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1 Introduction

The rising levels of CO2 in the atmosphere are significantly increasing global temperatures
and altering weather patterns, leading to climate change (IPCC, 2021). Since Nordhaus (1977),
with its latest version in Barrage and Nordhaus (2023), the literature has relied on Integrated
AssessmentModels (IAMs) to quantify the aggregate costs of climate change, the social cost of
carbon, and explore the potential for policy interventions. This approach extends the standard
neoclassical growth model by incorporating climate-induced economic losses through an ag-

gregate damage function, which links aggregate productivity to temperature changes within
the standard aggregate production function. Despite the aggregate damage function being a
key component of IAMs, no consensus has yet emerged regarding its measurement.

In this paper, we develop a microfounded aggregate damage function grounded in firm-
level analysis, offering a framework for its measurement and making three contributions.
First, we introduce a micro-to-macro framework that links firm-level damages from temper-
ature increases to aggregate productivity, emphasizing two channels: a direct effect that re-
duces productivity and/or demand and an indirect effect arising from input adjustment fric-
tions. Second, using standard firm-level data, we provide causal estimates of both direct and
indirect effects. To the best of our knowledge, this is the first study to offer causal evidence
of significant indirect effects driven by frictions in firm-level capital adjustment. Finally, we
show that the channels identified in our framework result in substantial aggregate productiv-
ity damages. Both direct and indirect effects play equally important roles, with considerable
heterogeneity in productivity damages, even within narrowly defined geographic regions.

Our frameworkmodelsmonopolistically competitive heterogeneous firms producingwith
capital, labor, and materials, with their scale of operations directly influenced by local temper-
ature through its effects on productivity and demand. This relationship captures several well-
documented channels through which temperature impacts firms. For instance, temperature
may reduce labor efficiency via its effects on workers’ performance, attendance, or health.
Similarly, it may lower capital productivity as machinery and equipment operate less effi-
ciently under extreme conditions. Additionally, temperature can shift consumer spending
patterns and local demand, particularly for non-tradable goods consumed locally.1

However, these direct effects do not fully account for the total productivity losses incurred
by firms. When frictions—such as adjustment costs or spatial and financial constraints—limit

1The demand-side impacts of temperature are underscored in Busse et al. (2015) for the case of durable goods,
while its effects on productivity have been explored extensively (e.g., Seppanen et al., 2006; Zhang et al., 2018;
Somanathan et al., 2021), as summarized in Heal and Park (2016) and Lai et al. (2023).
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firms’ ability to adjust their inputs in response to temperature changes, firms may be com-
pelled to retain inputs they would otherwise discard. For example, frictions that constrain
the adjustment of capital may lead some firms to hold excess capital while maintaining opti-
mal levels of labor and materials. As a result, the revenue-based marginal product of capital
declines due to the law of diminishing returns, as the excess capital contributes less output
at the margin. Consequently, the direct effects of temperature changes can be amplified by
the presence of such frictions. To fix ideas, consider the following illustrative example: an
extreme temperature event hits half of the regions in a country, such that firms are unable to
operate 20% of the time, and their output falls by 20%. In a hypothetical scenario where all
firms can adjust their inputs costlessly and operate under constant returns to scale, aggregate
productivity would remain unaffected. Conversely, in a scenario where unaffected firms can
scale up to meet demand but affected firms are unable to reduce their inputs, aggregate pro-
ductivity would decline by approximately 10%.2 To capture this indirect effect, we introduce
reduced-form, input-specific wedges, following Restuccia and Rogerson (2008) and Hsieh and
Klenow (2009). These wedges, which we allow to vary with temperature, capture the gap
between an input’s revenue-based marginal product and its user cost, influencing the relative
use of each input in response to temperature changes.

Our model shows that, at the firm level, productivity losses are driven by the temperature-
semielasticity of two factors: firm sales and the revenue-based marginal product of inputs.
Through the lens of the model, these semielasticities allow us to separately identify and
quantify both direct and indirect effects. At the macro level, the model introduces a novel
closed-form characterization of the aggregate productivity damage function, linking it to the
firm-level temperature-semielasticities. Direct effects reflect how firm-level productivity con-
tributes to aggregate productivity, while indirect effects emerge from frictions that distort
input allocation within the economy. Crucially, our methodology does not rely on aggregate
equilibrium prices, ensuring robustness to general equilibrium considerations.

We demonstrate how to implement our framework using the Italian case, which repre-
sents an ideal setting given its unique characteristics. Italy frequently experiences episodes
of very high temperatures—with European temperatures rising at more than twice the global
average over the past 30 years3—and exhibits substantial regional variation in both climate
and economic development. The study merges firm-level data from Orbis (1999-2013), which

2Intuitively, affected firms, unable to reduce inputs, face a 20% productivity decline. Unaffected firms meet de-
mand by scaling up their inputs, without a loss in productivity. Aggregate productivity then falls substantially,
reflecting the weighted average of productivity across affected and unaffected firms.

3Source: Report on the State of the Climate in Europe, 2021, by the World Meteorological Organization.
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covers approximately 75% of Italy’s aggregate gross output (Kalemli-Özcan et al., 2024), with
climate data from Copernicus Climate Change Services. The climate data provides daily tem-
perature and rainfall measurements at an approximately 11x11 km grid resolution. Firms are
matched to climate data based on their headquarters’ postcode location.4

Empirically, we adopt the firm-level methodology of Somanathan et al. (2021), aggregat-
ing daily temperatures at each grid point to the annual level by counting the number of days
within different temperature ranges, as in Deschênes and Greenstone (2011).5 Our analysis
reveals an inverted U-shaped effect of temperature on sales, where extremely high or low
temperatures negatively impact firms. We also find that extreme temperatures reduce labor
and material inputs but not capital usage among affected firms, suggesting more significant
frictions to capital adjustment than to other inputs. As a result, we estimate an inverted U-
shaped relationship between extreme temperatures and the revenue-based marginal product
of capital, with no significant impact on the marginal products of other inputs. This captures
the indirect effect of temperature on firms. Finally, while distinguishing between productivity
and demand effects is not essential for the quantitative aggregation exercise, understanding
their relative importance is valuable. To explore this, we assume, based on trade literature,
that temperature impacts productivity similarly across tradable and non-tradable firms but
affects demand for non-tradable goods more due to their local consumption.6 Our findings
show no significant differences in temperature effects between tradable and non-tradable sec-
tors, suggesting that temperature primarily impacts firms through productivity rather than
demand.

Quantitatively, we construct the aggregate damage function by integrating the closed-
form characterization derived from our framework with the reduced-form causal estimates
of the direct and indirect effects of temperature at the firm level, from the estimated semi-
elasticities. Under a 2℃ rise in average yearly temperature, aggregate productivity declines
by 1.68%, with direct effects contributing a 0.81% drop and indirect effects accounting for
0.87%. This indicates that both effects are quantitatively significant. Our approach reveals
a highly nonlinear relationship between temperature and aggregate productivity, driven by
the inverted U-shaped patterns observed at the firm level. In particular, for a 4℃ increase,
productivity falls by 6.81%, more than four times the decline under 2℃. This non-linearity is

4Most of our sample comprises single-establishment small and medium-sized firms, and robustness checks con-
firm that the results are not influenced by larger firms or those with multiple establishments.

5Alternative approaches, such as the degree-day method or nonlinear average yearly temperature from Burke
et al. (2015), yield similar results.

6For instance, Almunia et al. (2021) document lower demand sensitivity for tradable goods.
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caused by a combination of the non-linear impact of temperature on firm-level productivity,
and the wider geographic spread of extreme temperatures in the 4℃ increase scenario.

We highlight the added value of our micro-to-macro approach to measure the aggregate
damage function by contrasting its predictions with those from firm-level studies and IAMs.
Firm-level studies (e.g., Zhang et al., 2018; Somanathan et al., 2021) typically estimate firm-
level losses based on simple average temperature scenarios using a representative firm frame-
work. This approach, when applied to our firm-level estimates, predicts a decline in aggregate
productivity of 0.39%, which is significantly less than our model-based estimate of 1.68%. We
show that the novel indirect channel is quantitatively important, accounting for as much as
68% of this difference. The remaining difference stems from two key factors. First, the round-
about nature of material production, where materials are produced using output (Jones, 2011).
Initial productivity losses reduce output, which in turn lowers material production, creating a
feedback loop that amplifies the impact—a multiplier effect. Second, the covariance between
efficient firm-level weights and estimated productivity losses. A higher covariance indicates
that temperature-related productivity damages are concentrated in regions with larger firms.

How do our results contribute to the quantification of aggregate economic damages from
climate change? Traditional IAMs incorporate temperature effects through aggregate damage
functions that reduce productivity as temperatures rise (e.g. see Barrage and Nordhaus, 2023).
The appropriate parametrization of these functions is key to evaluate the social cost of climate
change. Among the recent literature advancing on this issue, the spatial integrated models (S-
IAMs) pioneered by Desmet and Rossi-Hansberg (2015) havemade important contributions by
incorporating forward-looking agents and firms (e.g. see Conte et al., 2022, Cruz and Rossi-
Hansberg, 2023 and Bilal and Rossi-Hansberg, 2023). These studies offer new insights into
the relationship between climate change-induced extreme events and aggregate damages by
considering reallocation effects across locations and adaptation throughmigration and capital
accumulation. However, they do not address heterogeneous firm level effects. Our approach
is complementary to this literature. First, we highlight new sources of productivity damages,
including not only direct firm-level productivity effects but also indirect effects driven by
adjustment frictions. Second, our methodology provides a closed-form solution that maps
these firm-level outcomes to their aggregate implications, offering a framework that could
be integrated into future IAMs. Our results suggest that incorporating these effects revises
upwards the estimated economic costs of climate change and the social cost of carbon.7 In

7Like the studies mentioned above, our paper estimates the effects of local temperature fluctuations on local
economic outcomes. We view this approach as complementary to studying the effects of global temperature
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particular, our methodology is likely to be especially important when using micro-level data
to evaluate the aggregate productivity effects of climate shocks in less developed countries,
where firm-level frictions—affecting both capital and labor—are typically more pronounced
than in developed countries like Italy.

We conclude the analysis by examining two scenarios that could amplify or mitigate our
main findings. First, we assess the role of firm-level adaptation in shaping our estimates.
By comparing areas historically exposed to extreme temperatures—likely already adapted—
to areas newly experiencing such extremes, we find that climate-mitigating technologies can
reduce damages by 20–30%. Second, we construct aggregate damage functions at the NUTS3
level to explore the regional impact of climate change on productivity across Italian provinces.
This analysis reveals heterogeneous effects, ranging from mildly positive to severely negative
outcomes. Notably, as poorer southern regions are expected to face greater shifts toward ex-
treme temperature ranges, climate change is likely to exacerbate existing regional inequalities
in Italy. Our findings underscore this dynamic by showing a negative relationship between
expected productivity losses and current GDP per capita.

Finally, we discuss some limitations of our framework and interpret the results. First, our
static framework does not account for the extensivemargin, such as firm entry and exit, which
could influence the outcomes. For example, unproductive firms may exit affected regions,
improving the selection of firms, or firms might relocate to cooler areas, enhancing allocative
efficiency. While our sample provides limited evidence for the latter, our analysis lays the
groundwork for future models to address these dynamics. Second, the long-run effects of
temperature on productivity may be mitigated as short-term capital adjustment frictions ease,
leading to improved allocative efficiency. Although estimating these dynamics within our
short panel is challenging, our framework offers an upper bound for aggregate productivity
losses, providing insight into the potential long-term impacts of fully adjustable capital.

Literature Review. This paper contributes to the literature on firm heterogeneity that uses
the reduced-form wedge approach to evaluate the aggregate productivity impacts of shocks,
frictions, and policies, including studies by Restuccia and Rogerson (2008), Hsieh and Klenow
(2009), Gopinath et al. (2017), Osotimehin (2019), and Baqaee and Farhi (2020). Building on this
foundation, we analyze aggregate productivity losses under climate scenarios. Our work is

changes on global GDP (e.g., Bilal and Känzig, 2024). The global approach captures broader climate damages,
such as more frequent droughts, extreme winds, and precipitation, but faces challenges in identifying causal
effects due to confounding global factors. In contrast, panel data approaches that estimate the effects of local
temperature shocks on local productivity, combined with model-based restrictions, improve causal identifica-
tion and help reveal the specific channels through which temperature affects economic activity.
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related to Bau and Matray (2023), who develop a framework to assess the effects of observed
policies on aggregate productivity but without enabling counterfactual analysis, and Sraer
and Thesmar (2023), who incorporate counterfactual analysis but focus solely on changes
in frictions. We extend this literature by introducing a novel decomposition of aggregate
productivity changes that facilitates counterfactual analysis in general equilibrium, capturing
changes in productivity and frictions caused by shocks, using causally estimated firm-level
semi-elasticities as inputs.

This paper also contributes to the growing body of research that leverages granular data
and quantitative macroeconomic models to study the economic impacts of climate change
(e.g., Desmet and Rossi-Hansberg, 2015; Barrage, 2020; Conte et al., 2022; Fried, 2022; Nath,
2024; Balboni et al., 2024; Castro-Vincenzi, 2022; Castro-Vincenzi et al., 2024). Unlike studies
that focus on specific policies or the sectoral and regional dynamics of climate change, our
contribution lies in microfounding the aggregate damage function at the firm level and devel-
oping an empirical framework for its measurement. Therefore, our work is closely related to
the macro-climate literature employing Integrated Assessment Models (IAMs), pioneered by
Nordhaus (1977) and further expanded in dynamic versions by Golosov et al. (2014), Krusell
and Smith (2022), and Barrage and Nordhaus (2023). These studies calibrate aggregate damage
functions to ensure that output losses align with historical temperature-induced changes in
aggregate estimates (see Nordhaus and Moffat (2017) for a review).8

More recent contributions byCruz and Rossi-Hansberg (2023) and Bilal and Rossi-Hansberg
(2023) expand IAMs to account for the spatial implications of climate change, employing struc-
tural models that incorporate migration and capital accumulation to match observed regional
losses with historical temperature changes. These IAMs are critical for understanding the
dynamic responses to climate change, aggregate consequences, and the social cost of car-
bon. However, estimating the aggregate damage function—a core component—at country or
regional levels remains challenging due to standard identification issues in aggregate regres-
sions. These challenges include isolating pure productivity effects from policy responses to
temperature changes or other confounding factors that operate at similar levels of aggrega-
tion. Our framework addresses these issues by enabling an exploration of firm-level mecha-
nisms, distinguishing between direct productivity effects and indirect effects caused by input
adjustment frictions. To achieve this, we utilize the input-specific wedges approach, which

8Empirical studies measuring aggregate output losses through cross-country regressions include Dell et al. (2012,
2014); Burke et al. (2015); Hsiang et al. (2017); Burke and Tanutama (2019); Kalkuhl andWenz (2020); Kahn et al.
(2021); Newell et al. (2021); Bastien-Olvera et al. (2022); Casey et al. (2023); Nath et al. (2024); Leduc and Wilson
(2023); and Bilal and Känzig (2024).
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allows for a detailed decomposition of these effects and their aggregate implications.
Finally, we contribute to the empirical literature that addresses the challenges of aggre-

gate regressions by estimating causal losses using firm-level data and historical temperature
changes. Notable examples include Zhang et al. (2018), Addoum et al. (2020), Somanathan et al.
(2021), and Ponticelli et al. (2023).9 While these studies address the empirical identification
challenges of aggregate analyses, they face limitations in informing aggregate counterfactu-
als. Specifically, all general equilibrium effects remain unmeasured, as they are absorbed into
the intercept—a limitation referred to as the “missing intercept problem” (Moll, 2021). In ad-
dition, to the best of our knowledge, we are the first to provide causal evidence of firm-level
indirect effects driven by input adjustment frictions and their implications for productivity.

In summary, our micro-to-macro methodology, which estimates aggregate damages from
their firm-level origins by combining empirically estimated semielasticities with a structural
model incorporating input adjustment frictions, complements both the empirical micro-level
climate change literature and recent advances in quantifying aggregate macroeconomic ef-
fects using state-of-the-art IAMs. Two novel insights emerge from our approach: (i) com-
pared to standard IAM methodologies, our framework reveals quantitatively larger aggregate
damages, suggesting greater economic losses from climate change; and (ii) compared to firm-
level approaches, we provide the first evidence of an inverted U-shaped relationship between
the revenue-based marginal product of capital and temperature, uncovering a new indirect
channel through which temperature impacts firms, with significant implications for aggre-
gate productivity.

Outline. The rest of the article is organized as follows. Section 2 describes a theoretical
model. Section 3 describes data and measurement. Section 4 lays the empirical strategy. Sec-
tion 5 presents the main results. Section 6 provides the aggregate effects. Section 7 concludes.

2 Structural Framework

In this section, we present a framework tomicrofound the impact of temperature on aggregate
productivity—the aggregate damage function central to IAMs—through the different effects
of temperature on firms.

9Other studies exploring the micro-level impact of climate change on other outcomes include Deschênes and
Greenstone (2011), Kala et al. (2012), Graff Zivin and Neidell (2014), Cohn and Deryugina (2018), Diffenbaugh
and Burke (2019), Colmer (2021), Albert et al. (2021), Pankratz and Schiller (2024), Custodio et al. (2024), Cas-
carano et al. (2022), Liu and Xu (2024), Balboni (2025) and Acharya et al. (2023).
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2.1 Firm-Level Variables

We build our framework on a closed-economy version of Melitz (2003).10 We consider an
economy at time t populated by a large number N of monopolistically competitive firms i,
producing differentiated varieties, and operating in a grid-cell g.11 In this economy, aggregate
output Y is a CES aggregate of N firms:

Yt =

(
Nt∑
i=1

(
edit(Tg(i)t)Yit

)σ−1
σ

) σ
σ−1

, (1)

where Yit is the output of firm i, edit(Tg(i)t) is a temperature-dependent demand shifter with Tg(i)t

being the temperature in a grid-cell g, and σ denotes the elasticity of substitution between
varieties. The notation g(i)means that the grid-cell g varies for different firms i. The presence
of a temperature-dependent demand shifter, edit(Tg(i)t), suggests that temperature changes in
a given grid-cell can influence the demand faced by firms within that cell. Note that, since
temperature fluctuations are spatially correlated across grid-cells, in our empirical analysis
we show that our results are robust to using spatially adjusted standard errors based on the
method proposed by Conley (2010). Furthermore, the functional form assumed for dit(Tg(i)t),
along with other temperature-dependent variables in the model, allows for the possibility
that factors beyond grid-cell-level temperature may also affect demand. Section 4 details the
specific functional forms used in the empirical analysis.

