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Abstract

New technology is prone to disruptions. We examine the impact of a supply disruption that

simultaneously increases operational costs and reduces production capacity by removing a

relatively efficient capital asset. Specifically, we analyse the unexpected regulatory decision

to ground the Boeing 737 MAX in 2019, Boeing’s most fuel-efficient narrow-body aircraft at

the time. We use a difference-in-differences design by leveraging the differential exposure to

the grounding, which we construct using novel flight frequency data in the U.S. We observe

heterogeneous price and cost effects across airlines. For Southwest, the airline most affected

by the disruption, the price increase is five times larger than the increase in operational costs.

These findings illustrate that when firms become capacity-constrained due to a drastic reduction

in the capital stock, then the cost of adjusting the capacity becomes the main driving force of

the price, and not the changes in the average costs (related to efficiency).
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I Introduction
Firms invest in new generations of capital assets to benefit from efficiency gains that

allow them to reduce costs. However, disruptions from various sources, such as regulatory

changes, geopolitical tensions, or disputes between firms, can lead to considerable welfare

losses. An extensive body of literature has focused on the effect on prices of disruptions

that affect the marginal cost of production, documenting the pass-through rate of the cost

shock on prices and its relation to the market structure (Amiti, Itskhoki, and Konings, 2014;

Fabra and Reguant, 2014; Goldberg and Hellerstein, 2013; Nakamura and Zerom, 2010).

In contrast, comparatively little is understood about shocks that simultaneously restrict

productive capacity and increase firms’ marginal costs. We show that when a substantial

part of the capital assets suddenly become unavailable, the cost of adjusting capacity will

be the dominant force increasing prices, and not the increase in the variable operating costs.

Capacity constraints have important negative implications for consumer welfare as they lead

to pass-through rates that are above unity, as they generate temporary increases in the cost

curve with output that will drive up marginal costs.

We use the worldwide grounding of the fuel-efficient Boeing 737 MAX aircraft (henceforth

MAX) in March 2019 as a unique quasi-experiment to understand how capacity utilisation

affects pricing. This event stands out for being potentially one of the largest in aviation

history and an incredibly costly event to airlines, consumers and manufacturers. No com-

mercial aircraft had ever been barred from service, and it was completely unexpected that

the first grounding would target a Boeing model, produced by a leading U.S. manufacturer

and cleared only after full certification.1 The policy salience of such event is further amplified

by the disruption’s sheer scale: within a matter of days, regulators worldwide withdrew the

aircraft model, immobilizing its fleet across every market.2

The sudden restrictions in the fleet generated by the grounding provide us a unique source

of variation in capacity that is not correlated with other factors that affect the demand of air

traveling services. To conduct our analysis we have collected a novel and granular data source

on all the flight hours of each aircraft model that is operated by the universe of airlines that

serve the domestic market in the United States between 2017 and 2019. The data is based

on real-time flight-level information tracked from mandatory communications between the

1In fact, the MAX emerged as a prime contender to replace the legacy aircraft due to its fuel efficiency
and it had gained significant popularity among carriers with nearly 4,400 orders placed by the end of 2017
(Boeing, 2023).

2The FAA refrained from grounding the MAX following the first crash involving Lion Air Flight JT610 on
October 29, 2018. However, following the second crash involving Ethiopian Airlines flight ET302, the MAX
aircraft model was banned from flying in all countries where it operated. The United States, through the
Federal Aviation Administration (the regulatory agency), was among the last to enact the MAX ban on
March 13, 2019 (Herkert, Borenstein, and Miller, 2020).
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aircraft and the airport’s ground control. This data is not only novel due to its granularity

and full coverage of the market, but also because it is free of measurement errors and self-

reporting bias. Other studies have used information contained in DoT databases, such as

the T-100 Domestic Segment, which is self-reported by carriers to the DoT’s Office of Airline

Information, possibly resulting in incomplete or missing data due to inconsistent reporting

practices of carriers.3 We combine the flight frequency and fleet utilitsation dataset with the

characteristics of the aircraft, including the seating capacity and the average per-flight fuel

consumption rate. For prices we rely on the (DB1B), the price survey from the Department

of Transport in the United States (DoT). As a result, we can measure the fleet utilization

before and after the grounding, thereby allowing estimation of jet fuel consumption patterns

by route and for each of the aircraft of an airline.

We use a Difference-in-Difference (DiD) approach with continuous treatment, differentiat-

ing by airline. We quantify the cost of this disruption by assessing its impact for consumers

(prices) and firms (costs). Our findings reveal that firms coped with the disruption by relying

on their existing idle capacity, which led to a price adjustment. Prices were adjusted accord-

ing to the shadow price of the capacity, which was higher for airlines with a more intensive

usage of their aircraft fleet. For simplicity, these price increases can be decomposed into a

capacity effect, and an operational cost increase. The first relates to the production capacity

of firms, which diminishes when capital is being disrupted. In this particular setting, the

airlines had fewer aircraft to operate, implying that the shadow price of capacity increased.

The second channel is related to changes in marginal cost due to changes in the technol-

ogy that is being operated. Since the most fuel-efficient capital asset is being removed, the

changes in marginal costs will depend on the differences in fuel consumption of grounded

aircraft with respect to the second most efficient one.4

While the choice of capital is endogenous, the grounding provides quasi-experimental

setting for assessing the level and the degree of disruption in the capital of a firm. As a

result, these short-term price adjustments reflect market frictions that preclude firms from

easily acquiring additional capital. These frictions are not only exclusive to the airline

industry, they are also present in other markets with high levels of specialisation in the

input market, fixed costs related to entry or exit, or facing uncertainty. In the specific

setting of this study, the uncertainty over the duration of the grounding, combined with the

3Surprisingly, the T-100 not does not document any flight activity involving MAX aircraft, despite their
integration into US carrier services since mid-2017 — a critical requirement for our study.

4Fuel expenses have been documented to account for up to one-third of the operating costs (Csereklyei and
Stern, 2020; Kahn and Nickelsburg, 2016) and Boeing claimed that the innovations introduced in the MAX
enabled it to achieve fuel consumption reductions ranging from 14% to 32% compared to legacy aircraft
models of similar size, such as Airbus 320 and the Boeing 737 (Boeing, 2024).
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difficulties in acquiring capital in the short term, impeded firms from utilising other channels

of adjustment that would be available in the long term.

One central aspect of this paper is to explore the asymmetric impact on the firms, as

capacity creates non-linearities in the price response. In the United States domestic market,

three airlines (Southwest, United, and American) had started to operate the aircraft that had

been certified in 2017, and many more were waiting for their delivery. We use the utilization

rate of the aircraft for each carrier as the treatment intensity measure in the DiD analysis.

Southwest had adopted a strategy that relied on a low diversification of the fleet, potentially

to benefit from economies of scale in costs. It operated 3000 routes with 10% of MAX aircraft

(on average), and the remaining routes with older and less fuel-efficient Boeing 737 models.

Southwest Airlines operated two-thirds of all MAX flights. In contrast, the legacy carriers

had several aircraft models. American operated the in only 150 routes and United in 210,

at 12% and 17% respectively. Southwest, which operated with less excess/idle capacity, had

invested more heavily in the MAX, which was the only other model used other than the

older Boeing 737 models (with 30% more fuel consumption).

We find that the average increase in the ticket price in Southwest MAX-operated markets

was 5 times higher than the operational cost increase from using the second most efficient

aircraft. This corresponds to a 1.7%, which is $4. We show that this was because their

capacity to operate with their fleet was substantially reduced, and they had to operate much

closer to the limit of their existing capacity. In contrast, for United and American, the

increase in fares was in line with operational cost increases from subsituting the grounded

aircraft by operating more intensively the idle capacity. Additionally, we find large differences

in the change in operational cost, which refers to the change in marginal cost from replacing a

flight that was previously operated with a MAX with other aircraft models. More specifically,

we find that it is around $8 per passenger for Southwest flights, and $3 and $4 per passenger

for American and United. Using our detail data we can show that both American and United

used their fleet less intensively, and that they had other spare aircraft that consumed less,

whereas Southwest had to rely exclusively on the older Boeing 737 models.

