(ϵ)

y0fY (0)|S=e(y0)dy0.

Consequently, it follows that

|θ(ϵ)−θ|
(1)

≤

∣∣∣∣∣ ∑
ỹ1∈Ye

∫
Bỹ1

(ϵ)

(ỹ1−y1)fY (1)|S=e(y1)dy1

∣∣∣∣∣+
∣∣∣∣∣ ∑
ỹ0∈Ye

∫
Bỹ0

(ϵ)

(ỹ0−y0)fY (0)|S=e(y0)dy0

∣∣∣∣∣
≤ max

d∈{0,1}
2

∣∣∣∣∣ ∑
ỹd∈Ye

∫
Bỹd

(ϵ)

(ỹd−yd)fY (d)|S=e(yd)dyd

∣∣∣∣∣ (2)≤ max
d∈{0,1}

2
∑
ỹd∈Ye

∣∣∣∣∣
∫
Bỹd

(ϵ)

(ỹd−yd)fY (d)|S=e(yd)dyd

∣∣∣∣∣
(3)

≤ max
d∈{0,1}

2
∑
ỹd∈Ye

∫
Bỹd

(ϵ)

|ỹd−yd|fY (d)|S=e(yd)dyd
(4)

≤ ϵ,

where (1) and (2) use the triangle inequality, (3) follows by Hölder’s inequality, and (4) by

the construction of the ε-cover.

Consequently, for any fixed ε>0, researchers can apply our results to conduct inference on

θ(ε), which is a discrete approximation to the ATE in the experimental sample. Furthermore,

the bias of θ(ε) for θ, which is introduced by our discrete approximation, can be bounded.

G Empirical application details

G.1 Real data from a randomized control trial

Randomization took place at the level of the mandal, i.e. subdistrict, of Andhra Pradesh,

India. Muralidharan et al. (2023) partition 396 mandals into the following subgroups:

• treated mandals (111), randomly assigned to receive Smartcards in 2010;

• buffer mandals (136), randomly assigned to receive Smartcards in 2011;

• untreated mandals (44), randomly assigned to receive Smartcards in 2012;

• non-study mandals (105), which were excluded from the experiment.

We study villages within mandals as the unit of analysis, where villages are defined by

Asher et al. (2021). For each village, our treatment D indicates whether the village received

Smartcards in 2010. We interpret villages within the treated mandals as treated experimental
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units; villages within the buffer and untreated mandals as untreated experimental units; and

villages within the non-study mandals as observational units with missing treatment. Finally,

we drop villages with less than 100 individuals. This removes about 2% of villages.

Figure 1 illustrates our village classification. The causal parameter is the effect of early

adoption (2010 Smartcards) for villages in the experiment.

Table 5 summarizes village characteristics. We study 8,320 villages, with an average

population exceeding 2,000 individuals per village. Villages are typically located in rural

areas. The populated area within a typical village is geographically concentrated.

Table 5: Village summary statistics.

Sample Observational Experimental: Untreated Experimental: Untreated Experimental: Treated

Smartcards N/A 2012 2011 2010

Number of villages 2,260 853 2,931 2,276

Average population 2,143 2,296 2,285 2,604

Average fraction female 0.489 0.492 0.495 0.493

Average fraction urban 0.002 0.001 0.003 0.004

For each village, we collect poverty measurements to serve as the outcome. Following Asher

and Novosad (2020), the data sources are the 2012-2013 Social Economic and Caste Census

(SECC), and the 2013 Indian Economic Census. Our main outcome variable, used in all three

semi-synthetic exercises, indicates whether a village’s per capita consumption is in the bottom

quartile. We consider two additional outcome variables in the second and third semi-synthetic

exercises: does a village have only low income households, i.e. no earner making above 5,000

rupees; and does a village only low and middle income households, i.e. no earner making

above 10,000 rupees. The definitions of low and middle income households is from the SECC.

G.2 Real satellite images

For each village, we extract satellite images to serve as the RSV. First, we extract coordinates

for the perimeter of the village (Asher et al., 2021). Then, we extract luminosity from 2012

to 2020, summarized as a scalar in R (Asher et al., 2021). Finally, we extract satellite images

from 2019, summarized as a high-dimensional, pre-trained embedding vector in R4000 (Rolf

et al., 2021). The concatenation of these objects is our remotely sensed variable R.