We denote by Pit the price of firm i and by Pt the price of aggregate output Yt.12 The
demand faced by each firm i is given by

Yit =
(
edit(Tg(i)t)

)σ−1
(
Pit

Pt

)−σ

Yt. (2)

The production function of each firm is Cobb-Douglas in productivity, capital, labor, and
materials:

Yit = ezit(Tg(i)t)
∏
X∈X

XαX

it , with
∑
X∈X

αX = 1, (3)

where ezit(Tg(i)t) is the temperature-dependent productivity for firm i in grid-cell g and X ≡

10Themodel is static, and firm decisions at time t do not depend on past choices, nor they affect future outcomes.
For convenience, we introduce the time subscript from the outset, as it will be useful in the empirical application
where we will be using panel data.

11The grid-cell is the finest geographical unit for which we have data on temperatures. It coincides with an area
of 0.1deg2, which corresponds approximately to 121km2. This is approximately the size of Turin (130km2)
and 1/10th the size of Rome (1, 285km2). Section 3 describes the data in more detail.

12Pt is a CES aggregate of firm level prices Pit, as defined by equation 50 in Appendix A
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{K,L,M} with K being capital, L being labor, and M being materials. The term, ezit(Tg(i)t),
implies that temperature changes in a given grid-cell may impact the productivity of firms
operating within that cell. Under the Cobb-Douglas production function assumption, this
term captures different forms of productivity, including both labor-augmenting and capital-
augmenting productivity.

The problem of a firm is given by

Πi = max
{Pit,Yit}

PitYit − C(Yit),

s.t. Yit =
(
edit(Tg(i)t)

)σ−1
(
Pit

Pt

)−σ

Yt;

(4)

where

C(Yit) = min
X

{∑
X∈X

eτ
X
it (Tg(i)t)PX

t Xit

∣∣∣∣ Yit − ezit(Tg(i)t)
∏
X∈X

XαX

it

}
, (5)

where eτXit (Tg(i)t) are temperature-dependent input-specific wedges for firm i in grid-cell g and
PX
t is the price of input X .

The model highlights two types of temperature-related effects: direct and indirect. The
direct effect of temperature is represented by the temperature-dependent demand and pro-
ductivity terms. The former captures potential changes in demand patterns across firms, as
reported in Busse et al. (2015) for the case of durable goods purchases. The latter encompasses
a range of effects. For example, recent research reviewed by Heal and Park (2016) and Lai et al.
(2023) demonstrates that extreme temperatures impair labor productivity by affecting health,
labor supply, and concentration.13 Extreme heat may also reduce capital productivity, as sug-
gested by case studies indicating that machines such as cell phones, data centers, cars, and
lithium-ion batteries become less efficient at high temperatures (e.g., Garimella et al., 2023).

The indirect effect of temperature in the model is summarized by reduced-form wedges,
as in Restuccia and Rogerson (2008) and Hsieh and Klenow (2009), representing frictions that
affect the marginal products or costs of specific inputs, such as adjustment costs, spatial, and
financial frictions. These frictions may be directly influenced by temperature, affecting the
reduced-form wedge. Even if not directly impacted, their presence can constrain the adjust-
ment of inputs in response to temperature-induced changes in demand or productivity, which
would still manifest as changes in the wedges. For instance, in response to the direct effect of

13Additional evidence is provided by Gould et al. (2024) and Filomena and Picchio (2024) for Italy, while So-
manathan et al. (2021) shows reduced productivity and increased absenteeism in Indian manufacturing plants
during hot days.
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extreme temperatures reducing demand or productivity, frictions that limit capital adjustment
may cause some firms to hold excess capital but not labor or materials, resulting in a higher
capital wedge without corresponding increases in labor or material wedges. Our objective is
to estimate how these wedges respond to temperature changes and quantify their impact on
aggregate productivity.

Profit maximization yields the standard condition that the firm’s output price is a fixed
markup over its marginal cost:

Pit = M · C ′(Yit), (6)

where M ≡ σ/(σ − 1). The solution of the minimization problem is given by

C(Yit) =
∏
X∈X

(
eτ

X
it (Tg(i)t)PX

t

αX

)αX

Yit

ezit(Tg(i)t)
. (7)

Combining equations (2), (6), and (7), firm i sales can hence be expressed just as a function
of the primitives of the model as

PitYit =
(
ez̃it(Tg(i)t)

)σ−1

M
∏
X∈X

(
eτ

X
it (Tg(i)t)P x

t

αX

)αX
−(σ−1)

P σ
t Yt, (8)

with

ez̃it(Tg(i)t) ≡ edit(Tg(i)t)ezit(Tg(i)t), (9)

where ez̃it(Tg(i)t) is defined through the rest of the paper as the firm level temperature-dependent

demand-adjusted productivity, and combines the firm productivity and the demand shifter
responses to temperature. Taking logarithms in equation (8) we recover the following log-
linear relation:

pityit = (σ − 1)

(
z̃it(Tg(i)t)−

∑
X∈X

αXτXit (Tg(i)t)

)

− (σ − 1)

(
µ+

∑
X∈X

αX
(
pXt − logαX

))
+ σpt + yt,

(10)

with lowercase letters indicating logarithms. pityit is the logarithm of sales for firm i in period
t. In Section 4, we explain how we estimate an empirical counterpart of equation (10). Unlike
the existing literature that has conducted similar regressions, our theoretical framework has
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the advantage of identifying the various channels through which temperature shocks impact
firm-level revenues. More specifically, sales may respond to temperature because this can
affect (i) the firm demand-adjusted productivity through z̃it(Tg(i)t) or (ii) the input-specific
wedges through τXit (Tg(i)t). Formally, the temperature-semielasticity of sales is given by

∂pityit
∂Tg(i)t

= (σ − 1)

(
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX ∂τXit (Tg(i)t)

∂Tg(i)t

)
(11)

Equation (11) shows that, conditional on a measure of the elasticity of substitution be-
tween varieties, σ, and the production function elasticities,αX , if one canmeasure the temperature-
semielasticity of the input-specific wedges, ∂τXit (Tg(i)t)

∂Tg(i)t
, then the temperature-semielasticity of

the demand-adjusted productivity, ∂z̃it(Tg(i)t)

∂Tg(i)t
, can be recovered. If this is not the case, how-

ever, one would incorrectly attribute the effect of temperature on input-specific wedges to
demand-adjusted productivity.

Thus, to estimate the effect of temperature on input-specific wedges we note that the
optimality conditions of our model imply that individual input demand is given by:

eτ
X
it (Tg(i)t)PX

t Xit = αXC(Yit), ∀X ∈ X , (12)

which can be rearranged, using equation (6), as

MRPXit ≡ αX PitYit

Xit

= Meτ
X
it (Tg(i)t)PX

t . (13)

Taking logarithms in equation (13) we recover the following log-linear relation:

logMRPXit = τXit (Tg(i)t) + µ+ pXt . (14)

Equations (13) and (14) have two important insights. First, conditional on the produc-
tion function elasticity αX , the revenue-based marginal product of inputX (MRPX) of firm
i can be measured just by observing firm-level sales PitYit and firm-level input quantities
Xit ∈ {Kit, Lit,Mit}. Second, in equilibrium the effect of temperature on logMRPXit only
depends on its input-specific wedge τXit (Tg(i)t), and not on the other input-specific frictions.14

14It also depends on the logarithm of the markup, µ, and of the input price, pXt . Regarding the latter, to the
extent that its variations are similar across all firms in a given industry, they are absorbed by sector-year
effects in our empirical specification. Regarding the former, assuming a CES aggregator in our model rules
out any direct effect of temperature on markups. However, while this channel might be accommodated by the
temperate-dependent input-specific wedges, in the empirical analysis in Section 5 we find no prima facie effect
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Hence, having the necessary data to empirically measure firm-level sales andMRPX , we can
use equations (10) and (14) to estimate the temperature-semielasticity of sales and of input-
specific wedges, and then use equation (11) to recover the temperature-semielasticity of the
demand-adjusted productivity. We provide a detailed procedure for this in Section 4.

2.2 Aggregate Variables

To quantify the effects of temperature on aggregate productivity—and thereby trace the ag-
gregate damage function central to IAMs—we use changes in the Solow residual as a proxy
for changes in aggregate productivity. Appendix A reports the details of all the calculations.

Before introducing the Solow residual in our framework, we demonstrate that aggregate
gross output TFP can be expressed as

TFPt =
Yt∏

X∈X XαX

t

, (15)

=

(
Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1 ∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
) σ

σ−1

×
∏
X∈X

(
Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
)−αX

; (16)

with Xt =
∑Nt

i=1 Xit standing for real aggregate capital, labor, and materials.
Similarly to Hsieh and Klenow (2009) and Gopinath et al. (2017), we can use equation (16)

to also recover the upper bound of aggregate gross output TFP in this economy. This is ob-
tained by equalizing all input-specific wedges eτXit (Tg(i)t) across firms. The resulting expression
is given by

TFP ∗
t =

(
Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

) 1
σ−1

. (17)

Equation (17) represents the upper bound of aggregate TFP in a counterfactual, fric-
tionless scenario, reminiscent of the aggregate productivity in Melitz (2003). Throughout the
paper, we refer to this counterfactual, frictionless measure of aggregate TFP as “efficient”—a

of temperature on the revenue-based marginal product of materials and labor (which are common measures of
firm-level markups used by the literature; see Loecker and Warzynski, 2012), validating the CES assumption.
Furthermore, the empirical specification of equation (14) will further generalize this formula to account for
other potential factors.
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term commonly used in the literature, albeit with some flexibility in its interpretation.15

Equations (16) and (17) show that conditional on the elasticity of substitution between
varieties σ and the production function elasticities αX , aggregate gross output TFP and its
efficient counterpart are just a function of two measurable objects: ez̃it(Tg(i)t) and eτ

X
it (Tg(i)t).

Given our framework, the firm-level demand-adjusted productivity ez̃it(Tg(i)t) can be expressed
as

ez̃it(Tg(i)t) =

(
(PtYt)

− 1
σ−1

Pt

)(
(PitYit)

σ
σ−1∏

X∈X XαX

it

)
. (18)

Thus, conditional on ameasure of the elasticity of substitution between varieties σ and the
production function elasticities αX , equation (18) can be measured just with data on nominal
aggregate output PtYt, the aggregate price deflator Pt, firm-level sales PitYit, and firm-level
inputsXit. Moreover, firm-level input-specific wedges eτXit (Tg(i)t) can be measured using equa-
tion (13). Hence, using standard firm-level data and leveraging the structure of our frame-
work, we can measure empirically each element in equations (16) and (17). By taking logs
and fully differentiating equations (16) and (17), we derive expressions that relate changes in
both aggregate gross output TFP and efficient aggregate gross output TFP to variations in
grid-cell-level temperatures, resulting in:

∆ logTFPt ≡ ∆ logTFPt

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t),∆Tg(i)t

)

≈
Nt∑
i=1

λit

∑
X∈X

αX

eτ
X
it (Tg(i)t)

ΩX
t

×

[(
σ
eτ

X
it (Tg(i)t)

ΩX
t

− (σ − 1)

)(
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX ∂τXit (Tg(i)t)

∂Tg(i)t

)
+

∂τXit (Tg(i)t)

∂Tg(i)t

]

×∆Tg(i)t, (19)

and

∆ logTFP ∗
t ≡ ∆ logTFP ∗

t

(
ez̃it(Tg(i)t),∆Tg(i)t

)
≈

Nt∑
i=1

λ∗
it

∂z̃it(Tg(i)t)

∂Tg(i)t

∆Tg(i)t, (20)

15While we label this counterfactual TFP as efficient, we refrain from using it for normative assessments. This is
because it may not always lie within the set of achievable allocations. For instance, if some frictions in the data
arise from technological constraints like adjustment costs, this counterfactual TFP would be unattainable.

13



where λit ≡ λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)
and λ∗

it ≡ λ∗
it

(
ez̃it(Tg(i)t)

)
are firm-level weights, and

ΩX
t ≡ ΩX

t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)
is an aggregate object, all detailed in Appendix A.1.

Equations (19) and (20) represent a novel contribution of this paper, playing a central role
in our analysis. These equations enable the calculation of counterfactual changes in aggregate
TFP and TFP ∗ resulting from temperature variations at the grid-cell level, affecting both
demand-adjusted productivity and input-related frictions. Notably, while these equations
hold in general equilibrium, they require only data on the distribution of demand-adjusted
productivity, ez̃it(Tg(i)t), input-specific wedges, eτXit (Tg(i)t), and their corresponding semielas-
ticities, ∂z̃it(Tg(i)t)/∂Tg(i)t and ∂τXit (Tg(i)t)/∂Tg(i)t, without needing information on the effect
of grid-cell-level temperatures on aggregate prices. Therefore, this approach avoids reliance
on estimating the effects of grid-cell-level temperatures on aggregate prices, circumventing
the well-known “missing intercept” problem in cross-sectional data. Finally, while the data
requirements may appear substantial, the distributions of demand-adjusted productivity and
input-specific wedges can be derived using equations (13) and (18), and the semielasticities,
central to our empirical analysis, are detailed in Section 4.

We now have all the necessary elements to decompose the change in aggregate gross
output TFP into two components: an efficient component and a component associated with
input-related frictions. The final expression for the changes in aggregate gross output TFP

is as follows:

∆ logTFPt = ∆ logTFP ∗
t︸ ︷︷ ︸

∆ Technology

− (∆ logTFP ∗
t −∆ logTFPt)︸ ︷︷ ︸

∆ Allocative Efficiency

. (21)

The ∆ Technology term captures changes in TFP ∗, as described in equation (20). In-
tuitively, it reflects the changes in aggregate TFP driven by the effect of temperature on
demand-adjusted productivity, ez̃it(Tg(i)t), in an economy without allocative frictions—where
aggregate output cannot be increased by reallocating inputs across firms. This term isolates
the direct impact of temperature on firm-level demand and productivity.

The∆ Allocative Efficiency term captures deviations from the efficient allocation, reflect-
ing the impact of temperature shocks on aggregate TFP through changes in allocative effi-
ciency. This term is influenced by changes in both demand-adjusted productivity, ez̃it(Tg(i)t),
and input-specific wedges, eτXit (Tg(i)t). While changes in the latter directly indicate shifts in
firm-level resource allocation relative to a counterfactual frictionless benchmark, and thus
affect aggregate allocative efficiency, changes in the former impact aggregate allocative effi-
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ciency only if the economy’s initial allocation is distorted by frictions. For instance, if firms
with inefficiently high levels of inputs experience a temperature shock that reduces their
demand-adjusted productivity, it not only diminishes the ∆ Technology term but also de-
creases the ∆ Allocative Efficiency term by pushing their allocation of inputs even further
from the frictionless optimum. However, this effect is not always negative. Temperature-
induced changes in demand-adjusted productivity can either enhance or diminish aggregate
allocative efficiency, depending on the initial distribution of input-specific wedges and inputs.
Thus, this term is the outcome of the indirect effect due to the presence of frictions and echoes
the covariance argument between wedges and productivity highlighted in the misallocation
literature (e.g., Gopinath et al., 2017) and ultimately remains a quantitative question.

Until now, our analysis has not required explicit assumptions about the supply of aggre-
gate inputs. However, because our focus is on the impact of climate change on the Solow
residual—defined in terms of value-added—we modify (21) accordingly, as detailed in Ap-
pendix A.2. In brief, this adjustment assumes that aggregate labor and capital are in fixed
supply, while the use of the final good as materials introduces a simple roundabout produc-
tion structure, as described in Jones (2011) and Baqaee and Farhi (2020). This results in the
following measure for changes in the Solow residual:

∆ logSolowt ≈
Yt

GDPt

(∆ logTFP ∗
t − (∆ logTFP ∗

t −∆ logTFPt)) , (22)

where Yt is gross output and GDPt is value-added, i.e., gross output net of materials.
Equation (22) shows that the impact of climate change on the Solow residual exceeds its

effect on gross output TFP due to a multiplier effect equal to the ratio of gross output to GDP.
This arises from the roundabout nature of material production, where materials are produced
using output. Initial productivity losses reduce output, which subsequently lowers material
production, further constraining output. This feedback loop amplifies the initial productivity
losses, creating a multiplier mechanism.

Therefore, to compute the counterfactual impact of climate change on aggregate produc-
tivity and decompose it into a technology component and a component related to allocative
efficiency, we simultaneously utilize equations (19), (20), and (22).

3 Data

This section presents the two main data sources used for the empirical analysis.
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3.1 Firm-Level Data

The Italian firm-level data is obtained from Orbis, provided by Bureau van Dijk between the
years 1999-2013. Orbis offers harmonized cross-country financial information for both private
and public firms collected fromvarious national data sources, primarily business registers. The
dataset covers, on average, 75 percent of the official Italian gross output reported in Eurostat.
One major advantage of Orbis over other datasets is that it includes many small private firms.
In fact, Kalemli-Özcan et al. (2024) show that Orbis closely mimics the official size distribution
reported in Eurostat Structural and Business Statistics (SBS). The cleaning process follows
Kalemli-Özcan et al. (2024) and Gopinath et al. (2017) and is explained in Appendix B.

The final dataset includes information on approximately 4.3 million observations corre-
sponding to 1 million firms. We measure sales (PY ) by operating revenue, materials (M ) by
expenditure on materials, labor (L) by the cost of employment, and capital (K) by the book
value of tangible fixed assets. All monetary values are deflated using Eurostat two-digit in-
dustry price deflators, and capital is deflated using the country-specific price of investment
from the World Development Indicators. The dataset also includes the primary sector of eco-
nomic activity at the four-digit industry level and, importantly, firm-level zip codes, enabling
geolocation. This geolocation is used to link the data to the climate variables.

We compute the marginal revenue product of input X ∈ L,M,K using equation (13),
with αX , the elasticity of output with respect to X , measured via the cost shares approach
(Foster et al., 2008) and taking the median firm-level cost share within each four-digit in-
dustry (De Loecker et al., 2020) to address measurement error and adjustment frictions.16

The production function elasticities are given by αM = med
{

PM
t Mit

rtKit+WtLit+PM
t Mit

}
, αL =

med
{

WtLit

rtKit+WtLit+PM
t Mit

}
, αK = 1−αL −αM , where rtKit is the rental cost of tangible cap-

ital, WtLit is the wage bill, and PM
t Mit is the expenditure on materials.17 We recover median

production function elasticities {αX}X∈{M,L,K} equal to {0.53, 0.36, 0.11}, well within the
range found by the literature.18 For instance, Gandhi et al. (2020) reports values for materials,
labor, and capital ranging from 0.50-0.67, 0.22-0.52, and 0.04-0.16, respectively.