While there is a broad literature studying pricing in airlines, or pass-through, to the best

of our knowledge, no other study has documented the price effect of short-term capacity

changes resulting from supply disruptions using detailed data on capital utilisation. Instead,

the existing literature has mainly focused on the role of market structure and market power

(Bailey, Graham, and Kaplan, 1985; Berry, 1992; Berry, 1990; Borenstein, 1989; Borenstein,

1990; Borenstein, 1991; Borenstein, 1992; Borenstein and Rose, 1994; Brueckner, Dyer, and

Spiller, 1992; Brueckner and Spiller, 1994; Call and Keeler, 1985; Ciliberto and Tamer, 2009;

Dai, Liu, and Serfes, 2014; Evans and Kessides, 1993; Evans and Kessides, 1994; Gerardi
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and Shapiro, 2009; Graham, Kaplan, and Sibley, 1983; Hurdle et al., 1989; Morrison and

Winston, 2010a; Morrison and Winston, 2010b; Morrison et al., 1989). There is also a grow-

ing literature that focuses on second- and third-degree price discrimination strategies that

carriers practice, as well as intertemporal price discrimination, mainly on peak load pricing

and dynamic pricing (Alderighi, Nicolini, and Piga, 2015; Aryal, Murry, and Williams, 2023;

Chandra and Lederman, 2018; Chen, 2018; Escobari, 2012; Gaggero and Piga, 2011; Lazarev,

2013; Williams, 2022). Our study also broadly relates to Ferrer and Perrone, 2023 and Jin

and Leslie, 2003, who study the consequences of unexpected events that caused a product

harm crisis that raises firms’ costs. However, the main difference is that the grounding did

not affect the product demand other than through its effect on price, it only affected the

supply.

As highlighted in a recent article, supply disruptions are also relevant for the shipping

industry, and descriptive evidence shows that theoretically they could be explained by ca-

pacity constraints and demand fluctuations (Brancaccio, Kalouptsidi, and Papageorgiou,

2025). Additionally, the effect of the grounding of the Boeing 737 MAX on air travel prices

has not been studied either, despite being one of the largest disruptions in aviation history.

Isidore, 2020 estimated that Boeing incurred a huge financial cost: $21 billion in fines, com-

pensation, and legal fees, as well as indirect losses of up to $60 billion due to the cancellation

of 1,200 orders of the MAX model. Disruptions with the aircraft model continued after the

grounding was lifted by the FAA in November 2020 (CBS News, 2020; Gates, 2020), and the

MAX resumed commercial flights (December 2020), and was re-certified for use in Europe

and Canada in January 2021 (American Machinist, 2020).

Overall, this study aims to complement the existing literature on airline pricing, cost

shocks, and supply disruptions by using quasi-experimental evidence. We draw these conclu-

sions based on detailed data on capacity utilisation, that shows more than full pass-through

when a firm’s capacity is suddenly (and severely) constrained, and simultaneously, it faces

limited substitution possibilities for the disrupted inputs. Therefore, the effect of such shocks

can be quite heterogeneous if the firms make very different capacity choices. As shown in

this study, the prices of firms with less constrained capacity will only rise at the same scale

as the operating costs. Therefore, for these firms, the change in prices is determined by

the cost differences from using the idle capacity compared to the disrupted capacity. The

remainder of the article is organized as follows. Section II describes the industry. Section III

describes the data used. Section IV presents the empirical strategy used and the estimation

results, and Section V concludes.
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II Industry
The fuel efficiency of an aircraft allows airlines to reduce operating costs. As shown in

Figure 1, between 1971 and 1998 (International Energy Agency, 2009), a 60% reduction in

the average fuel consumption has been achieved, driven by innovation in areas such as engine

technology, aerodynamic design, and weight reduction through the development of lighter

airframes made from carbon composites.

Figure 1: Fuel efficiency of commercial aircraft. NOTE. – Fuel consumption rates of aircraft models
developed by Boeing and Airbus against their year of entry into scheduled commercial passenger service.
Models beginning with the letter A(B) are from Airbus (Boeing). The X-axis represents the year of service
entry, while the Y -axis denotes aircraft fuel consumption rates expressed in litres per passenger seat per 100
kilometres. The aircraft fuel consumption rates were estimated based on data obtained from the International
Energy Agency (2009), from Form 41 data reported by carriers to the US Department of Transportation
(DoT), and from individual aircraft specifications published by manufacturers on their respective websites.
Based on the definitions provided by Wragg (1974), we designate an aircraft as short range if it can fly a
maximum distance of up to 4,100 kilometres on a single flight, and is designated as long range otherwise.
Dots represent average fuel consumption rates, and the bars denote 90% confidence intervals. Dotted lines
represent the predicted trend lines for short- and long-range aircraft, respectively.

Already in 1967, Boeing’s 737 model emerged to compete with Airbus in the narrow-body

aircraft segment. It represented a major breakthrough in fuel efficiency, utilising only two

engines compared to the four and three engines required by its predecessors, the 707 and

727. Improvements in the fuel efficiency of the Boeing 737 followed in the 1990s with the

development of the Next Generation (NG) engine and a fly-by-wire control system, which

replaced conventional manual flight controls with a fully electronic cockpit. This allowed the

737 model to maintain its position as a popular narrow-body aircraft for decades.
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In 2011, Boeing started developing the 737 MAX series to respond to Airbus’ announce-

ment of the Airbus 320 Neo, its most fuel-efficient narrow-body aircraft. The MAX featured

significant improvements in engine performance and fuel efficiency (CFM LEAP engine), as

well as new aerodynamic improvements, such as unique split winglets that further enhanced

fuel efficiency and optimised existing aerodynamic features to reduce drag during flight. The

aircraft was well received by carriers and aircraft leasing companies, with over 4,387 orders

placed between 2011 and 2017, particularly in the United States, where American, Alaska

Airlines, Southwest, and United placed a total of 1,078 orders.5

The plans to develop the 737 MAX aircraft were announced on August 30, 2011, in re-

sponse to the launch of the Airbus’s 320 NEO in the previous year. The Boeing 737 MAX

was certified by the Federal Aviation Administration (FAA) in 2017, which is two years be-

fore the grounding that preceded the two fatal crashes. The causes of the accident have been

attributed to design failures in incorporating the new and more efficient engines. These new

engines needed to be installed much further forward on the aircraft wing and higher off the

ground, which disrupted the 737 MAX’s aerodynamic design, introducing instability (Flight

Global, 2017; Forbes, 2019).6 To solve this Boeing introduced a new flight control feature

called the Maneuvering Characteristics Augmentation System (MCAS) which operated au-

tonomously, without requiring inputs from the pilot. These measures were implemented

to minimise pilot training requirements. Unfortunately, these safety compromises were not

adequately communicated to pilots and were even omitted from the pilot handbook.

Furthermore, the FAA’s safety analysis of the MCAS that was conducted during the

MAX’s certification had some flaws. The reason is that they relied heavily on Boeing’s test

flights, which showed that the MCAS were effective, even in extreme situations. However,

they failed to detect that the MCAS had a significant flaw that made it prone to failure:

it relied on a single angle of attack (AoA) sensor, which could cause it to misinterpret the

aircraft’s orientation and activate incorrectly. Appendix C provides a detailed description of

these issues that led to the two fatal MAX crashes.

III Short-Term Disruptions and Optimal Pricing
It is essential to distinguish between the short-term adjustment mechanisms that are the

focus of this paper and the long-term adjustment, which goes beyond the scope of this study.

In the long term, there would be adjustments in the extensive margin through entry and exit

5Among these early adopters of the MAX, Alaska Airlines did not operate this aircraft type during our
sample period. Table ?? in the appendix provides an overview of the fleet compositions of all major US
carriers in our sample.

6Former Boeing CFO James Bell disclosed in the company’s Q2 2011 earnings call that the development
cost of the 737 MAX was estimated to be only 10-15% of the cost of a new aircraft development program,
which was estimated to be around $10-12 billion at that time (Flight Global, 2012).
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(Berry and Jia, 2010), changes in the network structure or in the leasing contracts, which

are long-term arrangements. Additionally, our data reveals no noticeable deviations from

the existing trend in the number of new routes (see Figure A2 in the Appendix).

The effect of capacity (K) on prices can be understood as operating through the firms’

cost function, C(K). In Ryan (2012), and subsequently in Jeon (2022), capacity curves are

modelled as increasing non-linearly, making costs follow a “hockey stick” shape with respect

to output. Goldberg (1995) model trade quotas that restrict capacity as Lagrange multipliers.

However, firm-specific multipliers can not be identified in her study, and they are assumed to

be identical across firms. In this setting, we show that these constraints vary substantially

across firm. The closest representation of capacity is Williams, 2022, who models how

seating capacity affects flight ticket prices for different passengers. When modelling flight

prices, there is a more explicit physical capacity limitation, since each aircraft has a fixed

number of seats available. For modelling the fleet, the limit is more diffuse, since the firm can

always purchase capacity in the market, although the price will explode as capacity becomes

scarce. Additionally, the increasing transaction costs associated to purchasing additional

capacity effectively act as constraints for acquiring unlimited units of capacity.