In the first exercise, we truncate the satellite image vector to R1000 for computational

tractability. In the second and third exercise, we use the full RSV.
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(a) Densities of R |S, D=0, Y =0. (b) Densities of R |S, D=0, Y =1.

(c) Densities of R |S=e,D=1,Y =0. (d) Densities of R |S=e, D=1, Y =1.

Figure 11: No direct effects (Assumption 3(ii)) is plausible in the second and third exercises

for the low consumption outcome. Within each plot, we compare Pr(R |S=s,D=0,Y =y) in

the top row with Pr(R |S=s,D=1,Y =y) in the bottom row, using data from Muralidharan

et al. (2023). Because the satellite image R ∈ R4000 is high dimensional, we visualize the

density of its standardized first principal component.

While no direct effects (Assumption 3(ii)) holds by design in the first exercise, it must

be defended in the second and third exercises. Figure 11 provides such evidence for the low

consumption outcome. We compare Pr(R |S=s,D=0,Y =y) in the top row with Pr(R |S=

s,D=1,Y =y) in the bottom row. The columns subset observations by y∈Y , and the colors

subset observations by s∈{e,o}. If, in a given column, the same-colored densities in the top and

bottom row look similar, that is evidence that treatment only affects the RSV via the outcome.

For example, focusing on the first column and the blue densities, we visually comparePr(R |S=

53



e,D=0,Y =0) in the top row with Pr(R |S=e,D=1,Y =0) in the bottom row. The densities

are similar, as desired. Figure 12 provides similar evidence for the two other poverty outcomes.

(a) Low income. (b) Low and middle income.

Figure 12: No direct effects (Assumption 3(ii)) is plausible in the second and third exercises for

the additional poverty outcomes. Within each plot, we compare Pr(R |S=s,D=0,Y =y) in

the top row with Pr(R |S=s,D=1,Y =y) in the bottom row, using data from Muralidharan

et al. (2023). Because the satellite image R ∈ R4000 is high dimensional, we visualize the

density of its standardized first principal component.

G.3 Implementation details

Across empirical exercises, we use random forest predictions: predY (R) estimates Pr(Y =

1|S= o,R), predD(R) estimates Pr(D=1|S= e,R), and predS(R) estimates Pr(S= e|R).

The first prediction appears in the common practice, while all three appear in the optimal

representation.

In the first exercise, we use luminosity as well as the initial 1,000 features of the satellite

image embedding, for computational tractability of the 500 replications. This truncation

may be viewed as regularization bias, which we alleviate with cross fitting. This procedure

is justified by Proposition 3.

In the second and third exercises, we use luminosity as well as all 4,000 features of the satel-

lite image embedding, since we are only running one replication. Random forests satisfy stabil-

ity conditions, which allow us to eliminate cross fitting; the argument is a straightforward exten-

sion of Proposition 3, using stability in place of independence to handle the stochastic equicon-
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tinuity terms. See e.g. Chernozhukov et al. (2020, Theorem 2). Alternatively, we could use the

limited complexity of random forests, along the lines of Chernozhukov et al. (2020, Theorem 3).

The technical details of the random forest implementation are as follows. We use the R

package RandomForest with 100 trees and the package default options. When predicting the

outcomes, we set the class weights ten-to-one to balance the unbalanced labels of the outcome.

G.4 Comparing representations

(a) RSV: Synthetic samples (b) RSV: Real samples

Figure 13: We contrast optimal versus simple representations of the RSV. The optimal

representation combines three predictions. The simple representation uses only one prediction.

Figure 13 visualizes how our optimal representation Ĥ(R) compares to the implicit rep-

resentation of common practice predY (R), using the first outcome variable. Even though

the satellite image is high dimensional, its representations are scalars. Therefore, we can

visualize each village as a point in a plot with Ĥ(R) on the vertical axis and predY (R) on

the horizontal axis. For the sake of visualization, we also plot the binscatter and the best

fitting curve. We make such a plot for the second exercise (Figure 13a; “synthetic samples”)

and for the third exercise (Figure 13b; “real samples”).

There are some notable differences. The optimal representation Ĥ(R) varies over (−2,4),

while the simple representation associated with common practice predY (R) is bounded in

the unit interval (0,1). It is optimal to extrapolate beyond observed villages. Using predY (R)

in place of Ĥ(R) in Algorithm 1 would only interpolate among observed villages. The repre-

sentations Ĥ(R) and predY (R) are generally correlated, but their relationship is nonlinear.
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