16We use the production function elasticities both to calculate the aggregate counterfactual based on equation
(19) and to compute the revenue-based marginal products in equation (13). For the latter, since our regression
framework includes firm and sector-time fixed effects, these elasticities are absorbed into the error term and
are therefore not required to identify the temperature-semielasticity of each revenue-based marginal product.

17We measure the user cost of capital as rt = it−Etπt+1+ δ+RP . We use the real interest, it−Etπt+1, from
Gopinath et al. (2017), a depreciation rate, δ, of 10% as usually done in the literature, and a risk premium, RP ,
of 5% as calculated in Caballero et al. (2017).

18The inclusion of aggregate median elasticities in the text serves the sole purpose of facilitating a meaningful
comparison with the existing literature. However, in the calculations, only the sector-level elasticities are used.
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3.2 Climate Data

The meteorological data are sourced from Copernicus, the European Union’s flagship Earth
Observation Programme, using E-OBS, a daily gridded land-only observational dataset for
Europe.19 For further details, see Cornes et al. (2018) and Appendix B.2.1. This dataset is con-
structed using observations fromNationalMeteorological andHydrological Services (NMHSs)
and other data-holding institutions across Europe. It incorporates contributions from 84 or-
ganizations and includes data collected from over 23,000 meteorological stations. Additional
information on the dataset’s high station coverage is provided in Appendix B.2.2.

Figure 1: Average Yearly Temperature
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Note. Figure 1a shows the evolution of the average yearly temperature in Italy between 1950-2020. The grey
areas show the time frame (1999-2013) for which Orbis data is available. Figure 1b shows the average yearly
temperature across all the grid-cells in Italy in 1999. It also plots regional boundaries at the NUTS 3 level.

We use daily temperature and rainfall data with a horizontal grid resolution of 0.1◦ (ap-
proximately 11 km × 11 km, or 121 km2), covering the period 1950–2020. Temperatures are
recorded in degrees Celsius (◦C), and rainfall is measured in millimeters (mm). Following So-
manathan et al. (2021), daily temperature is represented by the maximum temperature, which
typically occurs during working hours and serves as a proxy for heat exposure during peak
economic activity. Rainfall is recorded as total daily precipitation, including rain, snow, and
hail, expressed as the equivalent height of liquid water per square meter. While our primary
variable of interest is temperature, rainfall is included as a control variable in the empirical
analysis, as detailed in Section 4.

Figure 1a shows the evolution of the average yearlymaximum temperature over the entire
sample period. The average yearly maximum temperature is volatile and rising over time.

19See https://doi.org/10.24381/cds.151d3ec6.
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Table 1 presents summary statistics for our climate data during the period 1999–2013, which
corresponds to the subperiod for which firm-level data is available and forms the basis of
our analysis. Summary statistics for the entire sample period are provided in Table B.2 in
Appendix B.2.3. Additionally, Figure 1b illustrates the average yearly temperature in 1999 for
each grid cell, overlaid with the boundaries of NUTS 3 regions in Italy. The average yearly
temperature ranges from 0.14◦C to 23.82◦C, highlighting substantial variation across grid cells
and regions. This pronounced temperature heterogeneity makes Italy an exceptional setting
for studying the economic impacts of climate change. The coexistence of wide temperature
gradients and diverse locations of economic activity—from production sites in colder areas like
the Alps to warmer coastal regions—provides a unique opportunity to analyze firm responses
to varying climatic conditions.

Table 1: Summary Statistics of Climate Data (1999-2013)

Overall Within Grid-Cell

Temperatures (◦C) Rainfalls (mm) Temperatures (◦C) Rainfalls (mm)
Mean 17.74 2.28 17.74 2.28
Median 17.65 0.00 17.51 1.01
Min -24.94 0.00 0.35 0.00
Max 43.71 258.40 33.62 26.99

Note. Table 1 shows summary statistics of temperature in degrees Celsius (◦C) and rainfalls in millimeters
(mm) for the period 1999-2013. The first two columns report statistics for the overall sample. The last two
columns report statistics on the variation within the average grid-cell, that is, they show the average temperature
distribution among the different grid-cells.

Our main empirical specification follows Somanathan et al. (2021), aggregating daily tem-
peratures to the annual level by counting the number of days falling within specific temper-
ature bins, as introduced by Deschênes and Greenstone (2011). We use the following bins:
{(−∞, 0◦C], (0◦C, 30◦C], (30◦C, 35◦C], (35◦C, 40◦C], (40◦C,+∞)}. To summarize the yearly
temperature distribution, we construct a vector T = {T 1, T 2, T 3, T 4, T 5}, which counts the
number of days in each bin for every grid cell and year. These non-overlapping bins fully
capture the observed temperature distribution, with more bins at the high end to assess the
economic impact of future climate change. In Section 5, we present a robustness exercise using
a smaller benchmark bin, specifically (15◦C, 30◦C]. Additionally, we consider two alternative
specifications for daily maximum temperatures: one based on a degree-day approach and
another using a quadratic formulation of daily maximum temperatures.

Figure 2 shows the distribution of days within each temperature bin of the vector T av-
eraged across grid-cells and years. Most of the days clearly belong to the [0◦C, 30◦C) range,
which we will use as the reference bin in the regression framework. Importantly, all tem-
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Figure 2: Average Distribution of Days Within Temperature Bins
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Note. Figure 2 shows the number of days per year within each temperature bin of the vector T . We construct
this figure averaging across all grid-cells and years.

perature bins have a non-zero average number of days. Table B.3 in Appendix B.3 reports
summary statics for the distribution of days within each temperature bin across grid-cells.

3.3 Main Combined Data

To construct our final dataset, we merge firm-level data from Orbis with temperature data
from Copernicus by assigning each firm to a specific grid cell in the Copernicus dataset. The
Copernicus data includes latitude and longitude for its grid cells. We determine each firm’s
geographical coordinates in Orbis using their reported postcode to the business registry. Post-
codes act as unique identifiers for specific locations, enabling precise localization. To convert
postcodes into geographical coordinates, we use the Python package “pgeocode.”20 Using the
firms’ coordinates and the latitude and longitude of the Copernicus grid cells, we assign each
firm to its nearest grid cell by calculating the minimum distance between the two.

One limitation of our data is that we only have information on the firm’s headquarters
address, with no details about production plant locations. For firms whose headquarters are
in a different grid cell than their production plants, temperature data may be incorrectly
assigned—a scenario more likely for large, multi-plant firms. However, in our sample of Orbis-
Italian firms, only 1% are publicly listed, 3–4% are foreign-owned, and 2% have consolidated fi-
nancial statements, suggesting that such firms represent a small minority. Robustness checks
confirm that these cases do not drive our results. Furthermore, if production locations aremis-
assigned to grid cells, the firm’s response to the incorrectly assigned temperature would likely
be weaker or negligible, biasing our results downward. This implies a conservative bias in our
20The pgeocode package (https://pypi.org/project/pgeocode/ ) utilizes data from GeoNames (https://
www.geonames.org ), an open-source project providing detailed postal code and location information.
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estimates, offering a more benign interpretation of this potential source of mismeasurement.

4 Empirical Strategy

This section outlines our empirical approach to identifying the effects of temperature on firm-
level demand-adjusted productivity and input-specific wedges.

In Section 2, we left the temperature-dependent factors as unspecified functions. Here,
we specify the functional forms used in the empirical analysis for demand-adjusted produc-
tivity and input-specific wedges. Specifically, we assume that firm-level outcomes and input-
specific wedges consist of a temperature-dependent component, F (Tg(i)t), and a temperature-
independent component, W it, such that:

ez̃it(Tg(i)t) ≡ eF
z̃(Tg(i)t)+Gz̃(Wit), (23)

eτ
X
it (Tg(i)t) ≡ eF

τX (Tg(i)t)+GτX (Wit), with ∀X ∈ X ; (24)

where F (·) is a non-linear function of temperature in the grid-cell to which firm i belongs
and G(Wit) is a function of alternative explanatory variables.

Thus, to measure the effect of changes in temperature on firm-level outcomes, we estimate
the following equation:

Outcomeit =
∑
ℓ

βℓT
ℓ
g(i)t + δRaing(i)t + λ′Xr(i)t + γs(i)t + αi + εit, (25)

where i denotes a firm, t stands for year and g(i) denotes the grid-cell to which firm i be-
longs. Outcomeit denotes log firm-level outcomes or log revenue-based marginal product of
a given input X , logMRPXit. We approximate the non-linear temperature function F (·)
by the variable T ℓ

g(i)t, denoting the number of days in temperature bin ℓ, that each grid cell
g(i) experienced during a given year (see Section 3.2 for a description). We set the interval
[0◦C, 30◦C) as the reference temperature bin since it covers the average range of temperature
faced by most grid-cells in our data. For robustness, as detailed in Section 5, we use two al-
ternative specifications for F (·): a degree-day measure and a quadratic specification of daily
maximum temperatures.

G(Wit) includes potential confounding factors at the firm, grid-cell, region, and sector
level. Outcome variables may also respond to other climate factors related to temperature. To
address this, we include Raing(i)t, which represents the average yearly rainfall in each grid
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cell. For robustness, Section 5 introduces a nonlinear specification of rainfall, similar to F (·),
to account for rainfall nonlinearity and the potential effects of floods, the primary extreme
weather event in Italy caused by heavy precipitation. We include firm fixed effects (αi) to
control for unobserved time-invariant characteristics at the firm level. To account for regional
shocks, we add regional trends,Xr(i)t, which include time trends at the NUTS 2 regional level
(r(i) indicates the region of firm i) and dummies for the Great Recession (2008–2009) and the
Sovereign Debt Crisis (2012–2013), reflecting the uneven regional impact of these crises in
Italy. Similarly, to control for sectoral and aggregate productivity trends, we include sector-
time fixed effects (γs(i)t), where s(i) denotes the NACE 4 sector of firm i. These fixed effects
capture sector-specific and broader economic fluctuations. Standard errors are clustered at
the grid-cell level to account for potential serial correlation that could downwardly bias the
estimates. To further address spatial autocorrelation in weather patterns, as highlighted by
Auffhammer et al. (2013), we include a robustness check in Section 5 using spatially adjusted
standard errors based on the method proposed by Conley (2010).

The regression specification given by equation (25) is the empirical counterpart of equa-
tions (10) and (14). The coefficient of interest is βℓ, which captures the effect of an extra day
into the temperature bin ℓ relative to the reference temperature bin. Thus, βℓ < 0 implies
that the given firm-level outcome declines βℓ percent for each extra day into the tempera-
ture bin ℓ relative to the reference temperature bin. Our coefficient of interest, βℓ, is identi-
fied by comparing firms with similar time-invariant characteristics that experience the same
grid-cell rainfall levels, regional development trends, exposure to the Great Recession (GR)
and Sovereign Debt Crisis (SDC), and sectoral dynamics but are exposed to different grid-cell
temperature changes over time. The key identification assumption is that, after controlling
for regional and sectoral fixed effects, temperature fluctuations are exogenous to any other
time-varying factors influencing demand, productivity, or inputs.

There are at least three potential challenges to the validity of our results, but as we explain
below, these challenges do not fully align with our findings and would likely bias our esti-
mates downward. First, there is the possibility of a contemporaneous shock that affects both
temperatures and productivity simultaneously. For example, regions experiencing a surge
in economic activity might face increased congestion or pollution, leading to both a rise in
temperatures and a decline in productivity. However, this explanation does not fully align
with our findings, as we observe output decreases directly linked to elevated temperatures.
A second identification challenge arises from shocks that influence both productivity and its
responsiveness to temperature. For instance, higher firm unionization might lead to tougher
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bargaining discussions, including grievances about working under extreme temperatures. In
this scenario, there is a potential for overestimating the impact of temperatures, as it may also
encompass the effects of unionization itself. However, by controlling for sector-year fixed
effects and considering that these phenomena are widespread across all firms in a sector, con-
cerns should be mitigated. Third, if firms could accurately anticipate temperature increases at
the grid-cell level and choose their locations accordingly, this could introduce selection bias.
To address this, we include regional trends in our analysis, allowing us to estimate deviations
from these trends and capture the effects of unanticipated temperature shocks. This approach
suggests that our estimates are best interpreted as short- to medium-run elasticities.

5 Results

In this section, we present the firm-level effects of temperature on several objects of interest
and we discuss potential channels and heterogenous effects.

5.1 Sales, Inputs, and Marginal Revenue Products

We estimate the effect of temperature on firm-level outcomes using the regression specifica-
tion outlined in equation (25). We estimate the effect of temperature on sales and its impact
on firms’ inputs—materials, labor, and capital—to better understand the response of marginal
revenue products of inputs. Table 2 reports the results.

The estimates reveal that temperature has an inverted U-shaped effect on sales, materials,
and labor, indicating that extreme temperatures, whether high or low, tend to suppress these
firm-level outcomes. For instance, one additional day above 40 degrees Celsius is estimated
to reduce sales by 0.807%, while one extra day below 5 degrees Celsius decreases sales by
0.094%.21 These losses are measured relative to the reference temperature bin [0◦C, 30◦C).
The response of capital, however, is notably weaker, particularly at higher temperatures. This
is significant for our analysis, as it suggests that while materials and, to a lesser extent, labor
exhibit substantial and meaningful responses to extreme temperatures, capital adjustments
are minimal, consistent with the widely recognized view that capital is subject to greater
adjustment frictions compared to materials and labor.

21Assuming production is evenly distributed across all effective working days in a year (approximately 220 in
Italy, accounting for 250 working days minus 30 holidays), an extra day above 40 degrees Celsius equates to
nearly a two-day loss in sales (100 × 2/220 ≈ 0.807), and an extra day below 5 degrees Celsius corresponds
to about a one-third-day loss in sales (100× 0.3/220 ≈ 0.094).
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Table 2: Average Effect of Temperature on Sales and Inputs

Dependent Variable Sales Materials Labor Capital
(1) (2) (3) (4)

Temperature Bins
(−∞, 0◦C] -0.094*** -0.068** -0.070*** -0.036*

(0.019) (0.029) (0.019) (0.021)
(30◦C, 35◦C] -0.017* -0.022 0.002 0.003

(0.009) (0.014) (0.007) (0.010)
(35◦C, 40◦C] -0.046*** -0.060** -0.003 0.004

(0.017) (0.025) (0.016) (0.019)
(40◦C,+∞] -0.807*** -0.557** -0.369** 0.033

(0.194) (0.242) (0.187) (0.217)
Fixed Effects

Firm ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓

Observations 4,687,524 4,687,524 3,767,578 4,328,710

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. Rows
1-4 present the effect on the log of the dependent variable of adding an extra day in the given temperature range
respectively. Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote
10, 5, and 1% statistical significance respectively.

Table 3: Average Effect of Temperature on Revenue-Based Marginal Product of In-
puts

Dependent Variable MRPM MRPL MRPK
(1) (2) (3)

Temperature Bins
(−∞, 0◦C] -0.018 0.008 -0.030

(0.019) (0.013) (0.022)
(30◦C, 35◦C] 0.006 -0.012** -0.014

(0.008) (0.006) (0.010)
(35◦C, 40◦C] 0.011 -0.021 -0.045**

(0.014) (0.013) (0.021)
(40◦C,+∞) -0.209 -0.019 -0.578**

(0.156) (0.145) (0.231)
Fixed Effects

Firm ✓ ✓ ✓
Sector × Year ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓
Region Trends ✓ ✓ ✓

Observations 4,687,524 3,767,578 4,328,710

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. Rows
1-4 present the effect on the log of the dependent variable of adding an extra day in the given temperature range
respectively. Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote
10, 5, and 1% statistical significance respectively.

Wenext estimate the effect of temperature on the firm-level revenue-basedmarginal prod-
uct of each input using the regression specification in equation (25). The results, shown in
Table 3, reveal an inverted U-shaped relationship between temperature and revenue-based
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marginal products, which is statistically significant and substantial only forMRPK . This in-
dicates that extreme temperatures—whether high or low—reduce the revenue-based marginal
product of capital. Specifically, an additional day above 40℃ decreases MRPK by 0.578%,
while an extra day below 5℃ reduces it by 0.030%. These findings are consistent with the
patterns reported in Table 2. The results further show that MRPM and MRPL remain
unaffected by temperature fluctuations, as materials and labor adjust in response to tempera-
ture changes to align with sales. In contrast,MRPK is significantly impacted because capital
adjustments are constrained, leaving firms with excess capital that cannot be reallocated ef-
fectively. This finding highlights the unique role of capital adjustment frictions and represents
a novel contribution of our paper.22

The finding that materials are flexible to adjust aligns with a large body of literature in
firm dynamics, which identifies materials as the most flexible input. Moreover, the minimal
impact of temperature on the MRPL suggests that, despite Italy’s traditionally rigid labor
market institutions, firms demonstrate considerable flexibility in adjusting their labor input.
This adaptability operates through both intensive margins (adjusting hours worked) and ex-
tensive margins (utilizing fixed-term contracts), the latter facilitated by labor market reforms
since the mid-1990s (Caggese and Cuñat, 2008). This labor input flexibility allows firms to
maintain optimal labor allocation even when facing temperature shocks. The finding that
capital is difficult to adjust aligns with the extensive literature on capital adjustment costs
(e.g., Cooper and Haltiwanger, 2006). Our analysis shows a significant decline in MRPK

during high-temperature episodes. While factors such as increased cooling needs or tempo-
rary shutdowns might be expected to raise MRPK , we observe the opposite. This reflects
the quasi-fixed nature of capital investments and the associated adjustment costs: firms are
unable to efficiently scale down capital inputs during temporary production declines, leading
to a reduced output-to-capital cost ratio.

Ourmain results are robust to various concerns and alternative specifications. Table C.4 in
Appendix C.1 demonstrates that splitting the (0◦C, 30◦C] range into smaller bins—(0◦C, 15◦C]
and (15◦C, 30◦C]—produces estimates consistentwith the benchmark specification. Tables C.5
and C.6 in Appendix C.1 confirm the robustness of our findings under alternative regression
specifications. First, we control for firm age, a well-documented determinant of firm hetero-
geneity (Fort et al., 2013), and find no changes to our results. Second, we test alternative tem-

22The model assumes no unemployed inputs. Thus, when firms reduce labor and material inputs due to temper-
ature shocks, these inputs are assumed to be reallocated to more productive uses within the year. While some
inputs may remain temporarily unemployed in reality, affecting aggregate output, this has less relevance for
aggregate productivity, which is the primary focus of our analysis.
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perature specifications, including a piecewise linear model based on degree days (Somanathan
et al., 2021) and a quadratic model of daily maximum temperatures (Dell et al., 2012; Burke
et al., 2015). Third, we include a specification with nonlinear rainfall controls to account for
the effects of precipitation and floods. Finally, we address spatial autocorrelation by adjusting
standard errors using the method of Conley (2010), allowing for dependence within radii of
80 km and 150 km.23 Across all robustness checks, our findings remain consistent with the
benchmark results reported in this section.