To incorporate capacity costs into the airline profit maximisation it is convenient to split

costs into two components. The first is cm, the marginal cost of serving an additional

passenger at a given capacity level in that market (m), which can be seen as a change in the

production function. For our purpose, we do not explicitly need to estimate the form of the

production function of the airlines as in Bet (2021). Still, it can be useful to imagine the

production function of an airline as a function of the capital (the fleet), the labour (pilots,

and other flight and administrative staff). The capital used, which is the aircraft model

used, affects the marginal costs through the different input requirements (mainly fuel), and

leads to different maintenance costs, which reflects part of the cost of capital. Therefore,

removing an airline model will generate a change in the fuel consumption of the aircraft

mix allocated to one route, which drives changes in cm. It is worth noting that changes in

the cost of labour would, in principle, also affect the cost. Still, these are unlikely to be

relevant in the short term, as airlines have little incentive to change their pilot composition

as a response to the grounding, and there are frictions to acquire and use new pilots or other

labour. Additionally, we assume that the fuel market is competitive and airlines are price

takers. As discussed in Bet (2021), jet fuel price is strongly correlated with oil prices, and

the fact that airlines often hedge against jet fuel prices provides additional support for the

hypothesis of limited bargaining power when ordering jet fuel. As illustrated in Figure 1 and

in Figure 2, the MAX stands out as the narrow-body aircraft with the highest fuel efficiency,

consuming 0.60 gallons per seat–100km (gps). As a comparison, the older Airbus 320 and
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Figure 2: Fuel consumption for the main aircraft models, in gallons and litres per 100km.
Source: Aircraft fuel economy, Wikipedia, and small-emitters tool from EUROCONTROL.
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Boeing 737 models respectively consume 0.69 (14% more) and 0.79 (32% more) gps than

the MAX. Although the Airbus 320 NEO has a similar fuel efficiency to the MAX, it has a

limited presence in the sample period, with only one affected carrier, American, operating

a single aircraft of this type. Other costs, such as storage costs, are fixed costs from the

grounding, but they do not affect the marginal cost of serving a passenger.

The second component of the cost comes from the cost of obtaining additional capacity,

K(qm). As it will be documented in the Results section through the DiD analysis, this

“capacity channel” is fundamental to explain pass-through rates vastly exceeding full pass-

through. In the aviation context, the main channel through which an airline can increase its

capacity is by using additional aircraft that were not being fully used before (idle capacity).

Replacing the disrupted capital with the idle capacity has implications for costs. Such

implications go beyond the change in the marginal cost that originates due to differences in

the fuel requirements of each aircraft, which can be understood as changes in the production

technology. We represent these other costs related to adjusting the capacity with ∂K(qm)
∂qm

.

As capacity is closer to some limitation (potentially related to the physical limits of idle

capacity), the opportunity (or shadow) cost of capacity rises, since each unit of capacity is

allocated to its more profitable use. The cost of adjusting the capacity can include fixed cost

changes such as (i) the cost from operating a higher level of capital (e.g. higher maintenance

costs, and administrative changes during the transition to operate a non-MAX model), or
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(ii) from potential labour adjustments that are related to a higher capacity.

While the latter are not relevant in this setting, they could be important in others with

a more flexible labour market. As a result, capacity constraints will generate an upward

sloping cost curve with respect to quantity due to the rising adjustment cost of increasing

capacity, and the optimal price (p⋆m) becomes,

p⋆m(qm) = cm +
∂K(qm)

∂qm
− qm

(
∂qm(pm)

∂pm

)−1

.

The markup term is represented by qm

(
∂qm(pm)

∂pm

)−1

. In this study, we use the DiD model

to recover the change in cm due to the grounding. We will show that the changes in cm

can explain the changes in prices reasonably well for some firms but are insufficient for

explaining the changes in prices that are experienced in the treated markets of Southwest.

Additionally, to be more precise and differentiate the markup changes from the capacity-

driven price increases, we provide estimates of the changes in markup in each market based

on a model following Berry (1994).

IV Data
To understand pricing decisions in the US airline industry after the grounding, we use

publicly accessible data on ticket fares from the DoT’s DB1B database that has been used

extensively in past research (Bontemps, Gualdani, and Remmy, 2023; Borenstein and Rose,

1994; Brueckner, Dyer, and Spiller, 1992; Dai, Liu, and Serfes, 2014; Gerardi and Shapiro,

2009). Our analysis focuses exclusively on economy class fares, as the carrier that was

most affected by the grounding (Southwest) offers only economy class seats, and economy

fares have been reported to be more reliable compared to the business class ones. Since

the fare data is available only quarterly, we conduct our analysis at that level, while using

the flight level information to compute the MAX utilisation rates. The utilisation rate of

the grounded aircraft (in terms of flight hours) is fundamental for our study since it is our

treatment intensity measure. This variable reflects the usage of the grounded aircraft by a

carrier in a market relative to the total fleet, and it is described in more detail in the section

containing the identification strategy. Therefore, our unit of analysis is the carrier, market

(unidirectional origin-destination airport pairs) and quarter year.

IV.A Data Sources

We combine data from several sources for our empirical analysis. Below is a brief descrip-

tion of these data sources.

Bureau of Transportation Statistics. Data on airline ticket prices was obtained

from the Airline Origin and Destination Survey (DB1B) database made publicly available
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by the Bureau of Transportation Statistics (BTS).7 DB1B is a 10 percent random sample of

domestic flight itineraries of all reporting US carriers in each quarter, and provides details

of ticket prices and coupon-specific information for each itinerary (origin, destination, and

all connecting airports).8 In addition to these, DB1B provides details of the ticketing and

operating carriers, origin and destination airports, fare class, as well as number of passengers

and coupons for each itinerary per quarter.

The OpenSky Network. Data on individual domestic flights by US carriers were ob-

tained from the OpenSky Network, which has been providing real-time access to air traffic

control (ATC) communications since early 2017. The OpenSky Network presents significant

improvements in coverage and reliability relative to the T100 Domestic Segment Database

maintained by the BTS that has been typically used in this literature to measure flight

activity. The T-100 contains information reported by carriers on aggregate statistics such

as number of enplaned passengers, available seat capacity, as well as scheduled and actual

departures performed. Table A2 compares flight hours grouped by aircraft type based on

the data from OpenSky’s direct tracking ADS-B system and the T-100 Domestic Segment

database. Opensky provides better coverage of commercial flight activity by at least 20%

relative to the T-100. Notably, the T-100 does not report any flight activity by MAX aircraft,

despite their entry into service with US carriers from mid-2017, which is a crucial require-

ment for our study. However, this limitation is addressed by our OpenSky sample, which

shows that US carriers flew a total of 37,700 hours using the MAX before its grounding in

March 2019.

OpenSky collects this data using a global network of low-cost surveillance receivers that

track the position transmitted by aircraft to ATC ground stations during flight. This posi-

tional information is made available via two types of surveillance systems, namely Mode S

and Automatic Dependent Surveillance–Broadcast (ADS-B). Under Mode S, receivers main-

tained by the OpenSky network continuously interrogate aircraft within their coverage area

spanning up to a radius of 600 km, and collect data transmitted back by the queried aircraft.

On the other hand, ADS-B is a satellite-based surveillance system under which the positional

information of an aircraft is broadcast autonomously every second by an onboard transmit-

ter over a publicly accessible radio frequency channel, which OpenSky captures through its

receiver network.9 Under either system, the positional information relayed back to Open-

7The data is publicly available at https://transtats.bts.gov/prezip/.
8A coupon represents a passenger’s itinerary and contains details of each flight segment of the passenger.
For example, a flight from New York (JFK) to Los Angeles (LAX) with a stopover in Chicago (ORD) will
consist of two coupons, JFK–ORD and ORD–LAX.

9Access to OpenSky data is subject to approval by the platform’s administrators. Although commercial
ADS-B data providers such as www.flightradar24.com and ADS-B Exchange exist, most of them provide
historical flight tracking data with several restrictions and up to the past year only.
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Sky contains details such as aircraft’s identification (permanent transponder ID known as

hexcode), current location (latitude/longitude), altitude, and velocity.

Flight tracking via Mode S and ADS-B is extremely accurate compared to conventional

radar technology, which is able to provide such information only once every 5 to 12 seconds

and is also much more expensive, erroneous, and cumbersome to operate. Under FAA regula-

tions, aircraft operating above 18,000 feet above mean sea level were required to have a Mode

S transponder. In recent times, these requirements have grown considerably stricter. Cur-

rently, any aircraft operating within US airspace must be fitted with an ADS-B transponder,

unless exempted by the FAA.10 While Mode S transmissions depend on selective interroga-

tion of aircraft by ground radars, ADS-B transmissions occur automatically without pilot

involvement. However, both these types of transmissions cannot be self-reported by carriers,

unlike the case with DB1B. Internet appendix B provides additional details on the real-time

flight tracking capabilities of the OpenSky network.

Aircraft Registries. We use aircraft identification details (hexcode) from the OpenSky

data to determine aircraft type and the historical fleet composition of individual carriers.

This exercise is a bit complicated as US carriers often use a combination of directly-owned

aircraft, typically registered with the FAA, and also lease aircraft registered in other coun-

tries for their flight operations.11 It is therefore difficult to identify the entire historical fleet

composition of a carrier by simply querying the FAA’s aircraft registry. We overcome this

challenge by obtaining aircraft lookup tables from the aviation portals www.airframes.org

and www.planespotters.net. These lookup tables contain the most comprehensive in-

formation on global aircraft registries, and are continuously updated using crowdsourced

information from a global network of aviation enthusiasts. We query the hexcode of each

aircraft against these lookup tables to obtain its national registration ID and aircraft type.