Finally, we show that our results are robust across various sample cuts. First, Tables
C.7 and C.8 in Appendix C.2 present additional specifications to evaluate the sensitivity of
our estimates to firms potentially assigned incorrect temperatures, as discussed in Section
3.3. These specifications exclude specific types of firms, such as foreign firms, listed firms,
firms reporting consolidated accounts, and large firms, with the exclusion criteria detailed in
Appendix C.2. Crucially, our analysis shows that the inclusion or exclusion of these firms does
not affect our estimates, indicating that the concerns raised in Section 3.3 about potentially
misclassified firms do not materially impact our findings. Second, we address the issue of
differing sample sizes due to limited data availability for employment measures. As shown
in Tables C.7 and C.8 in Appendix C.2, ensuring consistency in the number of observations
across variables does not alter the patterns presented in this section.

5.2 Demand-Adjusted Productivity

Having estimated the effects of temperature on both sales and the revenue-based marginal
product of inputs, we leverage the structural framework and equation (11) to recover the
impact of temperature on firm-level demand-adjusted productivity. In Section 5.3.1, we fur-
ther detail how we disentangle demand effects from productivity effects. Importantly, the
effect of temperature on the revenue-based marginal product not only offers novel evidence
of a previously underexplored channel through which extreme temperatures affect firms but
also enables a more accurate measurement of demand-adjusted productivity. Neglecting this
channel would lead to an underestimation of the temperature effect, as noted in equation (11).

To compute these estimates, we require the elasticity of substitution across varieties, de-
noted as σ, and the production function elasticities, αX . For the latter, we use the elasticities
described in Section 2, and we assume an elasticity of substitution σ = 4 between varieties.
This value implies an average cost-weighted markup of 33 percent, which is consistent with

23These radii are a conservative choice, as Italy spans approximately 549 km x 549 km, totaling 301,340 km2.
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the estimates from De Loecker et al. (2020) and our own estimates for Italy, where we find a
materials cost-weighted markup of 27 percent. It also aligns with the mean value reported by
Broda and Weinstein (2006).24 This elasticity estimate is further supported by both firm-level
and macroeconomic studies. For instance, Bernard et al. (2003) report a value of σ = 3.79 in a
firm-level export model, while Christiano et al. (2015), using a New-Keynesian model with fi-
nancial frictions, estimate σ = 3.78. Additionally, we obtain the temperature-semielasticities
of sales and revenue-basedmarginal products fromTables 2 and 3, andwe set the temperature-
semielasticity ofMRPM andMRPL to zero as they are statistically insignificant and small.25

Table 4 summarizes the effect of temperature on demand-adjusted productivity, under
the parameters specified above. Notice that the temperature-semielasticities of the demand-
adjusted productivity vary across sectors as production function elasticities are sector-specific.
Thus, we report both an unweighted average and a sales-weighted average across sectors.26

Table 4: Average Effect of Temperature on Demand-Adjusted Productivity

Temperature Bins

(−∞, 0◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,∞)

Variable
βz
ℓ , unweighted -0.031 -0.005 -0.021 -0.337

βz
ℓ , weighted -0.031 -0.005 -0.019 -0.321

Note. Table 4 reports the temperature-semielasticity for demand-adjusted wedges for each temperate bin. Tem-
perature bins are constructed as explained in Section 3.2. Row 1 reports the unweighted average across sectors.
Row 2 reports the sales-weighted average across sectors.

We observe that the temperature-semielasticity of demand-adjusted productivity exhibits
the previously identified inverted U-shaped pattern. This result is not entirely unexpected, as
equation (11) shows that this semielasticity is a linear combination of the earlier ones, subject
to rescaling. Quantitatively, our analysis indicates that an additional day with temperatures
exceeding 40 degrees Celsius decreases demand-adjusted productivity by 0.337 percent, while
an additional day with temperatures below 0 degrees Celsius reduces it by 0.031 percent.
These findings highlight the significant impact of extreme temperatures—both high and low—
on demand-adjusted productivity as reflected in the data.

24Based on three-digit goods (SITC-3) data over the period 1990–2001.
25We do the same for the calculation implemented in Section 6.
26Table C.9 in the appendix C.3 shows how the effect of temperature on demand-adjusted productivity varies
across sectors. High capital intensive sectors experience larger losses.
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5.3 The Demand Channel and Adaptation Effects

This section investigates potential differences between tradable and non-tradable sectors,
shedding light on the roles of demand versus efficiency. Additionally, it explores the pos-
sibility of firm adaptation to climate change.

5.3.1 Demand versus Productivity

Although the model does not require separating demand from productivity to conduct the
aggregate counterfactual analysis in equation (21), we aim to understand which of these two
margins is more affected by temperature. To this end, we extend our empirical strategy to dis-
entangle the effects of temperature on firms’ demand and productivity. While firms operating
in a specific area are likely to experience similar productivity impacts from extreme tempera-
tures, we observe that firms producing tradable goods are less exposed to local temperature-
related demand shocks, as a significant portion of their demand originates from outside the
local market, potentially from abroad.27 Therefore, if temperature changes occur in the grid
cell where their production is located, these firms’ productivity will be affected. However,
their demand will remain either unaffected or less affected, as they do not rely heavily on
sales within that grid cell.

Thus, we set to identify the effect of temperature on demand and productivity separately
using the following regression specification:

Outcomeit =
∑
ℓ

β1,ℓT
ℓ
g(i)t + δ1Raing(i)t + λ′

1Xr(i)t

+

(∑
ℓ

β2,ℓT
ℓ
g(i)t + δ2Raing(i)t + λ′

2Xr(i)t

)
× INT

s(i) + γs(i)t + αi + εit,

(26)

where INT
s(i) is an indicator function that takes the value of one if firm i belongs to sectors s

selling non-tradable goods, as described below, and the other variables are described in the
main specification in Section 4. In this specification, the estimated coefficients β1,ℓ capture
the temperature-semielasticity of sales, which is common to firms both in the tradable and
non-tradable sectors and that therefore captures common productivity effects. Instead, the
coefficients β2,ℓ reflect the differential impact of temperature on firms in the non-tradable

27For instance, the lower demand sensitivity of sales for firms producing tradable goods has been empirically
documented by Almunia et al. (2021) during the Great Recession. Furthermore, examining this dimension in
our data is a natural choice, given that a significant proportion of Italian firms engage in the production of
tradable goods and exporting, as highlighted by Caggese and Cuñat (2013).
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sector, which we interpret as the semielasticity of the demand effect.
We employ three distinctmeasures to classify firms into tradable and non-tradable sectors.

First, based on the World Input-Output Database (WIOD), we identify tradable sectors as
those where the proportion of exports in total value-added for each NACE 2-digit sector in
Italy exceeds the median. Recognizing that tradability involves more than international trade,
we further identify firms whose goods and services are predominantly locally demanded. To
achieve this, we employ two additional metrics. First, we use the classification provided by
Gervais and Jensen (2019) which utilizes a dataset on the distribution of output and demand
across regions of the United States to construct measures of trade costs for nearly a thousand
service andmanufacturing industries.28 Secondly, we adapt the tradabilitymeasure fromMian
and Sufi (2014), which links high regional employment concentration to greater tradability.
Using a similar approach, wemeasure the geographical (NUTS 2) concentration of each NACE
2 sector in Italy, defining a sector as tradable if its wage bill concentration exceeds the median.

Table 5 presents the results. Column 1 reports the estimated average effect of temperature
on sales, as shown in Table 2. Columns 2 to 4 provide (i) the coefficient for the common effect
of temperature on sales across both tradable and non-tradable sectors and (ii) the coefficients
for the additional effect of temperature on sales in non-tradable sectors, capturing the demand
effect. In Column 2, tradable sectors are defined as those with a proportion of exports in total
value-added above the median, based on WIOD data for each NACE 2-digit sector. Column
3 uses the tradability measure from Gervais and Jensen (2019), while Column 4 applies the
tradability measure from Mian and Sufi (2014) using Italian data.

We observe that the interaction coefficient is largely insignificant and modest across in-
tervals, except for the (35◦C, 40◦C] interval, where it is negative in two out of three specifi-
cations. Conversely, the common coefficient for extreme temperatures is highly significant,
substantial in size, and similar to the average effect. These findings suggest that non-tradable
firms are only slightly more affected by temperature, indicating a minor but nonzero role of
temperature in demand and a more substantial impact on productivity. This does not contra-
dict the view that customer demand for certain goods, particularly durables, varies with daily
weather (e.g., Busse et al., 2015), but suggests that such variations may be offset over the year,
reducing the annual effect. Consequently, our results indicate that most of the temperature
effect on the demand-adjusted productivity wedge stems from its impact on productivity.29

28We thank Antoine Gervais for sharing his data with us.
29This aligns with existing literature highlighting the influence of temperature on labor productivity, as reviewed
by Pankratz and Schiller (2024) and Lai et al. (2023), with additional evidence for Italy provided by Gould et al.
(2024) and Filomena and Picchio (2024).
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Table 5: Effect of Temperature on Sales of Tradable versus Non-Tradable Sectors

Dependent Variable Sales Sales Sales Sales
(1) (2) (3) (4)

Temperature Bins
(−∞, 0◦C] -0.094*** -0.090*** -0.096*** -0.113***

(0.019) (0.024) (0.024) (0.026)
(30◦C, 35◦C] -0.017* -0.006 -0.006 -0.025**

(0.009) (0.009) (0.011) (0.010)
(35◦C, 40◦C] -0.046*** -0.017 -0.013 -0.024

(0.017) (0.019) (0.020) (0.021)
(40◦C,+∞) -0.807*** -0.758*** -0.835*** -1.046***

(0.194) (0.260) (0.297) (0.310)

Temperature Bins×INT
s(i)

(−∞, 5◦C] -0.006 0.005 0.032
(0.030) (0.026) (0.029)

(30◦C, 35◦C] -0.019 -0.016 0.014
(0.015) (0.012) (0.012)

(35◦C, 40◦C] -0.049* -0.046* -0.036
(0.027) (0.023) (0.023)

(40◦C,+∞) -0.087 0.022 0.385
(0.352) (0.357) (0.383)

Fixed Effects
Firm ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓

Observations 4,687,524 4,684,661 4,593,020 4,687,524

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. The
variable INT

s(i) is an indicator set to one if firm i belongs to a non-tradable sector s, as described in Section 3.
Column 2 defines tradable sectors using WIOD, where exports exceed the median proportion of total value-
added for NACE 2-digit sectors. Column 3 applies the tradability measure from Gervais and Jensen (2019), while
Column 4 adapts Mian and Sufi (2014)’s measure to Italy using wage bill data. Rows 1-4 show the effect on
log sales of an additional day in each temperature range. Rows 5-8 show the additional effect on log sales for
non-tradable goods. Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and ***
denote 10, 5, and 1% statistical significance respectively.

5.3.2 Adaptation

In the next section, we use the estimates presented in Section 5.1 to predict the aggregate
productivity effects of temperature increases due to climate change. For this purpose, con-
sidering adaptation is important, as neglecting the fact that firms adopt climate-mitigating
measures in response to climate change may lead to overestimating the overall effect.30

We build on recent literature on adaptation, including Auffhammer (2018), Heutel et al.
(2021), Carleton et al. (2022), and Nath (2024), by exploiting variation in long-term climate

30Note that our model and empirical strategy already incorporate two aspects of adaptation. First, the model
allows for input reallocation, with empirical evidence showing materials and labor respond to temperature
changes, while capital does not. Second, since firm-level data are annual and temperature measures are daily,
actions firms take to boost production in response to temperature increases during the year, such as extending
working hours during cooler periods, are already captured in our semielasticities.
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exposure. Firms in different regions experience distinct climates, not only in average temper-
ature but also in variability. Greater exposure to extreme temperatures may lead to differing
adaptation patterns and temperature semielasticities. We examine the impact of operating in
grid cells with varying exposure to extreme temperatures, arguing that regional adaptation is
better modeled based on temperature variability rather than averages. This is very relevant
in Italy, where coastal areas often have higher average temperatures but fewer extreme heat
events compared to inland regions. Our findings align with earlier estimates showing that
firms are more affected by extreme temperatures than by small deviations from the average.
To test this hypothesis we estimate the following regression:

Outcomeit =
∑
ℓ

β1,ℓT
ℓ
g(i)t + δ1Raing(i)t + λ′

1Xr(i)t

+

(∑
ℓ

β2,ℓT
ℓ
g(i)t + δ2Raing(i)t + λ′

2Xr(i)t

)
× IHg(i) + γs(i)t + αi + εit,

(27)

where IHg(i) is an indicator set to one if firm i operates in adapted grid-cells g, defined as
those experiencing more extreme temperatures during the year, and the other variables are
described in equation (25).31 Columns 2 and 5 of Table 6 use an indicator variable set to one
if the number of extreme temperature days in a grid-cell exceeds the national mean, while
columns 3 and 6 use the national median as the threshold. In this specification, the estimated
coefficients β1,ℓ represent the temperature-semielasticity of sales common to firms in regions
with both high and low exposure to extreme temperatures. In contrast, the coefficients β2,ℓ

capture the differential effect of temperature on firms in more adapted grid-cells.
Results in Table 6, columns 2 and 3, show that this differential effect is positive for the

number of days above 40 degrees. In other words, firms in more adapted regions experience
a less negative effect of extremely high temperatures on output compared to firms in less
adapted regions. They also experience a lower fall in their marginal return to capital, although
this coefficient is imprecisely estimated. Conversely, we find smaller and insignificant effects
of adaptation regarding the exposure to high but less extreme temperatures. Overall, we take
these results as suggestive evidence of relatively small adaptation effects, broadly in line with
those found in the literature (Nath, 2024).

31Specifically, we define extreme days as those withmaximum temperatures above 30 degrees or below 0 degrees.
For each location and year, we calculate the ratio of days with extreme temperatures to days with moderate
temperatures (maximum daily temperatures between 0 and 30 degrees). Adapted locations are those with an
average yearly ratio over the sample period exceeding the national mean or median.
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Table 6: Effect of Temperature on Sales and MRPK Conditional on Adaptation

Dependent Variable Sales Sales Sales MRPK MRPK MRPK
(1) (2) (3) (4) (5) (6)

Temperature Bins
(−∞, 0◦C] -0.094*** -0.080*** -0.079*** -0.030 -0.004 -0.001

(0.019) (0.021) (0.021) (0.022) (0.027) (0.028)
(30◦C, 35◦C] -0.017* -0.029*** -0.023** -0.014 -0.019 -0.018

(0.009) (0.010) (0.009) (0.010) (0.012) (0.013)
(35◦C, 40◦C] -0.046*** -0.035 -0.024 -0.045** -0.049 -0.061

(0.017) (0.033) (0.037) (0.021) (0.036) (0.042)
(40◦C,+∞) -0.807*** -1.864*** -2.039*** -0.578** -1.225** -1.393***

(0.194) (0.505) (0.524) (0.231) (0.536) (0.551)

Temperature Bins×IHg(i)
(−∞, 0◦C] -0.019 -0.019 -0.039 -0.041

(0.028) (0.027) (0.031) (0.031)
(30◦C, 35◦C] 0.018 0.009 0.017 0.019

(0.011) (0.011) (0.014) (0.013)
(35◦C, 40◦C] -0.003 -0.012 0.025 0.042

(0.032) (0.036) (0.038) (0.043)
(40◦C,+∞) 1.146** 1.344** 0.653 0.826

(0.540) (0.559) (0.581) (0.595)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓

Observations 4,687,524 4,687,503 4,687,503 4,328,710 4,328,689 4,328,689

Note. All dependent variables are in logs. Temperature bins are constructed as explained in Section 3.2. In
columns 2 and 5 the variable IHg(i) is an indicator function that takes the value of one if firm i belongs to a
grid-cell g with the number of extreme days above the national mean. In columns 3 and 6 the variable IHg(i) is
an indicator function that takes the value of one if firm i belongs to a grid-cell g with the number of extreme
days above the national median. Rows 1-4 present the effect on the log of sales of adding an extra day in the
given temperature range respectively. Rows 5-12 present the extra effect coming from being exposed to extreme
temperatures. Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and *** denote
10, 5, and 1% statistical significance respectively.

6 Aggregate Effects

This section documents the aggregate productivity losses resulting from various warming
scenarios and highlights their heterogeneous regional impact.

6.1 Aggregate Productivity Loss

While our reduced-form estimates indicate that climate change reduces firm-level productiv-
ity and the revenue-basedmarginal product of capital, they do not reveal whether these effects
significantly impact aggregate productivity. To assess this, we estimate the effect of climate
change on the Solow residual, a proxy for aggregate productivity, using equations (19), (20),
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and (22), which we restate compactly as:

∆ logSolowt ≈
Yt

GDPt

(
∆ logTFP ∗

t

(
ez̃it(Tg(i)t),∆Tg(i)t

)
︸ ︷︷ ︸

∆Technology

−
(
∆ logTFP ∗

t

(
ez̃it(Tg(i)t),∆Tg(i)t

)
−∆ logTFPt

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t),∆Tg(i)t

))
︸ ︷︷ ︸

∆Allocative Efficiency

)
.

(28)

Equation (28) indicates that to quantify the counterfactual effect of climate change on
aggregate productivity, we require: (i) the demand-adjusted productivity ez̃it(Tg(i)t) and the
temperature-semielasticity; (ii) input-specificwedges eτXit (Tg(i)t) and the temperature-semielasticity;
and (iii) counterfactual changes in grid-cell-level temperatures ∆Tg(i)t. For the elasticity of
substitution between the varieties σ and the production function elasticities αX we use the
same values as in Section 5.2. We next turn to explain how we use the empirical results from
Section 5 to measure each of these elements.

6.1.1 Measurement and Identification

Demand-adjusted productivity. We compute demand-adjusted productivity in the data using
equation (18). For the temperature-semielasticity of the demand-adjusted productivity, we
follow the calculations in Section 5.2 as reported in Table 4.

Input-specific wedges. We compute input-specific wedges with our firm-level data us-
ing equation (13) as explained in Section 3. To calculate the temperature-semielasticity of
the input-specific wedges we use the findings from Section 5.1 and proceed as follows: (i)
we set the temperature-semielasticity of labor and materials inputs to zero, as no significant
effects of temperature were observed (see Table 3), and (ii) we use the estimated temperature-
semielasticity of capital input from Table 3.

Counterfactual changes in grid-cell-level temperatures. Thefinal component for calculating
productivity losses from climate change under various warming scenarios is the counterfac-
tual change in grid-cell-level temperatures. We derive these changes for different scenarios,
includingmean temperature increases of 1, 2 (baseline), and 4 degrees Celsius. A 2-degree Cel-
sius increase serves as our benchmark, aligning with the Paris Agreement goals, while other
scenarios are used for robustness checks.32 Additionally, we include the RCP4.5 and RCP8.5
scenarios from the Copernicus climate models as robustness checks, representing average

32https://unfccc.int/process-and-meetings/the-paris-agreement.
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temperature increases of approximately 2 and 4 degrees Celsius, respectively.33 These sce-
narios offer the advantage of capturing non-linear and heterogeneous temperature increases
across different regions (NUTS3), aligning closely with realistic climate change models.

Figure 3: Counterfactual Average Distribution of Days Within Temperature Bins
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Note. Figure 3 shows the average number of days per year within each temperature bin of the vector T . The
number of days within each bin is an average across grid-cells. The first column (grey) reports the data for the
period 1999-2013. The second column (pink) reports the warming scenario where the daily temperature increases
by 1-degree Celsius. The third column (green) reports the warming scenario where the daily temperature in-
creases by 2-degrees Celsius. The fourth column (orange) reports the warming scenario from the RCP4.5 where
temperature increases by approximately 2-degrees Celsius. The fifth column (blue) reports the warming sce-
nario where the daily temperature increases by 4-degrees Celsius. The sixth column (red) reports the warming
scenario from the RCP8.5 where temperature increases by approximately 4-degrees Celsius.

To calculate the counterfactuals for different warming scenarios, we add the specified
temperature increase to each grid-cell’s daily temperatures throughout the year. This pro-
duces a new distribution of days within each temperature range for each grid-cell under each
scenario. We then partition these distributions into temperature bins, as outlined in Section
3.2, represented by the vector Tc = {T ℓ

c }ℓ. Figure 3 illustrates the average counterfactual dis-
tributions of days within each bin across grid-cells, while Table D.10 in Appendix D.1 provides
the complete distribution for all grid-cells and scenarios. Using these partitions, we compute
the counterfactual changes in the number of days per temperature bin relative to those in
Section 3.2, which form the basis of our analysis. Table D.11 in Appendix D.1 presents the full
distribution of changes across grid-cells under each warming scenario.

6.1.2 Results

In this section, we quantify the aggregate productivity losses resulting from climate change
across various climate scenarios, distinguishing between the effects of pure technology and
changes in allocative efficiency.

33https://climate.copernicus.eu/sites/default/files/2021-01/infosheet3.pdf.
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Baseline. Under the baseline warming scenario of a 2-degree Celsius increase in average
temperature, we estimate an aggregate productivity loss of 1.68 percent (Table 7, row 1).34

This loss is driven by two factors: 48 percent is due to firm-level productivity reductions, and
52 percent results from decreased allocative efficiency. In economic terms, this equates to a
GDP loss of approximately 35.37 billion USD in 2021, based on Italy’s GDP of approximately
2.108 trillion USD that year.35

Alternative scenarios and robustness. To better understand the relationship between the
magnitude of temperature shocks and their economic impacts, as well as to test the robust-
ness of our findings, we examine five alternative scenarios outlined in Table 7. These include
1-degree and 4-degree Celsius increases in average temperature, the RCP4.5 and RCP8.5 sce-
narios from the Copernicus climate model, and the baseline 2-degree Celsius scenario with
adaptation forces accounted for. In the 1-degree Celsius scenario (row 2), aggregate produc-
tivity losses are 0.77 percent, with 40 percent due to firm-level productivity reductions and
60 percent to decreased allocative efficiency. In contrast, the 4-degree Celsius scenario (row
4) shows productivity losses rising to 6.82 percent, with 49 percent stemming from firm-level
reductions and 51 percent from decreased allocative efficiency. These scenarios correspond
to GDP losses of 16.27 billion USD and 143.88 billion USD, respectively.

Table 7: Effect of Climate Change on Aggregate Productivity

Aggregate Productivity Loss

∆Total ∆Technology ∆Allocative Efficiency

Baseline 2◦C 1.68% 0.81% 0.87%

Robustness

1◦C 0.77% 0.31% 0.46%
2◦C, Adaptation 1.21% 0.53% 0.68%
4◦C 6.82% 3.33% 3.49%
RCP4.5 1.64% 0.85% 0.79%
RCP8.5 5.35% 2.75% 2.60%

Note. This table reports the productivity losses due to climate change. Column 1 reports the total losses, column
2 reports the losses due to due to reductions in firm-level productivity, and column 3 reports the losses due
to allocative efficiency. Row 1 reports the losses under the baseline scenario of a 2-degree Celsius increase in
average temperature. Rows 2 to 6 report the robustness exercises. Row 2 reports the losses under the scenario
of 1 degrees Celsius increase in average temperature. Row 3 reports the losses under the scenario of a 2-degrees
Celsius increase in average temperature conditional on adaptation as explained in the main text. Row 4 reports
the losses under the scenario of a 4-degrees Celsius increase in average temperature. Row 5 reports the losses
under the scenario of an approximately 2-degrees Celsius increase from the RCP4.5 climate model. Row 6 reports
the losses under the scenario of an approximately 4-degrees Celsius from the RCP8.5 climate model.

34To reduce the impact of short-term temperature volatility (as shown in Figure 1a for 1999–2013), we calculate
the counterfactual aggregate productivity loss for each sample year and compute a weighted average based on
the number of observations.

35To calculate the GDP loss, we multiply the 2021 Italian GDP in US dollars (2.108 trillion US dollars) by the
percentage loss (1.56 percent): 0.0168×2.108 trillion US dollars = 35.37 billion US dollars.
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These alternative scenarios underscore the nonlinear and convex nature of climate change’s
impact on productivity losses. This is partly driven by the inverted U-shaped relationship
between temperature and firm-level economic outcomes identified in Section 5, where a lin-
ear increase in hot days results in a convex rise in productivity losses. Additionally, climate
change exponentially increases the number of regions exposed to extreme temperatures as
average temperatures rise. As shown in Table D.10 in the appendix, the average number of
+40℃ days per year rises from 0.04 to 0.41 in the 2-degree Celsius scenario and surges to 2.55
in the 4-degree scenario. In Section 6.2, we compare these findings to losses derived from
damage functions used in Integrated Assessment Models.

In the RCP4.5 scenario (row 5) and RCP8.5 scenario (row 6), corresponding to average
temperature increases of 2 and 4 degrees Celsius, aggregate productivity losses are 1.64 per-
cent and 5.35 percent, respectively, with 48 percent and 49 percent due to decreased allocative
efficiency, and the remainder to firm-level productivity losses. These scenarios translate to
GDP losses of 34.58 billion USD and 112.72 billion USD, respectively. Thus, counterfactual
temperature changes from realistic climate models yield similar aggregate productivity losses
to those from simpler scenarios.

Finally, we evaluate how firm-level adaptation influences our aggregate findings. Using
the estimates from Table 6 in Section 5.3.2, we find that for the baseline 2-degree Celsius tem-
perature increase (row 3), aggregate productivity losses amount to 1.21 percent—28 percent
lower than in the baseline scenario. Of this reduction, 57 percent is due to declining alloca-
tive efficiency, with the remainder from firm-level productivity losses. This corresponds to a
GDP loss of 25.44 billion USD. The effects of adaptation under other scenarios are detailed in
Appendix D.2.36

6.2 Discussion

In this section, we highlight the benefits of a model-based approach for estimating the aggre-
gate effects of temperature on productivity. We compare our findings with existing literature
and address the main caveats of our approach, acknowledging its limitations and suggesting
areas for future research.

36Adaptation mitigates damages less in higher-temperature scenarios (4-degree Celsius and RCP8.5) than in
the baseline. This is because 81 percent of firms in less adapted regions (i.e., grid-cells with below-median
extreme temperature days) are projected to adapt under the 2-degree Celsius scenario, leaving limited room
for additional adaptation as temperatures rise further. Alternative adaptation models, based on the historical
relationship between average temperatures and their dispersion, yield similar results. These estimates are
available upon request.
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6.2.1 Advantage of Theory-Based Aggregation of Firm-Level Climate Damages

As discussed, a key advantage of our approach is its closed-form expression, which links
micro-level temperature effects to aggregate productivity outcomes.

To illustrate the added value of our framework in assessing aggregate productivity losses
from climate change, we compare our results with best practices from firm-level studies (e.g.,
Zhang et al., 2018, Somanathan et al., 2021). These studies typically apply estimated firm-level
productivity losses directly to the temperature change assumed in the counterfactual scenario,
calculating the following simple average:

∆̂z̃it =
Nt∑
i=1

∆̂z̃it
Nt

, where ∆̂z̃it ≡
∂z̃it(Tg(i)t)

∂Tg(i)t

∆Tg(i)t. (29)

For a 2-degree Celsius temperature increase, applying this approach to our estimates re-
sults in a productivity decline of 0.39 percent. In contrast, our theory-based aggregation yields
a decline of 1.68 percent—more than three times larger. This discrepancy can be understood
through the following decomposition within our framework:

∆ logSolowt − ∆̂z̃it =

(
Yt

GDPt

− 1

)
∆̂z̃it︸ ︷︷ ︸

Roundabout material production

+
Yt

GDPt

C
(
λ∗
it, ∆̂z̃it

)
︸ ︷︷ ︸
Size and losses covariance

− Yt

GDPt

(∆ logTFP ∗
t −∆ logTFPt)︸ ︷︷ ︸

∆ Allocative Efficiency

,

(30)

where ∆̂z̃it and ∆̂z̃it are defined in equation (29), and λ∗
it is defined in Section 2.

Three factors account for the difference between our theory-based approach and the
reduced-form approach. First, the roundabout nature of material production acts as a mul-
tiplier, as described in Section 2. Greater material usage in the economy increases the ratio
of Yt/GDPt, amplifying the difference between the two approaches. Second, the covariance
between efficient firm-level weights and estimated productivity losses plays a role. When
firm-level losses positively covary with firms’ initial efficient sizes, the divergence becomes
more pronounced. Finally, changes in allocative efficiency further amplify the difference, as
this factor has not been accounted for in previous empirical studies. Overall, we find that
the first term explains 29 percent of the difference, the second term 3 percent, and the third
term 68 percent. In summary, while causal estimates of firm-level damages are valuable, a
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theory-based aggregation that incorporates multiple channels, general equilibrium effects,
and amplification mechanisms is essential for accurately capturing the significant impact of
climate change on aggregate productivity losses.

6.2.2 Comparison with the Literature

Figures 4a and 4b compare our aggregate productivity losses, with and without adaptation, to
the damage functions used in the latest iteration of the DICE model by Barrage and Nordhaus
(2023).37 This model serves as a benchmark, representing the standard calibration approach in
the literature (e.g., Golosov et al., 2014, Krusell and Smith, 2022, Hassler et al., 2016, Fernández-
Villaverde et al., 2024). Its global damage function is given by 0.003467×∆T 2. To compare
with our Europe-based estimates, we adjust their calibration bymultiplying the world damage
function by 0.677.38 This adjustment reflects findings from aggregate studies (e.g., Nordhaus
and Yang, 1996; Dell et al., 2012) that Europe typically experiences lower aggregate produc-
tivity damages. Details of our productivity loss calculations are provided in Section 6.1.1.

Figure 4: Differences Across Productivity Loss Functions
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(b) Difference in Productivity Loss Across
Models

Note. Figure 4a compares productivity losses (in percent) due to temperature increases across four models: our
model without adaptation (red line with squares), our model with adaptation (dashed green line with circles),
the European-adjusted losses from the DICE model (dash-dotted blue line with triangles), and the global losses
from the DICE model (dotted gray line with diamonds). Figure 4b illustrates the percentage point differences in
productivity losses between our benchmark model , the DICE model adjusted for Europe, and the world DICE
model, with respect to our benchmark model with adaptation. The DICE model used as a reference is from
Barrage and Nordhaus (2023).

The left figure shows productivity losses across different models, while the right figure
highlights the differences between losses in our benchmark model, as well as the losses for
37We include losses with and without adaptation to ensure a fair comparison, as DICE model calibrations typi-
cally account for adaptation adjustments.

38This adjustment uses the regional damages reported in Nordhaus and Yang (1996), specifically the ratio of
European to global damages. The ratio is derived from GDP-weighted averages of regional damages listed in
Table 2 on page 746.
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Europe and the world from the DICE model, relative to our model with adaptation. All mod-
els display a convex, nonlinear relationship that steepens with higher temperature increases.
Recasting our results into the functional form of an aggregate damage function, our model
implies a loss of 0.00444×∆T 2. This indicates that productivity losses are larger in our frame-
work, especially under more extreme climate change scenarios.

It is important to interpret the evidence presented here accurately. Our estimated losses
are not intended as a superior proxy for the loss functions modeled in the above-mentioned
studies. Those works aim to assess the overall economic impact of temperature increases
across various channels, including changes in mortality, crop yields, coastal erosion, and labor
supply. In contrast, our findings highlight significant losses from a single, largely independent
channel, emphasizing the value of detailed micro-data in reassessing the total economic costs
of climate change. However, we acknowledge that integrating all these effects into a unified
framework and evaluating their relative importance lies beyond the scope of this study.

6.2.3 Interpretation of the Results

Our findings are subject to potential caveats. Like much of the literature that uses micro-
data to estimate the effects of local temperature fluctuations, we focus on short-run effects.
However, these may differ from long-run effects due to technological adaptation. Over time,
firms may become better equipped to manage extreme temperatures through technological
advancements or increased investment in climate-mitigating technologies. While quantifying
the former remains challenging, we show in Sections 5.3.2 and 6.1.2 that accounting for the
latter reduces our estimated productivity losses of climate change by roughly 20–30 percent.

Furthermore, long-run effects may diminish due to improvements in allocative efficiency
as short-term capital reallocation frictions ease. While estimating these dynamics is challeng-
ing within our short panel, our framework provides an upper bound on this potential bias in
aggregate productivity losses. Assuming firm-level productivity losses persist but all capi-
tal reallocation frictions are resolved in the long run, the frictionless term in equation (20)
estimates the minimum aggregate productivity loss achievable under full capital mobility.

Additionally, our framework is static. While this choice has advantages, it does not ac-
count for the extensive margin, such as firm entry and exit, due to limited data on these
dynamics. Neglecting this margin likely biases our results through two channels. First, un-
productive firms in affected regions may exit, improving firm selection. Second, firms in these
regions might close and relocate their capital to cooler areas, enhancing long-term allocative
efficiency (although we find limited evidence for this in our sample). Despite this limitation,
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our findings on the relative importance of different channels and wedges offer valuable inputs
for future models incorporating extensive margin effects.39

6.3 Regional Heterogeneity

This section examines the impact of climate change on productivity losses at the province
level (NUTS 3) in Italy. Using the methodology described in Section 2, we apply equation (22)
to each province to estimate the magnitude and spatial distribution of these losses under the
baseline warming scenario of 2-degrees Celsius.

Figure 5: Regional Productivity Losses for 2◦CWarming Scenario
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(b) Regional Losses and GDP Per Capita

Note. Figure 5a shows the productivity losses across NUTS 3 regions due to a 2-degrees Celsius increase
in temperature, calculated using equation (19), adjusted with the ratio of gross output to value added.
Productivity losses are in percent, and darker colors represent larger losses. Figure 5b plots the same
regional losses against average GDP per capita in our sample, showing a negative correlation of 0.232.

The results in Figure 5a reveal significant regional variations in productivity losses across
Italian provinces under the 2-degree Celsius warming scenario. While climate change nega-
tively impacts productivity overall, the effects are uneven. Some regions see modest produc-
tivity gains of up to 0.27 percent, whereas others experience substantial losses, with reductions
as high as 2.32 percent.

Our analysis highlights regional disparities in climate change-induced productivity losses
between southern and northern Italy. Southern regions face significant negative impacts due
to an increase in extreme heat days, while northern alpine areas benefit from fewer days
below 0 degrees Celsius, leading to moderate productivity losses or even modest gains. Ap-
pendix D.3, Figures D.2a-D.2b, illustrates regional productivity losses across the four alter-

39 This is particularly relevant as the misallocation literature highlights that input wedges and productivity
factors, like those quantified here, influence firms’ entry and exit decisions in different ways (Restuccia and
Rogerson, 2017).
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native warming scenarios. Overall, we find that the most severe impacts of climate change
persist in southern regions across all scenarios. The RCP4.5 and RCP8.5 scenarios, which pro-
vide more accurate predictions of local temperature changes and project greater temperature
increases in the south compared to the north, indicate even wider disparities in productivity
losses between northern and southern regions.

These findings highlight how firm-level losses, characterized by an inverted U-shaped
pattern, translate into significant regional differences based on historical temperatures. To
further examine the relationship between predicted productivity losses and inequality, Figure
5b plots productivity losses against GDP per capita. While some wealthy northern regions
experience considerable productivity losses, as noted in Section 6.2.1, we observe an overall
positive correlation, indicating that climate change is likely to exacerbate regional inequality
in Italy. Notably, this correlation ismuch stronger under themore accurate RCP4.5 and RCP8.5
scenarios (see Figures D.3d and D.3e in Appendix D.3).

7 Conclusion

We present a novel micro-to-macro framework to quantify the aggregate productivity impacts
of climate change, rooted in firm-level data and a general equilibriummodel. Our findings un-
derscore the importance of incorporating both direct productivity effects and indirect effects
stemming from input adjustment frictions. These mechanisms amplify the economic costs of
climate change, with aggregate productivity losses estimated to be significantly larger than
those derived from representative firm models or standard IAM methodologies.

Our analysis reveals a highly nonlinear relationship between temperature increases and
aggregate productivity losses, driven by firm-level dynamics and geographic variation in tem-
perature extremes. Using Italian firm-level data combined with detailed climate information,
we identify an inverted U-shaped effect of temperature on firm sales, with extreme high or
low temperatures significantly reducing productivity. Extreme temperatures decrease labor
and material inputs but leave capital usage largely unchanged, reflecting greater frictions in
capital adjustment compared to other inputs. As a result, we find an inverted U-shaped rela-
tionship between extreme temperatures and the revenue-based marginal product of capital,
while the marginal products of other inputs remain unaffected.