These are cross-checked with the aircraft registries of different countries, including the FAA,

wherever possible, to remove any outstanding errors. We then manually collect specifica-

tions of each aircraft type from manufacturer websites and marketing brochures. These

specifications include details such as the fuel consumed (Fuel Burn, expressed in gallons

per seat-km) and cruising speed (Cruise Speed, expressed in km per hour) of the aircraft

type.

10See www.faa.gov/air_traffic/technology/equipadsb/ for more information on possible exemptions
from ADS-B broadcasting. According to Flightradar24, just 3% of aircraft are currently exempt from
mandatory ADS-B transmission requirements of the FAA.

11While an aircraft’s hexcode is unique and does not change after issuance, the aircraft must then be
registered with the aviation regulator of a country before it can commence flight operations. Aircraft
registered with US FAA receive a six-digit registration code known as N-Number. Other countries follow
their own registration schemes. For example, N8767M is the FAA-assigned registration number of a Boeing
737 MAX aircraft operated by Southwest Airlines that has a permanent assigned hexcode AC0FF9.

11
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Energy Information Agency. Data on jet fuel prices were sourced from the Energy

Information Agency (EIA). These are available daily on a spot price basis from the EIA

website.12 We use this data to compute the unit fuel cost borne by carriers to operate a

given aircraft type per seat-km, see the variable construction section for more details.

IV.B Sample Construction

Aircraft models covered . For simplicity, we group the aircraft listed in our sample into

six broad types based on similarities in their costs, overall size, flying range, and seating ca-

pacity. Narrow-body aircraft, which includes single aisle, medium- to long-range aircraft that

can seat between 130 and 200 passengers and have a flying range of up to 7,130 kilometres.

We distinguish between four major categories based on manufacturer and fuel efficiency:

Boeing 737, Boeing 737 MAX, Airbus 320, and Airbus 320 NEO. The remaining two cat-

egories are Large aircraft and Small aircraft. Large aircraft includes wide-body, twin-aisle,

long-range aircraft that can seat between 200 to 440 passengers and have a flying range

of up to 16,000 kilometers (e.g. the Boeing 757/767/777/787 Dreamliner, and the Airbus

330/340/350 series).13 Small aircraft include single aisle, short-range aircraft that can seat

up to 120 passengers and have a flying range of up to 4,300 kilometres (e.g. Embraer 170/195

and Bombarder CRJ series)

Flights covered. Boeing commenced deliveries of the 737 MAX to flight operators in

May 2017. Thus many of the MAX flights made in 2017 were likely related to aircraft

deliveries and preparations for scheduled commercial flights by carriers. To avoid including

such non-scheduled flights involving the MAX, we excluded all observations involving flights

made during 2017 or before. We also excluded flights to and from the King County Airport

(ICAO code: KBFI) in Seattle, which is the primary airport used by Boeing for final aircraft

deliveries to carriers. Additionally, to ensure that the results are not affected by the fallout

from the COVID-19 pandemic, which severely curtailed air travel, we excluded the period

from January 2020 onwards from our analysis. As a result, our primary sample comprises

eight quarters ranging from 2018’Q1 to 2019’Q4.

Merging the price and utilisation data . To understand aircraft utilisation, we ag-

gregate the OpenSky flights data at the carrier–market–date level. We calculate the number

of flights and flight hours operated by each airline in each market per quarter across the six

aircraft types. This data is then merged with our primary sample, which includes quarterly

ticket fares and market characteristics derived from DB1B. Given that the DB1B database

constitutes a 10 percent random sample of domestic tickets issued by carriers, merging the

12Data on jet fuel spot prices is from www.eia.gov/dnav/pet/hist/eer_epjk_pf4_rgc_dpgD.htm
13We do not consider the Airbus A380 in our analysis since US carriers did not operate this aircraft for
domestic flights during the sample period.
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OpenSky sample with it leads to a reduction in the markets that can be covered in this

study.

IV.C Main Variables Definition

The main variables used in our analysis are ticket fares, jet fuel consumption, and costs.

These are calculated at market–carrier–date level, which we detail as follows.

Date (t). Our primary sample covers the period from 2018’Q1 to 2019’Q4, as including

flights from 2020’Q1 onwards could confound our analysis with the unprecedented effects of

the COVID-19 pandemic on air travel. Therefore, we limit our analysis to flights recorded

before the pandemic. We further exclude flights before 2018 due to the likelihood that

many of the flights operated using the MAX in 2017 may have involved delivering aircraft

to individual carriers and preliminary flights made in preparation for scheduled commercial

operations, as shown in Figure A1. Due to the quarterly frequency of our sample, t refers to

a year quarter.

Carrier (c). The OpenSky sample covers 11 major US carriers, including both legacy

and low-cost carriers (LCCs). Legacy carriers include Alaska, American, Delta, Hawaiian,

and United airlines. The LCCs comprise Allegiant, Frontier, JetBlue, Southwest, Spirit, and

Sun Country airlines.

Market (m). We define a market as a unique unidirectional route serviced by a carrier be-

tween an origin and destination airport within the US.14 For instance, the Chicago–Houston

and Houston–Chicago routes operated by Delta Airlines are treated as distinct markets.

We consider co-located airports as a single airport if they are situated within the same

metropolitan statistical area (MSA) or within a distance of 25 miles of each other, since

such co-located airports are expected to serve a common local population.15 In every such

case, we substitute the name of the smaller airport with that of the larger one, determined

by the number of passengers handled by these airports between 2010 and 2016. We only

focus on direct flights comprising both non-stop flights and flights involving a stop but no

change of aircraft. The rationale behind this decision stems from the fact that the T-100

Domestic Segment Database reports aggregate details on enplaned passengers, seat capac-

ity, and flight departures at the non-stop segment level, which are most compatible with the

DB1B data on ticket fares for direct flights only Gerardi and Shapiro (2009). We exclude

markets with fewer than 10,000 inhabitants as smaller markets have demand patterns and

14It is worth noting that the definition of a carrier market varies substantially across prior literature. Our
definition aligns closely with Berry and Jia (2010) and Bontemps, Remmy, and Wei (2022) as we use
unidirectional origin-destination airport pairs.

15For instance, flights departing from or arriving into Chicago O’Hare (ORD) and Chicago Midway (MDW)
airports are considered to both serve the greater Chicago metropolitan area, and both are hence treated
as a single airport.
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operational costs that differ significantly from larger markets, which can make it difficult

to obtain consistent estimates.16 The exclusion of smaller markets leaves us with a sample

covering 3,137 markets.

Ticket fare. Fares refer to the ticket prices reported by DB1B, which encompass a wide

range of itineraries and fares charged by a carrier within the economy fare class and are

reported at a quarterly frequency (carrier–market–date average economy fares). Following

Gerardi and Shapiro (2009) and our definition of a market, we define a ticket fare as the

price charged for a one-way trip. The prices of round-trip itineraries are divided by two.

Tickets priced below $20 are excluded, as these are typically issued to frequent passengers.

Furthermore, we only conduct our analysis on economy-class fares. We exclude business class

fares from our analysis due to significant fluctuations in the market-level composition of seat

offerings within this fare class among carriers, and data quality issues. As depicted in Figure

A2, legacy carriers such as American, United, and Delta (which never operated a MAX)

have been reducing their business class offerings on various markets prior to the grounding.

In contrast, low-cost carriers like Southwest, Spirit, and Frontier do not provide business

class seats. We estimate the average fare and various percentiles of the fare distribution

at the carrier–market–year quarter level, exploiting the fact that the DB1B data contains

multiple itineraries and fares for the same flight by the same carrier at a quarterly frequency.

The average fare is the mean price that passengers in a given fare class pay for a scheduled

flight operated by a specific carrier between an origin and destination airports in a particular

quarter within the US. The variation in fares across itineraries occurs because passengers

traveling on the same flight may pay different fares if the airline changes the price in the

days leading up to the departure, and further because the carrier may set different prices

within the same quarter for passengers flying on different flights in the same fare class. We

assume that every passenger in a fare class pays the average fare for that class and compute

the 10th, 25th, 50th, 75th, and 90th percentiles at the carrier–market–year quarter level.

Jet fuel consumption and costs. Unlike unobservable service-related costs, fuel costs

represent a tangible component of carriers’ marginal costs that we can accurately observe.

This is achievable through our unique dataset on individual flights, which includes compre-

hensive details of aircraft type and flight distances/durations. The first key variable in this

context is the Fuel Burn rate, which represent the fuel consumed during the flight by an air-

craft per passenger and unit distance traveled. It is expressed in units of gallons per seat per

100 kilometers (gps). To compute Fuel Burn, we first obtain details of jet fuel consumption

per 100 kilometers at cruising altitude from the official websites of aircraft manufacturers for

16Berry and Jia (2010) notes that smaller airports account for less than 20% of total passengers and 33% of
all flights, supporting our decision to exclude smaller markets.
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each aircraft type in our study.17 To convert this metric on a per-passenger basis, we scale it

by the expected number of passengers on the flight (given as the number of seats available

for the specific aircraft model times the average load factor of the corresponding carrier in

that market and quarter available from the T-100 Domestic Segment Database).