These findings underscore the importance of indirect effects, driven by input adjustment
frictions, in amplifying the overall impact of temperature on firms. Using the estimated semi-
elasticities from our empirical analysis, we quantify these impacts in a general equilibrium
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model. We estimate that indirect effects account for half of the aggregate productivity losses.
Under a 2℃ warming scenario, aggregate productivity losses reach 1.68%, while a 4℃ sce-
nario leads to a sharp increase to 6.81%, illustrating the compounding effects of temperature
on economic outcomes. Moreover, we uncover heterogeneous regional impacts across Italy,
highlighting how extreme temperatures disproportionately affect productivity in areas with
limited adaptation capacity.

This research contributes to the broader climate economics literature by complementing
existing approaches and addressing some of their limitations. First, we show that indirect
effects—driven by input frictions and allocative inefficiencies—are quantitatively significant,
accounting for a substantial share of total losses. Second, our closed-form aggregate dam-
age function, derived from firm-level semi-elasticities, provides a robust methodology for
integrating these findings into IAMs, offering a more comprehensive assessment of climate-
related damages. Notably, our framework predicts higher aggregate losses compared to tra-
ditional IAMs, emphasizing the need to revise upward the economic costs of climate change
and the social cost of carbon. In conclusion, this paper highlights the importance of a mi-
crofounded approach, leveraging firm-level data and structural modeling, to inform existing
aggregate models of the economics of climate change. Our complementary framework could
be easily integrated to enhance assessments of climate change’s economic impacts.
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A Structural Framework

In this section, we show the derivations of the equations in Section 2.2.

A.1 Aggregate Gross Output TFP

To derive the equations (19) and (20), we start from the definition of aggregate gross output
TFP, given by

TFPt =

(∏
X∈X XαX

t

Yt

)−1

, (31)

=
∏
X∈X

(
Xt

Yt

)−αX

; (32)

where aggregate real inputs are defined as

Xt =
Nt∑
i=1

Xit. (33)

To characterize aggregate real inputs Xt, we now need to derive the demand for each
input Xit. We start recalling that the minimized cost function is given by

C(Yit) =
Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)PX

αX

)αX

, (34)

=
∏
X∈X

(
PX
t

αX

)αX

Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

, (35)

= Ct
Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

; (36)

where

Ct =
∏
X∈X

(
PX
t

αX

)αX

. (37)

1



Given that the first-order conditions for each input are given by

eτ
X
it (Tg(i)t)PX

t Xit = αXC(Yit), (38)

= αXCt
Yit

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

; (39)

we obtain the following input demand function:

Xit = αX Ct

PX
t

Yit

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

′ (40)

This implies the following aggregate level for each input Xt:

Xt = αX Ct

PX
t

Nt∑
i=1

Yit

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

. (41)

Substituting equation (41) back into equation (32) we obtain the following:

TFPt =
∏
X∈X

(
αX Ct

PX
t

Nt∑
i=1

1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

Yit

Yt

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)−αX

, (42)

=
∏
X∈X

(
αX Ct

PX
t

)αX
(

Nt∑
i=1

1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

Yit

Yt

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)−αX

, (43)

=
∏
X∈X

(
Nt∑
i=1

1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)

Yit

Yt

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)−αX

; (44)

where the last equality holds because of the definition of Ct in equation (37). Notice that now
aggregate gross output TFP in equation (44) depends only on wedges and on each firm relative
size Yit/Yt. Hence, to obtain an expression for aggregate gross output TFP that depends only
on wedges, we need to express the relative size of each firm as a function of wedges only. We
start by defining a firm’s relative size using the demand function:

Yit

Yt

=
(
edit(Tg(i)t)

)σ−1
(
Pit

Pt

)−σ

. (45)
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Now, recall that the firms’ prices are given by

Pit = MC ′(Yit), (46)

= MCt
1

ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

; (47)

Moreover, we can substitute firm-level prices from equation (47) into the aggregate price
index and obtain

Pt =

(
Nt∑
i=1

(
Pit

edit(Tg(i)t)

)1−σ
) 1

1−σ

, (48)

=

 Nt∑
i=1

(
MCt

1

edit(Tg(i)t)ezit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

 1
1−σ

, (49)

= MCt

 Nt∑
i=1

(
1

ez̃it(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

 1
1−σ

; (50)

Finally, substituting equations (47) and (50) into equation (45), we obtain an expression
for firms’ relative size as a function of wedges only, given by

Yit

Yt

=
(
edit(Tg(i)t)

)σ−1


1

e
zit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

(∑Nt

i=1

(
1

e
z̃it(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

) 1
1−σ


−σ

(51)
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Now, we can substitute equation (51) into equation (44) to obtain the following:

TFPt =
∏

X∈X


Nt∑
i=1

(
edit(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)ezit(Tg(i)t)


1

e
zit(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX

(∑Nt
i=1

(
1

e
z̃it(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX
)1−σ

) 1
1−σ


−σ

∏
X∈X

(
eτ

X
it (Tg(i)t)

)αX



−αX

,

(52)

=

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1 ∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

 σ
σ−1

×
∏

X∈X

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX


−αX

. (53)

Hence, taking logs in equation (53) we obtain the following:

logTFPt =
σ

σ − 1
log
(

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1 ∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
)

−
∑
X∈X

αX log
(

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

eτ
X
it (Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX
)
. (54)

Equation 54 shows that aggregate gross output TFP in this framework can be expressed
as just a function of (i) firm-level wedges, ez̃it(Tg(i)t) and eτ

X
it (Tg(i)t); (ii) the elasticity of sub-

stitution across goods σ; and (iii) the production function elasticities αX .
Notice that if the revenue-basedmarginal products equalize across firms, i.e., if eτXit (Tg(i)t) =

1, then equation (54) reduces to the efficient aggregate gross output TFP, given by

logTFP ∗
t =

1

σ − 1
log
(

Nt∑
i=1

(
ez̃it(Tg(i)t)

)σ−1

)
. (55)

This concludes the derivations to get equations (16) and (17), which define respectively
the inefficient and the efficient aggregate gross output TFP. Using these two equations, we can
now derive equations (19) and (20). We start by differentiating equation (54) to obtain a rela-
tion linking changes in aggregate gross output TFP to changes in grid-cell-level temperatures,
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given by

d logTFPt = σ

Nt∑
i=1


(
ez̃it(Tg(i)t)

)σ−1∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

∑Nt
i=1

(
ez̃it(Tg(i)t)

)σ−1∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX


︸ ︷︷ ︸

≡λit

(
e
z̃it(Tg(i)t),e

τX
it

(Tg(i)t)
)

×

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

−
∑
X∈X

αX
Nt∑
i=1



(
e
z̃it(Tg(i)t)

)σ−1

e
τX
it

(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

∑Nt
i=1

(
e
z̃it(Tg(i)t)

)σ−1

e
τX
it

(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX



×

(σ − 1)
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∂τXit (Tg(i)t)

∂Tg(i)t

−
∑
X∈X

(σ − 1)αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t, (56)

= σ

Nt∑
i=1

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

−
∑
X∈X

αX
Nt∑
i=1


∑Nt

i=1

(
ez̃it(Tg(i)t)

)σ−1∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX

∑Nt
i=1

(
e
z̃it(Tg(i)t)

)σ−1

e
τX
it

(Tg(i)t)

∏
X∈X

(
eτ

X
it (Tg(i)t)

)−(σ−1)αX


︸ ︷︷ ︸

≡ΩX
t

(
e
z̃it(Tg(i)t),e

τX
it

(Tg(i)t)
)

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×
1

eτ
X
it (Tg(i)t)

(σ − 1)
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∂τXit (Tg(i)t)

∂Tg(i)t

−
∑
X∈X

(σ − 1)αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t, (57)

=

Nt∑
i=1

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)[
σ

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

−
∑
X∈X

αX

eτ
X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×

(σ − 1)
∂z̃it(Tg(i)t)

∂Tg(i)t

−
∂τXit (Tg(i)t)

∂Tg(i)t

−
∑
X∈X

(σ − 1)αX
∂τXit (Tg(i)t)

∂Tg(i)t

 dTg(i)t

]
, (58)

=

Nt∑
i=1

λit

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

) ∑
X∈X

αX

eτ
X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

)

×

σ
eτ

X
it (Tg(i)t)

ΩX
t

(
ez̃it(Tg(i)t), eτ

X
it (Tg(i)t)

) − (σ − 1)

∂z̃it(Tg(i)t)

∂Tg(i)t

−
∑
X∈X

αX
∂τXit (Tg(i)t)

∂Tg(i)t

+
∂τXit (Tg(i)t)

∂Tg(i)t



× dTg(i)t; (59)
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which is exactly the expression in equation (19) in Section (2). We can now follow the strat-
egy as above and differentiate equation (55) to obtain a relation linking changes in efficient
aggregate gross output TFP to changes in grid-cell-level temperatures, given by

d logTFP ∗
t =

Nt∑
i=1

( (
ez̃it(Tg(i)t)

)σ−1∑Nt

i=1

(
ez̃it(Tg(i)t)

)σ−1

)
︸ ︷︷ ︸

≡λ∗
it

(
e
z̃it(Tg(i)t)

)
∂z̃it(Tg(i)t)

∂Tg(i)t

dTg(i)t, (60)

=
Nt∑
i=1

λ∗
it

(
ez̃it(Tg(i)t)

) ∂z̃it(Tg(i)t)

∂Tg(i)t

dTg(i)t; (61)

which is exactly the expression in equation (20) in Section (2).

A.2 Solow Residual

The model presented in Section 2 has three productive inputs: capital, labor, and materials.
This implies that its notion of output is a gross measure, hence, its implied TFP is defined
on gross output. However, when normally thinking about productivity as defined by Solow
(1957), we think of a concept related to net output, i.e., to GDP. Here, we show how to adjust
our measurement to be able to study the effect of climate change on aggregate net output TFP,
i.e., on the Solow residual. Our strategy is reminiscent of the insights from Jones (2011).

We start by the definition of GDP, given by

GDPt = Yt −
PM
t

Pt

Mt, (62)

= TFPtK
αK

LαL

MαM − PM
t

Pt

Mt; (63)

i.e., GDP is defined as gross output net of the aggregate real value of materials. Given equation
(63), we can defined the Solow residual as

Solowt =
TFPtK

αK
LαL

MαM − PM
t

Pt
Mt

K α̂KLα̂L , (64)

where α̂K and α̂L are the aggregate capital and labor elasticities of value added. Taking logs
gives

logSolowt = log
(
TFPtK

αK

LαL

MαM − PM
t

Pt

Mt

)
− log

(
K α̂K

Lα̂L
)
. (65)
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Since we are interested in a counterfactual that assesses the implications of a medium- or
long-run phenomenon such as climate change, we abstract from the fluctuations in aggregate
capital and labor due to it and assume that these two aggregate quantities are fixed in the
medium- or long-run, i.e., Kt = K and Lt = L. Notice that this assumption is coherent with
themodel being in general equilibrium, it just implies that aggregate capital and labor supplies
are supplied inelastically. Under these two assumptions, we can differentiate equation (65) and
obtain the following:

d logSolowt =
1

GDPt

TFPtK
αKLαLMαM dTFPt

TFPt

+
αM

GDPt

TFPtK
αKLαLMαM dMt

Mt

−
PM
t

Pt
Mt

GDPt

dMt

Mt

,

(66)

=
Yt

GDPt

d logTFPt + αM Yt

GDPt

d logMt −
PM
t

Pt
Mt

Yt

Yt

GDPt

d logMt, (67)

=
Yt

GDPt

(
d logTFPt +

(
αM −

PM
t

Pt
Mt

Yt

)
d logMt

)
. (68)

The equation (68) says that a percentage change in the Solow residual is proportional to
the linear combination of the percentage changes in aggregate gross output TFP and aggregate
materials. We further approximate equation (68) by assuming that αM −PMMt/PtYt is close
to zero. This assumption is convenient since it allows us to solve the model in closed form.40

We emphasize two things about this additional assumption: (i) In the likely scenario where
the general equilibrium temperature-semielasticity of the aggregate materials is negative, this
assumption should be considered conservative because it goes against the effect of tempera-
ture on the Solow residual; and (ii) when we test this hypothesis empirically by measuring the
difference between αM and PMMt/PtYt, we find that it is less than 0.1 in our data.41 Hence,
with this additional assumption at hand, we can derive the following adjustment to our gross

40Notice that, while aggregate gross output TFP does not depend on aggregate prices, aggregate materials do
depend on them. Therefore, to know their response to changes in temperature we would have to infer the
general equilibrium effect of temperature, i.e., their effect on the user cost of capital and wages, which is
beyond the scope of our analysis and difficult because of the constraints imposed by the short time frame of
our data.

41This implies that, even if the temperature-semielasticity of aggregate materials is x, which we consider an
unlikely upper bound, given that this is our estimate of partial equilibrium temperature-semielasticity found
in Table 2 and that normally general equilibrium effects dampen partial equilibrium estimates, we would lose
at most 0.1*x percentage points relative to our main results.
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output TFP measure:
d logSolowt =

Yt

GDPt

d logTFPt, (69)

which is exactly equation (22) in Section (2).

B Data

B.1 Firm-Level Data

To ensure data quality, we employ firm-level balance sheet information from Orbis, following
the data construction and cleaning methodologies outlined by Kalemli-Özcan et al. (2024)
and Gopinath et al. (2017). The following steps are implemented: (1) Removal of Missing
Information: We drop firm-year observations that have missing data on total assets, operating
revenue, sales, and employment. (2) Exclusion of Negative Values: Firms reporting negative
values for assets, tangible fixed assets, employment, or sales are excluded from the analysis. (3)
Limiting Extreme Values: To enhance the robustness of our findings, we compute three ratios:
sales to total assets, employment to total assets, and employment to sales. We then remove
observations that fall below the 0.1 percentile or above the 99.9 percentile of the distribution
of these ratios. By doing so, we mitigate the potential influence of extreme values on our
analysis.

For this specific project, we apply additional filters and exclusions. (1) Removal of Missing
Zipcode Information: Firms with missing zipcode information are dropped from the dataset.
This ensures that we can accurately associate firms with specific geographic regions. (2) Ex-
clusion of Finance, Insurance, and Utility Sectors: To maintain focus on the sectors relevant
to our analysis, we exclude firms operating in the finance and insurance sectors, as well as the
utility sector. (3) Exclusion of Firms with Negative Age or Exceeding 100: Firms with negative
age or those exceeding 100 years are excluded from the analysis. (4) Time Period Selection:
We keep observations from 1999 to 2013.

The final sample used for our analysis consists of approximately 4.3 million observations,
representing 1 million unique firms. To account for changes in prices and maintain compa-
rability over time, we deflate operating revenue, material expenditure, and wage bill using
gross output price indices at the two-digit industry level, with the base year of 2005 (sourced
from the Eurostat database). Additionally, the capital stock is deflated using the economy-
wide price of investment goods obtained from the World Development Indicators database.
Table B.1 provides an overview of the main variables in our analysis, based on the final Orbis
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dataset.

Table B.1: Summary Statistics (1999-2013)

Sales Materials Wage Bill Employees Capital MRPM MRPL MRPK

Mean 13.33 11.61 11.66 1.88 11.14 1.72 2.03 2.30
Median 13.34 12.02 11.82 1.79 11.05 1.01 1.77 2.39
Min 5.92 3.55 4.35 0 5.51 -0.04 -0.05 -4.26
Max 17.78 17.32 16.08 5.76 16.68 8.09 7.52 7.27
No. Obs. 4,823,392 4,823,392 3,875,031 2,545,857 4,444,668 4,823,392 3,875,031 4,444,668

Note. Summary statistics of cleaned Orbis dataset between 1999 and 2013. All variables are in logs. All monetary
values are deflated using Eurostat two-digit industry price deflators, and capital is deflated using the country-
specific price of investment from the World Development Indicators.

B.2 Climate Data

B.2.1 Description of E-OBS data

E-OBS is a land-only gridded daily observational dataset that provides information on precip-
itation, temperature, sea level pressure, global radiation, wind speed, and relative humidity in
Europe.42 The dataset is derived from meteorological observations collected by the National
Meteorological and Hydrological Services (NMHSs) and other data-holding institutes across
Europe.

E-OBS is presented on regular latitude-longitude grids with spatial resolutions of 0.1◦. It
covers a significant portion of the European continent, spanning from northern Scandinavia
to southern Spain and extending from Iceland to 40◦E in the Russian Federation. Over time,
the coverage of E-OBS has progressively expanded since its inception in the 1950s, encom-
passing a larger area of the European continent due to an increasing number of contributing
meteorological stations. The dataset undergoes comprehensive updates twice a year, with
provisional monthly updates accessible through the E-OBS website.43

Originally developed in 2008 as a validation tool for Europe-wide climate model simula-
tions within the European Union ENSEMBLES project, E-OBS has evolved into a resource for
monitoring climate conditions across Europe (Klein Tank et al., 2002). The position of E-OBS
in Europe is unique due to its relatively high spatial resolution, daily temporal resolution,
multiple variables, and the extensive length of the dataset. The station-level data on which
E-OBS is based can be accessed through the webpages of the European Climate Assessment

42Official E-OBS website: https://cds.climate.copernicus.eu.
43E-OBS monthly updates: http://surfobs.climate.copernicus.eu/dataaccess/
access_eobs_months.php.
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& Dataset (ECA&D), subject to data permissions.44

The dataset is daily, meaning the observations cover a 24-hour period per time step. The
specific 24-hour period may vary across regions and data providers. The reason for this is
that some data providers measure between midnight to midnight while others might measure
from morning to morning. Since E-OBS is an observational dataset, no attempts have been
made to adjust the time series for this 24-hour offset. However, it ensures that the largest part
of the measured 24-hour period corresponds to the day attached to the time step in E-OBS
and ECA&D

B.2.2 Distribution of Meteorological Stations

The station data used in the E-OBS dataset are sourced from 84 participating institutions and
encompass over 23,000 meteorological stations. For a considerable number of countries, the
number of stations used in the E-OBS dataset represents their complete national network,
resulting in a much higher density compared to the station network routinely shared among
NMHSs, which forms the basis of other gridded datasets.

Figure B.1: Distribution of Meteorological Station Used by E-OBS

Note. Figure B.1 shows the map with the station coverage in ECA&D which is the basis for the E-OBS precipi-
tation dataset v20.0e.