Next, we calculate Fuel Cost, representing the unit fuel expense incurred per flight based

on the aircraft type used. This metric is expressed in US dollars per seat per 100 kilometers

and is derived by multiplying Fuel Burn and the prevailing spot price of jet fuel.18 We

operate on the assumption that carriers face similar marginal costs for operating aircraft

type k, such that both Fuel Burn and Fuel Cost remain constant for each such type at any

given time.19

IV.D Descriptive Statistics on Capacity Utilisation

Usage of the fleet. Each airline follows different strategies in terms of fleet diversifi-

cation, as illustrated in Figure A4. Since each aircraft model has a different operating cost

at a given capacity, we can write cost curves that resemble the dispatch curves used for

analysing the electricity market. As discussed in Section III, when firms are far from the

capacity constraint (i.e., increasing capacity is not costly), then changes in cm will mainly

reflect changes in technology. In contrast, when the capacity adjustment cost increases,

then the cost increase will also reflect the opportunity cost (or shadow price) of adjusting

the capacity. Using our detailed data on fleet utilisation shows the costs of operating with

different capital inputs (aircraft models), which can be interpreted as cost curves.

Impact of the grounding on flight activity. Figure A1 in the internet appendix

presents the total number of flights and flight hours by carriers over time, categorised by the

six distinct aircraft categories. There were no significant changes in aggregate flight volume

or hours following the MAX grounding among five of the six aircraft types.

Short-term frictions to replace the disrupted capital inputs. Acquiring new

aircraft takes time, and only American Airlines could expand its capacity after the grounding.

It received some Airbus 320 that had been ordered long before this event. The airlines had to

replace the grounded model by increasing the intensity of usage of their existing idle fleet. A

fundamental feature of these aircraft used for replacement is that they are less fuel-efficient

compared to the MAX. Figure 3 shows the fuel burn by each of the aircraft models in the

fleet, ordered from most efficient to least efficient.

17The estimation of Fuel Burn excludes fuel consumption during takeoff and landing.
18Fuel Burn values are expressed in gallons, which are the units in which the EIA reports jet fuel prices.
19Note that ”seat” refers to each available seat within an aircraft as reported by the manufacturers. Since
passenger load factors among US carriers are very high at around 81±11% (See Table 2), using actual
number of enplaned passengers in place of the total available seat capacity is expected to yields similar
results.
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Figure 3: Capacity curves approximation based on the observed aircraft. NOTE. – Snapshot of
the fleet of Boeing 737 MAX operating carriers in Q3 2018. The y-axis contains the fuel burn rate in liters
per 100km, the x-axis contains the number of aircraft that were used in any route during that period.
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A broader representation of capacity across time can be found in Figure A3(a), which

shows that airlines make different choices of fleet. While the focus of this paper is not on

understanding differences in fleet composition, our data show that full-service and low-cost

carriers differ in their risk management strategies, which impact the availability of idle capac-

ity. Legacy full-service carriers such as American, Delta, and United diversify they fleet by

employing a wide range of aircraft made by different manufacturers, such as Boeing, Airbus,

and Embraer, and variants of the same aircraft type, such as the Boeing 737 600/700/800/900

series, depending on distance, fuel, seating capacity, and other requirements. In contrast,

LCCs typically use aircraft from a single manufacturer to minimise the operating costs re-

lated to maintenance and pilot training. Thus, they benefit from economies of scale at the

cost of being exposed to higher costs in the event of aircraft failure. For example, South-

west exclusively uses the Boeing 737 while Allegiant operates only the Airbus 320.20 LCCs

have played an important role in the expansion of the US airline industry in recent decades

(Chandra and Lederman, 2018), and they have actively incorporated the latest narrow-body

aircraft into their fleets, such as the Boeing 737 MAX and Airbus A320 NEO. These models

are attractive as they represent the most fuel-efficient aircraft models available, and they

20See Table ?? in the online appendix for a detailed overview of the various types of aircraft operated by US
carriers.
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are cheaper to operate in terms of pilot training, maintenance, and crew service costs per

passenger (Camilleri, 2018).

V Results
Our empirical analysis focuses on the impact on various market outcomes of the FAA

grounding of MAX aircraft. We begin by examining whether the grounding led to a signif-

icant change in ticket fares within carrier-markets where the MAX had been in operation

during the previous period. Henceforth, these carrier-market combinations are referred to

as the treated group, in comparison to other carrier-markets where the MAX had never

been used for flight operations (the control group). Second, we quantify the effect of the

grounding on fuel costs by comparing the treatment and control group. Third, we examine

the heterogeneity in treatment effects, showing mainly that accounting for direct competitors

operating the MAX does not change our main findings. Lastly, we assess the degree to which

carriers passed on the fuel cost increases they faced due to the grounding on to their ticket

fares.

V.A Treatment Definition

To analyze these outcomes, we adopt a difference-in-differences (DiD) approach in which

the treatment variable is continuous and it reflects the utilization intensity of the MAX , i.e.

the percentage of MAX-operated flight hours relative to the flight hours with other aircraft

types within a carrier’s fleet in that route, and during a given quarter before the grounding.

Specifically, our treatment intensity is defined at the carrier-market-quarter level. According

to this definition, the treatment intensity for a carrier–market pair can range from 0 (during

quarters when the carrier never operated the MAX) to 1 (during quarters when the carrier

solely employed MAX aircraft for all its flights in that market). In order to accommodate

seasonal fluctuations in demand from carrier’s decisions on which markets to serve in each

quarter, the treatment intensity is estimated on a quarterly basis.21 In addition to using this

measure for our analysis, we perform additional robustness checks to ascertain its validity

by employing a binary variant of the instrument and measuring treatment intensity as the

percentage of MAX-operated flights by a carrier in a specific market throughout the entire

pre-grounding period.

21Specifically, the treatment intensity calculated for a given carrier-market-quarter combination during the
pre-grounding period (we use all of 2018) is the treatment intensity for the same carrier-market of that
same quarter in the post-grounding period. For example, the treatment intensity for the carrier-market
Boston-Chicago determined during 2018’Q2 (pre-grounding period) also serves as the treatment intensity
for the same carrier-market combination in 2019’Q2 (post-grounding period).
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Table 1: Average treatment intensities in all of the pre-grounding quarters

NOTE. – This table shows the average treatment intensities during the pre-grounding period for each carrier
affected by the grounding. “Conditional” represents the average treatment intensities across carrier-market
combinations that belong to the treated group before, i.e. the average utilisation of the MAX for those that
were using it. “Unconditional” represents the flight hours of the MAX relative to all the flights in any market
of that carrier.

Full sample
(OpenSky)

Matched sample
(OpenSky & DB1B)

Carrier American United Southwest American United Southwest

Conditional 21% 17% 10% 12% 11% 7%

Unconditional 0.6% 0.6% 4.8% 0.7% 0.9% 4.2%

It is important to clarify that the treatment intensity can be computed from either the full

sample, encompassing all markets covered by OpenSky but with no prices, or the matched

sample between OpenSky and the price data from the DB1B database, as reflected in A3. The

latter covers only a subset of the markets included in the full sample as explained in Section

IV.B. We find that the average utilization of the MAX (the treatment intensity) among

carrier-market combinations that were using the MAX before the grounding is 11% in the

full sample, and 7% in the matched sample. Since our goal is to understand the economic

impact of the grounding across all domestic airline markets (and the price data from the

DB1B survey is representative of the whole domestic market), we will use the conditional

average treatment intensities from the full sample to scale our regression estimates. More

details on how the treatment intensities for both samples varies split by carrier can be found

in Table A3. The table shows that American and United concentrated the usage of the MAX

in fewer markets than Southwest, but they also used the MAX more intensively (around 20%

of the flights in those markets). In contrast, the usage of Southwest was, on average, around

10% of the flights in the markets in which the aircraft was being operated but the aircraft

was used in more markets, representing roughly 5% of all the flight hours in all the markets.

For a more detailed split of the treatment intensity across each of the pre-grounding years

see Table A3 in the internet Appendix.

V.B Summary Statistics

Table 2 provides a comprehensive overview of the characteristics pertaining to both the

treated and control carrier-market groups, as defined in Section V.A, during the period prior

to the grounding. Since most of the observations in the sample belong to the control group,

the mean of the full sample strongly resembles the control group. In Panel A, we present

descriptive statistics related to the market characteristics of both treatment and control. The

comparison reveals similar flight distances, number of operating carriers, and load factors

across both groups.
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Table 2: Summary statistics. NOTE. – This table shows market, fuel and fares at the firm–market
level averaged during the period prior to the grounding and by treatment status, as defined in Section V.A.