Figure B.1 presents the distribution of meteorological stations used by E-OBS. This map
showcases the station coverage in ECA&D, which serves as the basis for the E-OBS precip-
itation dataset v20.0e., regardless of their start or stop dates. The figure illustrates the high
density of stations in many parts of Europe.

44ECA&D website: www.ecad.eu.
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B.2.3 Climate Data Summary Statistics

Table B.2 displays the distribution of temperatures and rainfall across Italy and within the
average grid-cell of Italy. It reveals significant variation in temperature throughout Italy,
ranging from a minimum of -25 degrees Celsius to a maximum of 45 degrees Celsius, with an
average temperature of 17 degrees Celsius.

Table B.2: Summary Statistics of Climate Data (1950-2020)

Overall Within Grid-Cell

Temperatures (◦C) Rainfalls (mm) Temperatures (◦C) Rainfalls (mm)
Mean 16.88 2.28 16.88 2.28
Median 16.73 0.00 16.50 1.09
Min -25.43 0.00 -2.60 0.00
Max 45.82 308.20 35.02 31.71

Note. Table 1 shows summary statistics of temperature in degrees Celsius (◦C) and rainfalls in millimeters (mm)
for the period 1999-2013. The first two columns report statistics for the overall sample. The last two columns
report statistics on the variation within the average grid-cell, i.e., they show the average temperature distribution
among the different grid-cells.

Examining the variation within grid-cells, which is the crucial one to identify our effects,
we find slightly lower but still significant temperature variation. Specifically, the average
minimum temperature within grid-cells is -3 degrees Celsius, and the average maximum is 35
degrees Celsius, with an average temperature within grid-cells of 17 degrees Celsius.

B.3 Temperature bins

Table B.3 reports summary statistics on the distribution of the number of days across grid-
cells within each temperature bin for the period 1999-2013. Several points can be highlighted
from these statistics.

Table B.3: Summary Statistics of Days Within Temperature Bins (1999-2013)

Temperature Bins

(−∞, 0◦C] (0◦C, 30◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,∞)

Mean 1.90 316.10 41.87 5.19 0.04
Median 0 317 43 3 0
Min 0 201 0 0 0
Max 164 365 95 56 10

Note. Table B.3 shows the summary statistics on the number of days across grid-cells within each temperature
bin for the period 1999-2013.

First, despite the considerable variation in the data, all temperature bins have a positive
number of days on average, with the exception of the bin capturing temperatures above 40
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degrees Celsius. This shows that there is some representation for each bin across the grid-
cells. Second, there is significant variation within each temperature bin across different grid
cells. Even in the reference temperature bin (0◦C, 30◦C], the number of days ranges from a
minimumof 201 to amaximumof 365. This observation underscores the substantial variability
present across grid-cells, which is important for our regression analysis. Third, it is worth
noting that certain grid-cells exhibit a particularly high number of dayswith temperatures that
are typically considered extreme. For instance, the maximum number of days below 0 degrees
Celsius can reach as high as 164. This is not surprising considering Italy’s diverse geography,
which includes areas in the Alps (in the northern part of Italy) that frequently experience
subzero temperatures. Additionally, some grid-cells experience a significant number of days
with temperatures above 40 degrees Celsius, with some areas recording up to 10 such days.

C Empirical Results

C.1 Additional Controls and Alternative Independent Variables

In this section of the appendix, we present additional regression models to further validate
the extent of the robustness of our results obtained from equation (25).

We start by splitting the (0◦C, 30◦C] range into two bins: (0◦C, 15◦C] and (15◦C, 30◦C].
We estimate the effects of temperature relative to the (15◦C, 30◦C] range and report the results
in Table C.4. Our findings indicate that one additional day in the (0◦C, 15◦C] range increases
sales by 0.015%. For the bins common to both distributions, we observe similar semielastici-
ties.

Further, we augment the regression framework in equation (25) with a quadratic control
for age. Age it has been shown empirically to be an important predictor of firm-level differ-
ences related to demand, productivity, and differences in financial frictions (see Fort et al.,
2013; Cloyne et al., 2023; and Colciago et al., 2019). Columns 1, 5, 9, and 13 of Table C.5 and
columns 1, 5, and 9 of Table C.6 present the estimates of this specification.

Moreover, we also use alternative functions of daily maximum temperatures over the
year, such as the piece-wise linear degree days measure used in Somanathan et al. (2021). The
calculation of degree days is best explained with an example. A day with a temperature of 35
degrees Celsius contributes 30 degrees Celsius to the first bin (0◦C,30◦C], 5 degrees Celsius to
the third bin (30◦C, 35◦C], and 0 degree Celsius to the fourth bin (35◦C, 40◦C]. Thus, when
a single day moves from 35 degrees Celsius to 40 degrees Celsius there is an increase of 5
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Table C.4: Average Effect of Temperature on Sales and Inputs

Dependent Variable Sales Materials Labor Capital MRPL MRPM MRPK
(1) (2) (3) (4) (5) (6) (7)

Temperature Bins
(−∞, 0◦C] -0.076*** -0.049** -0.058** -0.026 -0.003 -0.012 -0.034

(0.018) (0.020) (0.028) (0.024) (0.014) (0.020) (0.023)
(0◦C, 15◦C] 0.015* 0.017** 0.009 0.008 -0.009 0.004 -0.003

(0.009) (0.007) (0.012) (0.008) (0.006) (0.007) (0.010)
(30◦C, 35◦C] -0.014* 0.006 -0.020 0.004 -0.013** 0.006 -0.015

(0.009) (0.008) (0.013) (0.011) (0.006) (0.008) (0.010)
(35◦C, 40◦C] -0.043** 0.001 -0.059** 0.006 -0.023* 0.012 -0.046**

(0.017) (0.016) (0.025) (0.019) (0.0125) (0.014) (0.021)
(40◦C,+∞] -0.806*** -0.369* -0.557** 0.034 -0.020 -0.209 -0.579**

(0.1945) (0.188) (0.241) (0.217) (0.145) (0.156) (0.231)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 4,587,926 4,635,108 3,692,934 4,260,946 3,692,934 4,587,926 4,260,946

Note. All dependent variables are in logs. Temperature bins are defined with greater granularity than in the
baseline specification. Rows 1-5 present the effect on the log of the dependent variable of adding an extra day
in the given temperature range respectively. Standard errors are clustered at the grid-cell level and reported in
parentheses. *, **, and *** denote 10, 5, and 1% statistical significance respectively.

degrees Celsius in the fourth-degree-day bin and no change in other bins.
More formally, denote the endpoints of our five temperature bins by [T 1ℓ, T 2ℓ), ℓ = 1,2,. . . ,

5. A daily temperature T contributes positive degree days to all those bins for which T > T 1ℓ

and zero to all others. If T ≥ T 2ℓ, the day contributes T 2ℓ − T 1ℓ to bin ℓ. If T 1ℓ < T ≤ T 2ℓ, it
contributes T −T 1ℓ to bin ℓ. We now sum the degree days in each bin over the year to obtain
Dℓ

it for each unit i and estimate the following model:

Outomeit =
∑
ℓ

βℓD
ℓ
it + δRaing(i)t + λ′Xr(i)t + γs(i)t + αi + εit. (70)

Columns 2, 6, 10, and 14 of Table C.5 and columns 2, 6, and 10 of Table C.6 present the
estimates of this specification.

Furthermore, we present results from an additional model of daily temperatures where the
dependent variable depends on polynomial functions of dailymaximum temperature, summed
over the year. Denoting by Tdit the maximum temperature for firm i on day d of year t, the
polynomial specification takes the following form:

Outomeit =
365∑
d

β1Tdit +
365∑
d

β2T
2
dit + δRaing(i)t + λ′Xr(i)t + γs(i)t + αi + εit. (71)
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Columns 3, 9, 15, and 21 of Table C.5 provide and columns 3, 9, and 15 of Table C.6 present
the estimates of this specification. Overall, we find patterns qualitatively consistent with our
baseline estimates. However, this specification, due to its restrictive parametric assumptions,
misses at times some additional effects, particularly for extreme temperatures, highlighting
the value added by our semiparametric approach.

Additionally, we also estimate equation (25) allowing for a semiparametric specification
of rainfalls instead of the linear baseline one. This allows us to capture the nonlinear effects of
rainfall, including the impacts of floods caused by extreme precipitation. We use ten different
bins, capturing P10, P20, …, P100. Columns 4, 10, 16, and 20 of Table C.5 and Columns 4, 10,
and 16 of Table C.6 present the estimates of this specification.

Finally, we also estimate equation (25) using the same benchmark definition for temper-
ature bins, but constructing standard errors following Conley (2010) with a radius of 80km
and 150km, corresponding to the size of largest NUTS3 and NUTS2 region. Columns 5, 11,
17, and 23 and columns 6, 12, 18, and 2 of Table C.5 and columns 5, 11, and 17 and 6, 12, and
18 of Table C.6 present the estimates of this specification. Estimates remain statistically sig-
nificant in most cases, even with the very conservative distance of 150 km, considering that
Italy covers an area of 301,340km², suggesting that our results are robust to considerations of
spatial serial correlation.

Tables C.5 and C.6 consistently confirm ourmain findings through the outlined robustness
exercises. Specifically, we observe that extreme temperatures harm sales, materials, and la-
bor, while they do not affect capital substantially. Consequently, the revenue-based marginal
products of materials and labor exhibit much sensitivity to extreme temperatures, whereas
that of capital does.

14



Table C.5: Average Effect of Temperature on Sales and Inputs—Robustness

Dependent Variable Sales Materials Labor Capital

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)
Temperature Bins
(−∞, 0◦C] -0.088*** 0.011** -0.215*** -0.084*** -0.094*** -0.094*** -0.063** 0.010 -0.228*** -0.061** -0.068*** -0.068** -0.065*** 0.006 -0.063** -0.065*** -0.070** -0.070** -0.034 -0.001 0.007 -0.035 -0.036 -0.36

(0.019) (0.005) (0.033) (0.018) (0.030) (0.034) (0.028) (0.007) (0.046) (0.028) (0.025) (0.033) (0.019) (0.004) (0.027) (0.019) (0.033) (0.029) (0.021) (0.005) (0.033) (0.022) (0.040) (0.036)
(30◦C, 35◦C] -0.019** -0.011*** 0.005 -0.013 -0.017 -0.017 -0.024* -0.012*** -0.007 -0.018 -0.022 -0.022 -0.000 0.001 0.010 0.005 0.002 0.002 0.002 -0.000 0.003 0.004 0.003 0.003

(0.009) (0.003) (0.012) (0.008) (0.014) (0.012) (0.014) (0.004) (0.017) (0.013) (0.018) (0.025) (0.008) (0.003) (0.012) (0.008) (0.008) (0.010) (0.010) (0.004) (0.014) (0.010) (0.012) (0.015)
(35◦C, 40◦C] -0.043** -0.019* -0.018 -0.042** -0.046* -0.046 -0.058** -0.027* -0.038 -0.055** -0.060* -0.060 0.002 -0.006 0.007 0.002 -0.003 -0.003 0.005 -0.008 0.005 0.007 0.004 0.004

(0.017) (0.010) (0.019) (0.017) (0.025) (0.032) (0.025) (0.014) (0.027) (0.025) (0.031) (0.048) (0.016) (0.009) (0.018) (0.017) (0.022) (0.028) (0.019) (0.011) (0.021) (0.020) (0.022) (0.028)
(40◦C,+∞) -0.722*** -0.969*** -0.075** -0.720*** -0.807** -0.807** -0.473** -0.519* -0.106** -0.467* -0.557 -0.557** -0.257 -0.438** -0.004 -0.374* -0.369** -0.369* 0.063 0.128 0.009 -0.020 0.033 0.034

(0.190) (0.250) (0.033) (0.196) (0.368) (0.339) (0.236) (0.297) (0.047) (0.246) (0.370) (0.246) (0.197) (0.206) (0.030) (0.197) (0.159) (0.194) (0.221) (0.198) (0.035) (0.227) (0.174) (0.211)
Fixed Effects

Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age2 ✓ ✓ ✓ ✓

Observations 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 3,767,558 3,767,558 3,767,558 3,767,558 3,767,558 3,767,558 4,328,689 4,328,689 4,328,689 4,328,689 4,328,689 4,328,689

Note. All dependent variables are in logs. Columns 1, 6, 11, and 16 provide estimates from the baseline specification in equation (25), with temperature bins constructed
as explained in Section 3.2, augmented with a quadratic age control. Columns 2, 7, 12, and 17 present estimates from the degree-day model in equation (70). Columns 3,
9, 15, and 21 provide estimates from the quadratic specification in equation (71). Columns 4, 10, 16, and 22 provide estimates from the baseline specification in equation
(25), with temperature bins constructed as explained in Section 3.2, where rainfall controls are defined semiparametrically by ten bins instead of the linear specification
in the benchmark case. Columns 5, 11, 17, and 23 provide estimates from the baseline specification in equation (25), with temperature bins constructed as explained in
Section 3.2 but standard errors constructed following Conley (2010) with a radious of 80km. Columns 6, 12, 18, and 24 provide estimates from the baseline specification in
equation (25), with temperature bins constructed as explained in Section 3.2 but standard errors constructed following Conley (2010) with a radious of 150km. Rows 1-4
present the effect on the log of the dependent variable of adding an extra day in the given temperature range respectively. Standard errors are clustered at the grid-cell
level and reported in parentheses. *, **, and *** denote 10, 5, and 1% statistical significance respectively.
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Table C.6: Average Effect of Temperature on Revenue-Based Marginal Products of Inputs—Robustness

Dependent Variable MRPM MRPL MRPK

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
Temperature Bins

(−∞, 0◦C] -0.018 -0.000 0.018 -0.016 -0.018 -0.018 0.007 0.000 -0.037* 0.007 0.008 0.008 -0.026 0.005 -0.159*** -0.023 -0.030 -0.030
(0.019) (0.005) (0.024) (0.019) (0.020) (0.019) (0.013) (0.003) (0.021) (0.013) (0.015) (0.007) (0.022) (0.004) (0.036) (0.022) (0.038) (0.030)

(30◦C, 35◦C] 0.006 0.001 0.012 0.006 0.006 0.006 -0.011* -0.006*** -0.002 -0.012** -0.012 -0.012 -0.015 -0.008** 0.008 -0.012 -0.014 -0.014
(0.008) (0.003) (0.009) (0.007) (0.006) (0.004) (0.006) (0.002) (0.008) (0.006) (0.008) (0.010) (0.011) (0.004) (0.013) (0.010) (0.015) (0.015)

(35◦C, 40◦C] 0.011 0.005 0.019 0.010 0.011 0.011 -0.022* -0.002 -0.007 -0.025* -0.021 -0.021 -0.044** -0.009 -0.008 -0.046** -0.045* -0.045*
(0.014) (0.008) (0.014) (0.015) (0.013) (0.011) (0.013) (0.007) (0.012) (0.013) (0.015) (0.016) (0.022) (0.013) (0.021) (0.022) (0.026) (0.028)

(40◦C,+∞) -0.209 -0.412** 0.032 -0.212 -0.209 -0.209 -0.049 -0.034 -0.018 0.060 -0.019 -0.019 -0.523** -0.803*** -0.048 -0.443** -0.578** -0.578***
(0.156) (0.179) (0.024) (0.157) (0.229) (0.212) (0.148) (0.169) (0.021) (0.138) (0.204) (0.156) (0.225) (0.246) (0.036) (0.227) (0.290) (0.203)

Fixed Effects
Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Age2 ✓ ✓ ✓

Observations 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 4,687,503 3,767,558 3,767,558 3,767,558 3,767,558 3,767,558 3,767,558 4,328,689 4,328,689 4,328,689 4,328,689 4,328,689 4,328,689

Note. All dependent variables are in logs. Columns 1, 7, and 13 provide estimates from the baseline specification in equation (25), with temperature bins constructed
as explained in Section 3.2, augmented with a quadratic age control. Columns 2, 8, and 14 present estimates from the degree-day model in equation (70). Columns 3,
9, and 15 provide estimates from the quadratic specification in equation (71). Columns 4, 10, and 16 provide estimates from the baseline specification in equation (25),
with temperature bins constructed as explained in Section 3.2, where rainfall controls are defined semiparametrically by ten bins instead of the linear specification in
the benchmark case. Columns 5, 11, and 17 provide estimates from the baseline specification in equation (25), with temperature bins constructed as explained in Section
3.2 but standard errors constructed following Conley (2010) with a radious of 80km. Columns 6, 12, and 18 provide estimates from the baseline specification in equation
(25), with temperature bins constructed as explained in Section 3.2 but standard errors constructed following Conley (2010) with a radious of 150km. Rows 1-4 present
the effect on the log of the dependent variable of adding an extra day in the given temperature range respectively. Standard errors are clustered at the grid-cell level and
reported in parentheses. *, **, and *** denote 10, 5, and 1% statistical significance respectively.
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C.2 Additional Sample Cuts

In this section, we present additional sample custs. To mitigate concerns associated with the
presence of multiplant firms, as discussed in Section 3.3, we conduct regression analysis where
we exclude specific subsets of firms from our sample. First, we exclude all foreign firms, as
presented in Columns 1, 6, 11, and 16 of Table C.7 and Columns 1, 6, and 11 of Table C.8.
Next, we exclude all listed firms, as displayed in Columns 2, 7, 12, and 17 of Table C.7 and
Columns 2, 7, and 12 of Table C.8. Furthermore, we exclude all firms that report consolidated
accounts, as illustrated in Columns 3, 8, 13, and 18 of Table C.7 and Columns 3, 8, and 13 of
Table C.8. Finally, we drop firms within the top 5 percent of the sales distribution, as depicted
in Columns 4, 9, 14, and 19 of Table C.7 and Columns 4, 9, 14 of Table C.8.

Tables C.7 and C.8 consistently indicate that extreme temperatures adversely affect sales,
materials, and labor, but not capital. Consequently, the revenue-based marginal products of
materials and labor display no systematic sensitivity to extreme temperature fluctuations, in
contrast to capital. Notably, our estimates are if anything larger, confirming the downward
bias produced by firms more likely to be multiplant. Nevertheless, the consistency of results
across these specifications underscores that the presence of multiplant firms does not signif-
icantly impact our fundamental conclusions.

Finally, Columns 5, 10, 15, and 20 of Table C.7 and Columns 5, 10, and 15 of Table C.8
include only firm-year observations where none of the revenues, wage bill, material costs,
or capital are missing. Although the results are qualitatively similar, the lower number of
observations introduces some quantitative differences, particularly with the revenue semi-
elasticity for days above 40◦C appearing slightly lower.
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Table C.7: Average Effect of Temperature on Sales and Inputs—Robustness II

Dependent Variable Sales Materials Labor Capital

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20)
Temperature Bins

(−∞, 0◦C] -0.095*** -0.095*** -0.092*** -0.085*** -0.047*** -0.070** -0.069** -0.065** -0.057* -0.058*** -0.070*** -0.070*** -0.069*** -0.069*** -0.063*** -0.033 -0.036* -0.037* -0.035 -0.024
(0.020) (0.019) (0.019) (0.020) (0.015) (0.022) (0.029) (0.029) (0.031) (0.019) (0.021) (0.019) (0.020) (0.020) (0.021) (0.022) (0.021) (0.021) (0.022) (0.021)

(30◦C, 35◦C] -0.017* -0.017* -0.017* -0.018** -0.009 -0.023 -0.022 -0.020 -0.023 0.005 -0.001 0.002 0.004 0.002 -0.017* -0.000 0.003 0.004 0.004 0.000
(0.009) (0.009) (0.009) (0.009) (0.006) (0.014) (0.014) (0.014) (0.014) (0.007) (0.008) (0.008) (0.008) (0.008) (0.009) (0.010) (0.011) (0.011) (0.011) (0.011)

(35◦C, 40◦C] -0.050*** -0.046*** -0.047*** -0.045*** -0.019 -0.068** -0.060** -0.057** -0.056** 0.008 -0.010 -0.003 -0.003 -0.004 -0.035* 0.001 0.004 0.006 0.006 0.003
(0.017) (0.017) (0.017) (0.017) (0.013) (0.026) (0.025) (0.026) (0.025) (0.016) (0.017) (0.017) (0.017) (0.017) (0.018) (0.019) (0.019) (0.020) (0.020) (0.020)

(40◦C,+∞) -0.827*** -0.806*** -0.829*** -0.889*** -0.357** -0.571** -0.560** -0.554** -0.645** -0.343* -0.433** -0.367** -0.363* -0.456** -0.121 0.040 0.033 0.024 0.001 0.119
(0.191) (0.194) (0.194) (0.200) (0.144) (0.243) (0.242) (0.243) (0.254) (0.181) (0.194) (0.187) (0.190) (0.195) (0.211) (0.204) (0.216) (0.220) (0.211) (0.235)

Fixed Effects
Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 4,463,602 4,685,250 4,603,410 4,394,813 3,653,159 4,463,602 4,685,250 4,603,410 4,394,813 3,653,159 4,463,602 4,685,250 4,603,410 4,394,813 3,653,159 4,463,602 4,685,250 4,603,410 4,394,813 3,653,159

Note. All dependent variables are in logs. Columns. Columns 1, 6, 11, and 16 provide estimates from the baseline specification in equation (25) excluding foreign firms.
Columns 2, 7, 12, and 17 provide estimates from the baseline specification in equation (25) excluding listed firms. Columns 3, 8, 13, and 18 provide estimates from the
baseline specification in equation (25) excluding firms reporting consolidated accounts. Columns 4, 9, 14, and 19 provide estimates from the baseline specification in
equation (25) excluding firms with sales above top 5%. Columns 5, 10, 15, and 20 provide estimates from the baseline specification in equation (25) but the sample has
been restricted to ensure consistency in number of observations across all variables. Rows 1-4 present the effect on the log of the dependent variable of adding an extra
day in the given temperature range respectively (temperature bin coefficients). Standard errors are clustered at the grid-cell level and reported in parentheses. *, **, and
*** denote 10, 5, and 1% statistical significance respectively.
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Table C.8: Average Effect of Temperature on Revenue-Based Marginal Products of Inputs—Robustness II

Dependent Variable MRPM MRPL MRPK

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15)
Temperature Bins

(−∞, 0◦C] -0.016 -0.018 -0.019 -0.021 0.015 0.005 0.008 0.009 0.014 0.010 -0.034 -0.030 -0.027 -0.025 -0.021
(0.020) (0.019) (0.020) (0.021) (0.014) (0.014) (0.013) (0.013) (0.014) (0.013) (0.023) (0.022) (0.022) (0.024) (0.021)

(30◦C, 35◦C] 0.007 0.006 0.004 0.006 0.007 -0.010* -0.012** -0.012** -0.011* -0.013** -0.012 -0.014 -0.014 -0.015 -0.009
(0.007) (0.008) (0.008) (0.008) (0.006) (0.006) (0.006) (0.006) (0.006) (0.005) (0.010) (0.010) (0.010) (0.011) (0.010)

(35◦C, 40◦C] 0.014 0.011 0.007 0.009 0.014 -0.021 -0.021 -0.022* -0.017 -0.025** -0.046** -0.045** -0.048** -0.048** -0.026
(0.015) (0.014) (0.015) (0.015) (0.011) (0.013) (0.013) (0.013) (0.014) (0.013) (0.020) (0.021) (0.022) (0.022) (0.021)

(40◦C,+∞) -0.220 -0.206 -0.234 -0.217 -0.196 -0.016 -0.020 -0.017 0.001 -0.004 -0.638*** -0.579** -0.583** -0.604*** -0.482**
(0.160) (0.156) (0.162) (0.164) (0.147) (0.148) (0.145) (0.149) (0.152) (0.142) (0.217) (0.231) (0.239) (0.229) (0.212)

Fixed Effects
Firm ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sector × Year ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
GR and SDC × Region ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Controls
Rainfalls ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Region Trends ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Observations 4,463,602 4,685,250 4,603,410 4,394,813 3,576,070 3,576,070 3,765,341 3,687,667 3,480,405 3,576,070 4,120,335 4,326,444 4,246,524 4,040,241 3,576,070

Note. All dependent variables are in logs. Columns provide estimates from the baseline specification in equation (25). Columns 1, 6, and 11 estimate from the baseline
specification in equation (25) excluding foreign firms. Columns 2, 7, and 12 provide estimates from the baseline specification in equation (25) excluding listed firms.
Columns 3, 8, and 13 provide estimates from the baseline specification in equation (25) excluding firms reporting consolidated accounts. Columns 4, 9, and 14 provide
estimates from the baseline specification in equation (25) excluding firms with sales above top 5%. Columns 5, 10, and 15 provide estimates from the baseline specification
in equation (25) but the sample has been restricted to ensure consistency in number of observations across all variables. Rows 1-4 present the effect on the log of the
dependent variable of adding an extra day in the given temperature range respectively (temperature bin coefficients). Standard errors are clustered at the grid-cell level
and reported in parentheses. *, **, and *** denote 10, 5, and 1% statistical significance respectively.
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C.3 Additional Demand-Adjusted Productivity Results

Table C.9 presents sector-level losses in demand-adjusted productivity due to a 2-degree Cel-
sius increase in temperature.

Table C.9: Sector-Level Demand-Adjusted Productivity Losses

Sector NACE 1 Sector-level loss αK

Services G-S -0.35 0.05
Manufacturing C -0.37 0.07
Construction F -0.38 0.08
Mining and Quarrying B -0.46 0.21
Agriculture, Forestry and Fishing A -0.51 0.27

Note. Table C.9 presents sector-level losses in demand-adjusted productivity due to a 2-degree Celsius increase
in temperature. Column 1 lists the sector names, Column 2 provides the corresponding NACE codes, Column 3
shows the loss levels, and Column 4 indicates the capital intensity.

To obtain these numbers, we applied equation (11) using our estimates from Tables 2
and 3, along with the sector-level production function elasticities as explained in Section 3.
For conciseness, we report a single number summarizing the sector-level losses. This was
done by applying the temperature bin-specific semiparametric losses for each sector to the
homogeneous 2-degree Celsius temperature increase from our benchmark scenario explained
in Section 6.1.1. Our losses are broadly in line with those reported in the literature, such as the
high damages to agriculture and lower damages for manufacturing noted by Addoum et al.
(2020) and Ponticelli et al. (2023).

D Aggregate Results

D.1 Counterfactual Temperature Distributions

This appendix describes the counterfactual distribution of days within temperature bins under
different warming scenarios compared to the observed data. Table D.10 provides summary
statistics of the distribution of days within temperature bins, while Table D.11 presents the
changes in the distribution of days under each warming scenario.

Table D.10 summarizes the distribution of days within temperature bins for the observed
data and various warming scenarios. The temperature bins are categorized from below 0 de-
grees Celsius to 40 degrees Celsius or higher, as explained in Section 3.2. The table includes
statistical measures such as mean, median, minimum, and maximum values for each temper-
ature bin.
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Table D.10: Summary Statistics of Counterfactual Distribution of Days Within Tem-
perature Bins

Temperature Bins

(−∞, 0◦C] (0◦C, 30◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,+∞)

Warming Scenario Variable

1999-2013

Mean 1.90 316.10 41.87 5.08 0.04
Median 0 317 44 3 0
Min 0 201 0 0 0
Max 164 365 95 56 10

1◦C

Mean 1.14 304.04 50.38 9.31 0.13
Median 0 304 51 6 0
Min 0 212 0 0 0
Max 153 365 105 64 17

2◦C

Mean 0.66 291.22 57.53 15.18 0.41
Median 0 289 59 11 0
Min 0 221 0 0 0
Max 140 365 105 70 32

4◦C

Mean 0.23 265.02 65.142 32.06 2.55
Median 0 264 65 31 1
Min 0 198 0 0 0
Max 111 365 117 87 52

RCP4.5

Mean 0.83 298.21 57.89 16.37 0.7
Median 0 289 59 11 0
Min 0 208 0 0 0
Max 142 365 113 74 37

RCP8.5

Mean 0.30 265.37 64.46 31.92 2.95
Median 0 266 65 30 0
Min 0 190 0 0 0
Max 104 365 122 92 58

Note. Table D.10 summarizes the distribution of days within temperature bins in the data and under different
warming scenarios. It includes statistics such as mean, median, minimum, and maximum values for each tem-
perature bin. The temperature bins range from below 0 degrees Celsius to 40 degrees Celsius or higher as defined
in Section 3.2.

The first four rows present the distribution of days within each temperature bin in the
data for the period 1999-2013. The second four rows present the distribution of days within
each temperature bin for the 1-degree Celsius temperature increase counterfactual scenario.
The third four rows present the distribution of days within each temperature bin for the 2-
degree Celsius temperature increase counterfactual scenario. The fourth four rows present
the distribution of days within each temperature bin for the 4-degree Celsius temperature
increase counterfactual scenario. The fifth four rows present the distribution of days within
each temperature bin for the RCP4.5 counterfactual scenario. The sixth four rows present
the distribution of days within each temperature bin for the RCP8.5 counterfactual scenario.
Overall, we see that the more extreme the counterfactual warming scenario, the larger the
shift in the number of days toward higher temperatures.

Table D.11 presents the changes in the distribution of days within temperature bins un-
der different warming scenarios. The values indicate the deviation in the number of days
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Table D.11: Summary Statistics of Counterfactual Change in Distribution of Days
Within Temperature Bins

Temperature Bins

(−∞, 0◦C] (0◦C, 30◦C] (30◦C, 35◦C] (35◦C, 40◦C] (40◦C,+∞)

1◦C

Mean -0.76 -12.07 8.51 4.23 0.09
Median 0 -12 9 3 0
Min -27 -33 -21 -2 0
Max 0 27 33 25 10

2◦C

Mean -1.24 -24.88 15.66 10.10 0.37
Median 0 -251 17 8 0
Min -56 -64 -31 -10 0
Max 0 56 57 39 22

4◦C

Mean -1.67 -51.09 23.27 26.98 2.51
Median 0 -52 24 27 1
Min -84 -100 -48 -15 0
Max 0 84 86 71 44

RCP4.5

Mean -1.07 -26.89 16.02 11.28 0.66
Median 0 -24 16 8 0
Min -71 -79 -41 -10 0
Max 0 71 70 57 35

RCP8.5

Mean -1.60 -50.82 22.59 26.83 2.91
Median 0 -51 23 25 0
Min -100 -120 -49 -22 0
Max 0 101 100 85 56

Note. Table D.11 presents the changes in the distribution of days within temperature bins under various warming
scenarios. It provides statistical measures such as mean, median, minimum, and maximum values for each
temperature range. The values indicate the deviation in the number of days compared to the data. Negative
values indicate a decrease, while positive values represent an increase in the number of days.

compared to the observed data. Negative values represent a decrease, while positive values
indicate an increase in the number of days.

The first four rows present the change relative to the data in the distribution of dayswithin
each temperature bin for the 1-degree Celsius temperature increase counterfactual scenario.
The second four rows present the change relative to the data in the distribution of days within
each temperature bin for the 2-degree Celsius temperature increase counterfactual scenario.
The third four rows present the change relative to the data in the distribution of days within
each temperature bin for the 4-degree Celsius temperature increase counterfactual scenario.
The fourth four rows present the change relative to the data in the distribution of days within
each temperature bin for the RCP4.5 counterfactual scenario. The fifth four rows present the
change relative to the data in the distribution of days within each temperature bin for the
RCP8.5 counterfactual scenario. Overall, we see that the more extreme the counterfactual
warming scenario, the larger the increase in the number of days with higher temperatures
and the decline in the number of days with lower temperatures.
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D.2 Additional Robustness Main Results

Table D.12: Climate Change Impact on Aggregate Productivity With Adaptation

Aggregate Productivity Loss

Without Adaptation With Adaptation

1◦C 0.77% 0.60%
4◦C 6.82% 5.51%
RCP4.5 1.64% 1.32%
RCP8.5 5.35% 4.18%

Note. Column 1 reports the aggregate productivity losses without adaptation for the scenarios in the robustness
exercises in Table 7. Column 2 reports the effect of adding adaptation effects to each of these scenarios.

Table D.12 presents the impact of controlling for adaptation on the scenarios used as
robustness exercises in Section 6.1.2. Introducing adaptation in the 1-degree Celsius scenario
reduces productivity losses to 0.60, and in the 4-degree Celsius scenario, it decreases losses to
5.51. Finally, adaptation reduces productivity losses from the RCP4.5 and RCP8.5 scenarios to
1.32 and 4.18, respectively. Overall, we find that adaptation lowers the aggregate productivity
losses of the different scenarios by an average of 20 percent.

Aggregation with a Representative firm: Following Zhang et al. (2018), we use a repre-
sentative firm to compute the aggregate effects. First, we calculate the firm-specific predicted
changes in the number of days in each temperature bin for a 2◦C temperature rise scenario.
These firm-specific differences in weather variables are then averaged to create a representa-
tive firm. Next, we multiply these predicted differences by the relevant estimated regression
coefficients to determine the impacts of climate change on output for the average firm in the
sample. We find that revenues for representative firms decrease by 1.02%, while total factor
productivity (TFP) declines by 0.5%. The differences can be attributed to the fact that the ag-
gregate of a nonlinear function leads to different outcomes than the averages due to the Jensen
Inequality. These biases growwith the skewness of the productivity distribution. Further, due
to the absence of the allocative efficiency channel, the losses are smaller in the representative
firm approach.

D.3 Regional Heterogeneity

This appendix section explores the impact of climate change on productivity losses at the
province level (NUTS 3) in Italy, examining four alternative warming scenarios: a 1-degree
Celsius increase, a 4-degree Celsius increase, and increases according to the RCP4.5 and
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RCP8.5 scenarios. Moreover, we explore the role of adaptation for regional economic losses.
We employ the methodology described in Section 2 and apply the same approach used in
Section 6.3 to assess productivity losses for each province under these different warming sce-
narios.

Figure D.2: Regional Productivity Losses for Alternative Warming Scenarios
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Note. Figure D.2a shows the productivity losses across NUTS 3 regions due to a 1-degrees Celsius increase in
temperature, calculated using equation (19), adjusted with the ratio of gross output to value added. Figure D.2b
shows the productivity losses across NUTS 3 regions due to the 2-degrees Celsius increase in temperature but
in the presence of adaptation, calculated using equation (19), adjusted with the ratio of gross output to value
added. Figure D.2c shows the productivity losses across NUTS 3 regions due to a 4-degrees Celsius increase in
temperature, calculated using equation (19), adjusted with the ratio of gross output to value added. Figure D.2d
shows the productivity losses across NUTS 3 regions due to the RCP4.5 scenario, calculated using equation (19),
adjusted with the ratio of gross output to value added. Figure D.2e shows the productivity losses across NUTS
3 regions due to the RCP8.5 scenario, calculated using equation (19), adjusted with the ratio of gross output to
value added. Productivity losses are in percent, and darker colors represent larger losses.

Figures D.2a, D.2c, D.2d, D.2e, and D.2b display regional productivity changes under var-
ious warming scenarios. In the 1-degree Celsius warming scenario (D.2a), Italian provinces
show diverse outcomes, with some experiencing gains of up to 0.19 percent and others facing
losses of up to 0.82 percent. Under the 4-degree Celsius scenario (D.2c), variations are even
more pronounced, ranging from slight increases of 0.09 percent to severe reductions of up to
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9.80 percent. The RCP4.5 and RCP8.5 scenarios (D.2d, D.2e) also exhibit varying degrees of
change, with some provinces seeing gains and others facing losses, particularly severe under
RCP8.5, reaching -13.23 percent. The RCP4.5 and RCP8.5 scenarios exhibit themost significant
regional variations due to the non-uniform distribution of temperature increases, predicting
larger in southern regions compared to the north. In the 2-degree Celsius warming scenario
with adaptation (D.2b), regional differences persist, with increases of 1.55 percent in the least
affected areas and decreases of 2.80 percent in the most affected ones.

The relationship between GDP per capita in our sample and future productivity losses is
depicted in Figure D.3. With the exception of the 4-degree Celsius scenario, which shows no
significant relation, all other scenarios predict increasing inequality due to climate change.

Figure D.3: Correlation Between Regional Losses and GDP Per Capita
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(b) 2◦C w. Adaptation
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(c) 4◦C
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(d) RCP4.5
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(e) RCP8.5

Note. Figure D.3a scatters the productivity losses across NUTS 3 regions due to a 1-degrees Celsius increase
in temperature against GDP per capita in the data. Figure D.3b shows the productivity losses across NUTS 3
regions due to a 2-degrees Celsius increase in temperature in the presence of adaptation against GDP per capita
in the data. Figure D.3c scatters the productivity losses across NUTS 3 regions due to a 4-degrees Celsius increase
in temperature against GDP per capita in the data. Figure D.3d scatters the productivity losses across NUTS 3
regions due to a the RCP4.5 scenario against GDP per capita in the data. Figure D.3e scatters the productivity
losses across NUTS 3 regions due to the RCP8.5 scenario against GDP per capita in the data. Light blue dots are
NUTS 3 regions and the black line represents the best fit.
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