Treated
Carrier–Markets

Control
Carrier–Markets

All
Carrier–Markets

Mean SD Mean SD Mean SD
Panel A. Market Characteristics
Distance (1000’km) 1.04 0.57 1.11 0.66 1.10 0.64
Number of Carriers 3.08 1.48 2.80 1.55 2.85 1.54
Load Factor (%) 82.18 8.42 81.04 11.06 81.24 10.64
Hub Market (%) 46.97 49.92 57.72 49.40 55.79 49.66
Monopoly Market (%) 13.28 33.94 25.78 43.74 23.54 42.42
Duopoly Market (%) 25.96 43.85 22.13 41.51 22.81 41.96

Panel B. Fuel Consumption
Fuel Burn per Seat-100km (gallons) 0.70 0.02 0.77 0.10 0.76 0.10
Fuel Cost per Seat-100km ($) 1.39 0.10 1.53 0.23 1.51 0.21

Panel C. Economy Fares ($)
Average Fare 215.56 34.18 214.04 104.79 214.31 96.03
Fare 10pct 96.22 33.74 101.72 75.61 100.74 70.01
Fare 25pct 145.08 26.23 139.32 83.15 140.35 76.17
Fare 50pct 194.34 30.38 189.90 97.79 190.70 89.54
Fare 75pct 267.61 39.78 262.43 121.91 263.36 111.74
Fare 90pct 365.91 56.63 356.34 160.61 358.06 147.51

Panel B illustrates the unit fuel consumption rates and related fuel costs incurred by

carriers within the treatment and control groups. As expected, in the pre-treatment period

the unit fuel consumption (cost) in the treated group is lower on average by 0.07 gallons

($0.14) compared to the control group. This difference can be attributed, at least partially, to

the use of the fuel-efficient MAX. Panel C provides descriptive statistics for average fares and

various fare percentiles, expressed in nominal US dollars. On average, these fare measures

are relatively similar in both the treated and control groups at around $215.

V.C Grounding Impact on Fares: Differences in Differences

To estimate the overall effects of the MAX grounding on ticket fares, we use the following

difference-in-differences (DiD) specification:

pcmt = β1Treatedcmt + β2Treatedcmt × PostBant + β3Xcmt + γct + ϵcmt (1)

where m denotes a market, t the quarter, and c the carrier. pcmt represents an outcome vari-

able related to the ticket fares set by carriers. Our baseline outcome measure is the average

economy class fare charged by carrier c in market m during time t. In subsequent analysis,

we examine the effects of the grounding on specific percentiles from this fare distribution.

Treatedcmt represents the treatment intensity among carriers affected by the grounding in
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specific markets and time, as defined in Section V.A. PostBant is a dummy variable that

takes the value 1 for quarters following the grounding (i.e., starting from 2019’Q2) and 0

otherwise. We do not include PostBant in the specification as it is subsumed by the time

fixed effects. The coefficient β2 captures the average change in the fare outcome within

treated carrier-markets during the post-grounding period. Specifically, β2 is the average

change in the fare outcome post-grounding under full treatment for a carrier that operated

all its flights in a given market using the MAX before the ban was implemented.

The vectorXcmt represents a set of time-varying controls that exhibit variation across both

carriers and markets. This includes the average quarterly Load Factor estimated from the

monthly T-100 Domestic Segment Database for each carrier-market segment, Distance, ex-

pressed per 1000 kilometers, between the origin and destination airports, and a Hub Market

dummy equal to 1 if the market is part of the carrier’s hub-and-spoke network.22 The distance

of a market significantly influences a carrier’s marginal costs by impacting fuel consumption,

in-flight passenger service needs, and aircraft maintenance requirements. Additionally, air-

ports functioning as transfer hubs for the carrier’s passengers tend to have lower marginal

costs. This is primarily due to economies of scale, including reduced fixed costs associated

with aircraft operations (such as parking/landing/hangar fees, insurance costs, and adminis-

trative expenses related to management, ticketing, and lounge facilities). Moreover, average

connection times between flights are minimized, and variable costs related to aircraft main-

tenance and ground staff salaries are optimized at these hubs. However, stronger dominance

by the carrier at its hub(s) against local competition might encourage it to mark up fares

above cost (Borenstein, 1989).

All our specifications incorporate various fixed effects to account for potentially unobserv-

able factors that may confound the analysis. We include carrier × time fixed effects γct to

absorb unobservable carrier-specific shocks that collectively vary across all its active markets

over time. These fixed effects account for time-varying changes in carrier attributes such as

managerial skill, fleet composition, and airport slot availability. They also help to address

carrier entry and exit patterns that impact market composition, which are driven by seasonal

variations in demand. Lastly, we incorporate market fixed effects λm in some of our specifica-

tions. One motivation to include market fixed effects would be to capture unobserved factors,

specific to each market and constant over time. However, it would comes at a large cost of

restricting the cross sectional (across markets) variation from our sample, and importantly, it

22Load factors are commonly used in the literature to capture efficiencies in carriers’ demand forecasting
and capacity utilization (Aryal, Murry, and Williams, 2023; Berry and Jia, 2010). However, they are
endogenous, depending on carriers’ fleet choices. We find that their inclusion as controls in our regressions
does not significantly alter our treatment effect estimates. Additionally, we account for other demand
shifters affecting each carrier over time with carrier×time fixed effects.
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captures endogenous strategic responses from the carriers operating in the same market. In

other words, it is equivalent to comparing each of the treated carrier-market observation af-

ter the grounding with its own pre-grounding prices, as well as with the pre-grounding prices

of the other unaffected competing carriers operating in the same market. Nonetheless, the

interest for providing this specification is that it allows quantifying the additional increase in

fares (in the treated carrier-markets pairs) relative to the competitors in that market. The

results provide evidence of an important role of strategic interactions. It is worth noting that

while in the regression results without market fixed effects, the control group also contains

the observations from the same market as the treated, these observations represent less than

5% of the total observations in the control group. However, for interested readers, we also

provide a complete assessment of the results, completely separating the observations that

are from the same market, forming an additional treatment. These results show no sizeable

changes in the treatment effect, and they can be found in Table A9 in the Appendix.23

Following Abadie et al. (2023), we cluster the standard errors by market and carrier. This

approach is justified for two reasons. First due to the sampling procedure, our matched

OpenSky-DB1B/T-100 sample covers only a subset of all operational airline markets within

the US. Second, due to the assignment, only some carriers operated the grounded aircraft,

and correlation across markets is expected. To make our study representative of consumer

choices, each observation in our sample is weighted by the number of enplaned passengers.

The weighting scheme aims to make the treatment effect more representative of the size of

the markets.

Table 3 reports our baseline estimates from Equation (1) for average ticket fares. Through-

out the paper, we scale the treatment indicator to one when all pre-grounding flights in a

carrier–market were operated with the MAX; we refer to this counterfactual as full treatment

intensity. Panel (a) treats exposure as homogeneous, whereas panel (b) allows the effect to

vary by carrier, revealing substantial heterogeneity. We show how the gradual inclusion of

fixed effects and controls affects the treatment effect, distance and hub are important controls

whereas including or excluding load factor makes no significant changes to the treatment es-

timates. Comparing Panel B to Panel A highlights the importance of disaggregating the

analysis, as the effects of the grounding vary substantially across carriers. Panel B provides

several insights that support the use of log-transformed fares and the inclusion of controls

23The true average treatment effect is not significantly underestimated when competitors are included in the
treatment compared to when they are excluded, as in Table A9 in the Appendix. The main regression
tables show that some of the carriers in the control group strategically increased their prices in response
to the price increase of the carriers in the treated group (in that same market). However, when excluding
those competing carriers from the control group, the results are almost identical because these competing
carriers represent a small part of all the observations in the control group. The treatment effect is slightly
higher, but the magnitude of the increase is very small relative to the size of the treatment (less than 10%)
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Table 3: Impact of the grounding on average ticket fares. NOTE. – OLS estimates comparing average
economy fares of treated and control carrier-markets, based on Equation (1). Separate estimates are provided with Mean
Fare and Log(Mean Fare) as dependent variables. Panel (a) shows the baseline regression estimates. Panel (b) the regression
estimates with treatment intensities disaggregated by carrier. Standard errors (in parenthesis) are clustered by carrier and
market. Significance levels 1%, 5%, 10% correspond to ***, **, *.

Panel (a): Baseline estimates

Dependent Variables: Mean Fare Log(Mean Fare)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Treated × PostBan 23.6∗∗∗ 11.8 16.8∗∗∗ 8.10∗ 0.107∗∗∗ 0.062∗∗ 0.084∗∗∗ 0.043∗∗∗

(7.11) (7.19) (5.76) (4.73) (0.027) (0.026) (0.021) (0.016)

Treated 23.7 26.4 -26.6∗∗∗ -13.9∗∗ 0.141∗∗ 0.154∗∗ -0.057∗∗ -0.043

(17.1) (17.8) (6.84) (6.74) (0.072) (0.075) (0.028) (0.029)

Load Factor 10.7 0.165∗∗∗

(9.84) (0.048)

Distance (1000 km) 44.3∗∗∗ 0.161∗∗∗

(1.29) (0.004)

Hub Route 10.6∗∗∗ 0.046∗∗∗

(1.62) (0.008)

Year-Quarter x Carrier FE ✓ ✓ ✓ ✓ ✓ ✓

Market FE ✓ ✓

Mean Fare 240.6 240.6 240.6 240.6 5.4 5.4 5.4 5.4

Observations 28,320 28,320 28,320 28,320 28,320 28,320 28,320 28,320

R2 0.69 0.69 0.84 0.93 0.80 0.80 0.89 0.95

Panel (b): Treatment by carrier

Dependent Variables: Mean Fare Log(Mean Fare)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Treated × PostBan × Southwest 34.8∗∗∗ 38.2∗∗ 41.2∗∗∗ 19.9∗∗∗ 0.181∗∗∗ 0.161∗∗ 0.173∗∗∗ 0.077∗∗∗

(10.8) (14.8) (8.09) (5.02) (0.049) (0.069) (0.039) (0.022)

Treated × PostBan × United 29.5∗ -28.0 -8.68 -2.88 0.094∗ -0.069 0.004 0.021

(17.0) (21.8) (16.5) (14.0) (0.052) (0.062) (0.045) (0.038)

Treated × PostBan × American -7.38 9.54 8.40 4.41 -0.038∗∗ 0.036 0.041∗∗ 0.022

(5.04) (6.09) (5.65) (5.48) (0.019) (0.023) (0.021) (0.021)

Treated × Southwest 113.4∗∗∗ 114.5∗∗∗ -30.1∗∗ -25.5∗∗∗ 0.549∗∗∗ 0.568∗∗∗ -0.005 -0.052∗

(22.5) (20.9) (11.8) (7.65) (0.112) (0.106) (0.053) (0.029)

Treated × United -5.85 6.56 -7.31 -5.01 -0.003 0.028 -0.026 -0.010

(26.6) (26.1) (16.9) (8.07) (0.087) (0.086) (0.056) (0.029)

Treated × American -42.9∗∗∗ -47.9∗∗∗ -36.5∗∗∗ -8.19 -0.151∗∗∗ -0.174∗∗∗ -0.130∗∗∗ -0.055

(14.8) (14.9) (9.78) (15.3) (0.055) (0.056) (0.039) (0.067)

Controls ✓ ✓

Year-Quarter x Carrier FE ✓ ✓ ✓ ✓ ✓ ✓

Market FE ✓ ✓

Mean Fare 240.6 240.6 240.6 240.6 5.4 5.4 5.4 5.4

Observations 28,320 28,320 28,320 28,320 28,320 28,320 28,320 28,320

R2 0.69 0.70 0.84 0.93 0.80 0.81 0.89 0.95

and fixed effects to construct a similar control group. Regarding the treatment effect of the

grounding it suggests that it led to sizable fare increases—up to 17% for Southwest on routes
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that would have been exclusively operated by grounded aircraft, and approximately 4% for

American.

In addition to measuring the treatment effect, several conclusions can be drawn on the

control and treatment group fares Table 3. First, the inclusion of year and carrier fixed

effects—whether separately (models 1 and 5) or jointly (models 2 and 6)—substantially

alters the estimated treatment effects, as well as the magnitude and sign of the pre-treatment

fare differentials between treated and control markets. In several specifications, the sign of

the pre-treatment coefficient reverses, underscoring the importance of accounting for firm-

date-specific trends While models 1 and 5 help assess changes in fares relative to broader

market trends, specifications that include carrier-by-date fixed effects yield a more refined

comparison: fare differences are then measured relative to the same carrier’s fares on other

routes on the same date. Further, adding observable controls (models 3 and 7) markedly

affects both the magnitude and statistical significance of the estimates, generally reducing

the gap between treated and control markets.

The divergence in results between models using fares in levels and those using log-transformed

fares points to heterogeneity across the fare distribution. Specifically, fare differentials in

treated markets appear to be driven by relatively higher prices at the top end of the distri-

bution. That is, absolute fare differences are more pronounced among the most expensive

tickets. This distinction becomes clearer when comparing model 3 (levels) and model 7 (logs):

after logging fares, which reduces the influence of extreme values, the treated and control

groups appear more comparable. For Southwest and United in particular, the treated routes

had substantially lower pre-grounding fares than control routes, especially at the upper end

of the distribution, as indicated by the large negative coefficients in columns 1–3. As a result,

when fares are measured in levels, treatment effects tend to show lower average prices for

treated routes. In contrast, for American, the fare differences in the treatment group are

more pronounced in the higher percentiles, with initial fare gaps of up to 13%, suggesting a

different pattern of heterogeneity in response to the grounding.

To gauge the magnitude of the grounding on fares, it is most informative to evaluate the

coefficient at the mean treatment intensity—11 percent (see Section V.A). At this average

exposure, fares in treated carrier–markets rose by $1.85 relative to the control group (model

2). In logarithms, the estimate in model 7 implies a 0.84 percent increase in mean fares.

Robustness exercises using alternative instruments yield comparable results although with

lower magnitude. First, with a binary indicator equal to one for carrier–markets with any

pre-grounding MAX exposure and zero otherwise; second, with treatment intensity defined

as the share of MAX -operated flights over the entire pre-grounding period. Full results

appear in Tables A7 and A8 of the online appendix.
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We also run regressions using Equation (1) with the inclusion of market fixed effects to

analyze mean ticket fares. Models 4 and 8 present the corresponding results for Mean Fare

and Log(Mean Fare) as dependent variables. Both models reveal a weaker treatment effect

in economic terms when accounting for unobserved market differences. However, many

markets in the sample are monopolies or duopolies (refer to Table 2), implying that including

market fixed effects might absorb the much needed variation to estimate the full treatment

effect. We consider this issue minor since the Treated × PostBan coefficients in both models

remain highly statistically significant, suggesting a substantial post-grounding fare increase

in the treatment group. We consider this issue minor since the Treated × PostBan term

remains statistically significant in both models, implying a substantial post-grounding fare

increase in the treatment group.

In Section V.E we provide a decomposition of fares by deciles, which allows to explore

the substantial differences in the price increase at the various fare percentiles, which are

important for understanding the heterogeneity in the impact on prices of the grounding.

Coefficients of the control variables in panel (a) reveal that average fares increase with

distance, driven mainly by corresponding fluctuations in fuel costs and other service expenses

linked to longer flight durations. Additionally, markets characterized by higher load factors,

signifying high passenger demand, also tend to have higher fares as they are closer to the

capacity constraint. Fares are also higher on average in markets that feature an airport

serving as a hub for the carrier, possibly because the carrier is insulated from competition

in such strongholds (Borenstein, 1989).

Our next objective is to analyze how each affected carrier responded, on average, to the

grounding by changing their respective fares. For this purpose, we run regressions using a

modified version of Equation 1, with Treated decomposed as c for each impacted carrier c.

This results in three Treatedc terms and three Treatedc × PostBan terms in the regression

specifications, as shown in panel (b) of Table 3. The findings reveal significant variability

in how impacted carriers adjusted their fares, on average, within treated markets post-

grounding. Notably, Southwest had the most substantial average fare increase, at $4.12
(1.7% in relative terms) under its respective average treatment intensity level. In contrast,

American and United, the other two affected carriers, did not exhibit an apparent average fare

increase in response to the grounding. Individual carriers may however exhibit differential

responses in setting fares following the grounding that are not captured by average fares.

We investigate whether this is indeed the case by examining changes within the entire fare

distributions of individual carrier-markets in Section V.E.
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V.D Grounding Impact on Fares: Event Study

We conduct an event study to further assess whether the fares in our control and treatment

groups statistically differed before the grounding. As a result, the variable that denoted

the period following the grounding (PostBan) is discretised into eight distinct year-quarter

dummies and used to estimate whether there are significant differences in the fares between

the treatment and control groups. The specification used is as follows:

pcmt = β1Treatedcmt + β2Treatedcmt × t

+ β3Xcmt + γct + ϵcmt

(2)

where t is a vector of year-quarter dummies. The other terms in the equation are as described

in Section V.C. Panel (a) of Figure A5 plots the predicted mean fares between the control

and treated groups with treatment intensity set at the full sample mean of 11% as outlined

in Section V.A. We find evidence supporting parallel pre-trends in average fares between the

treated and control groups before the grounding event, followed by a pronounced divergence

thereafter. In the post-grounding period, fares in the treated group rise significantly relative

to those in the control group, suggesting a causal impact of the grounding. This effect is most

pronounced in the first quarter following the grounding, during which the relative increase

in fares is particularly salient. We further employ an event study model to investigate the

dynamic effects surrounding the treatment. The estimated differences between the treated

and control groups over the sample duration are graphically shown in panel (b) of Figure

A5. The event study accounts for carrier, quarter, and carrier × quarter fixed effects. The

plot visually confirms the existence of a parallel trend prior to the grounding, and that the

treatment effects are evident only after the MAX grounding and persisted over the ensuing

period.

A prerequisite for the validity of our DiD design is that observations in the control group

remain unaffected by the treatment, which is formally known as the Stable Unit Treatment

Values Assumption (SUTVA). In our setting, the SUTVA would be violated if there were

a consistent rotation of aircraft of a specific type between the treated and control groups,

thereby introducing potentially confounding effects. We find that there are not substantial

changes in fuel efficiencies separately within the treated and control carrier-markets during

the periods before or after the grounding. Fuel efficiency is proxied in two ways by the

Fuel Burn in gps and Fuel Cost in US dollars, as defined in Section IV.C. For reference,

the MAX consumes 0.60 gps, which is similar to the 0.59 gps consumed by the Airbus 320

NEO, whereas the older Airbus 320 and Boeing 737 variants consume much more fuel at

0.69 gps (14% more than the MAX) and 0.79 gps (32% more than the MAX), respectively.

Table A5 presents the fuel efficiency comparisons between the treated and control groups,
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differentiating by individual carriers. The grounding led to substantial increments in av-

erage fuel burn rates within the treated groups of affected carriers, notably Southwest and

American. Contrastingly, no such changes are evident within their respective control groups.

Regarding unit fuel costs, there was a general decline across the control groups of all carri-

ers, predominantly due to the overall decline in fuel prices during the post-grounding period

(refer to Figure A6). However, despite the availability of cheaper jet fuel in the period af-

ter the grounding, a noteworthy increase in average unit fuel costs is observed within the

treated groups of all the affected carriers. The consistent fuel consumption rate observed

in the control group during the period surrounding the grounding indicates that there are

no discernible alterations in the allocation of aircraft across treatment and control markets.

However, these results are only descriptive, a causal interpretation of the grounding on fuel

costs can be found in Section V.F.

V.E Grounding Impact: Heterogeneity and Competition

Examining average carrier×market-level fares indicates whether ticket prices were im-

pacted by the grounding at a general level. However, this approach overlooks a well-

established fact in the literature that carriers strategically set different prices within the

same fare class across all their flights within a market. Fares also vary substantially de-

pending on the characteristics of each flight. For example, a long-haul flight has fewer

substitutes than a comparable short-haul flight that can be covered instead by travelling in

a car. Moreover, carriers tend to dynamically adjust prices for a given flight as the departure

date approaches (Chandra and Lederman, 2018; Gerardi and Shapiro, 2009). Thus, relying

solely on a single statistic, such as the average, presents limitations in capturing the full

range of price changes across diverse markets and time. We therefore adopt a more compre-

hensive approach and analyse changes within different percentiles of the fare distributions

for individual carrier-markets.

Table A6 shows the results for select percentiles of the distribution of economy fares set

by each carrier across their respective markets in each quarter. We construct fare percentiles

following the method introduced by Chetverikov, Larsen, and Palmer (2016), and later used

by Chandra and Lederman (2018), and run separate regressions on the logarithm of each

fare percentile as the dependent variable. In panel (a), the coefficient estimates for Treated

× PostBan suggest that the grounding had a differential impact on tickets at different points

along the economy fare distribution. Specifically, the grounding had the strongest influence

between the middle and upper sections of the economy fare distribution. A discernible fare

increase ranging from 7% to 11% is observed between the 25th and 90th percentiles under

full treatment intensity, or 0.77% and 1.21% at the average treatment intensity. Conversely,

there is no statistically significant effect observed at the lower end of the fare distribution,
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denoted by the 10th percentile.

In panel (a), we show the analysis with the treatment intensity disaggregated by carrier.

The observed rise in fares along the upper regions of the distribution subsequent to the

grounding varies across the impacted carriers. Notably, the fare increase is most pronounced

for Southwest, and is somewhat less and much more concentrated within the upper percentiles

in the case of American. However, there is no discernible impact across the various fare

percentiles for United. In summary, these findings suggest that at least two out of the

three affected carriers enacted price increases primarily targeting the upper sections of their

respective fare distributions, which comprise a relatively higher proportion of more price-

inelastic passengers. Our results thus far consistently highlight notable differences in fare-

related responses across carriers. For this reason, we reports results with the treatment

intensities disaggregated by carrier throughout the remainder of the paper.24

We next explore heterogeneity in the treatment effects by relating them to observable

market- and carrier×market-specific characteristics. The results are reported in Table A9 in

the Appendix. For each of these analyses, along with the standard results using the previ-

ously defined control group, we include a new variable, Direct Competitors, defined as the

percentage of flights by all competing carriers in a market that operated the MAX in that

market during the given quarter. Direct Competitors is a continuous variable reflecting the

fact that the grounding affected some markets more than others, as direct competitors oper-

ating a similar aircraft model in a given market are expected to respond more intensely when

a larger proportion of flights are grounded in that market and less so when fewer flights are af-

fected. The corresponding results in panel (a) show the interaction term Direct Competitors

× PostBan has a positive coefficient but is not very statistically significant, implying that

rival MAX -operating carriers did not differentially raise their fares post-grounding relative

to a treated carrier. Furthermore, the significance of the main treatment coefficients (disag-

gregated by carrier) remains unchanged upon including Direct Competitors, reinforcing our

main findings.

In panel (b) we assess whether a market is a monopoly served by a single carrier (Monopoly

Market). We define a Monopoly Market as one where a single carrier operated throughout

every quarter of 2018.25 Coefficients of the interaction term Treated × Monopoly Market

indicate that fares were generally higher on average in treated markets that were monopolies.

Despite an overall decline in average fares post-grounding across monopoly markets, there is

no clear evidence of a different increase in fares within treated monopoly markets, relative

24Figure A7 provides a visual depiction of these results for different fare percentiles.
25This criterion ensures that the variable captures only sustained monopoly markets, allowing us to observe
potentially distinct pricing strategies employed by sole carriers active in their markets compared to more
competitive markets.
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to the rest of markets with at least one competitor. In panel (c), we examine the short- and

long-term impacts of the grounding on average fares. Under average treatment intensity,

there is a significant uptick in average fares by about 1.45% in the immediate quarter post-

grounding (Q2’2019), which is nearly twice the average fare increase during the subsequent

two-quarters. Furthermore, the evidence indicates that fare increases by rival impacted

carriers in response to the grounding are also most pronounced in the short-term. Finally,

panel (d) presents results on the varying impact of the grounding by flight duration. The

findings reveal a more pronounced increase in average fares for long-haul markets (flights

exceeding an hour (≈800 kilometres in flight distance) compared to short-haul markets.

This discrepancy aligns with expectations, given that long-haul flights are associated with

higher aggregate fuel consumption.

V.F Grounding Impact on Fuel Consumption and Costs

We proceed by determining the changes in jet fuel consumption and costs that are at-

tributable to the grounding. To achieve this, we use the DiD framework in Equation 1 to

run regressions on unit fuel consumption (Fuel Burn, in gps) and unit fuel expenditure

(Fuel Cost, in US dollars per seat-100km) as the outcomes. Recognizing the varied re-

sponses among impacted carriers in adjusting fares following the grounding, as illustrated

in panel (b) of Table 3, we employ a similar methodology to evaluate the corresponding

changes in fuel consumption rates and unit costs. Our analysis involves disaggregating the

treatment intensity by each affected carrier.

Results from our analysis are reported in Table 4. Model 1 shows that, before the ground-

ing, MAX-operated flights consistently demonstrated lower fuel consumption rates. On av-

erage, Southwest, American, and United experienced reductions of 0.23, 0.14, and 0.25 gps,

respectively, in their MAX-operated flights compared to the control group flights that had

an average fuel consumption rate of 0.77 gps. This would imply that carriers achieved sig-

nificantly reduced fuel consumption rates, in percentage terms, when utilizing MAX aircraft

compared to similar legacy aircraft in the control group: 30% (0.23
0.77

) in the case of Southwest,

18% (0.14
0.77

) for American, and, 32.5% (0.25
0.77

) for United. However, since Southwest operated

only 10% of its flights in treated markets with MAX aircraft, the resulting average reduction

in fuel consumption rate across all its treated markets relative to the control group is modest

at just 3% (0.23×0.10
0.77

). The fuel consumption rates across all treated markets of American

and United were correspondingly lower on average by 2% (0.14×0.12
0.77

) and 5.5% (0.25×0.17
0.77

),

respectively, in comparison to the control group. The three carriers experienced increases

in fuel consumption rates within their treated markets after the grounding. In the case of

Southwest, its average fuel consumption rate rose by 5%, from being 3% below the control

group pre-grounding to 2% above in the grounding’s aftermath. American and United also
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faced similar increases in average fuel consumption rates of 1% and 3%, respectively, between

the pre- and post-grounding periods.26

Table 4: Impact of the grounding on fuel consumption and costs.

NOTE. – Table presents the first stage instrumental variable regression estimates comparing fuel consumption rates and unit
fuel costs between treated and control carrier-markets in the period surrounding the Boeing 737 MAX grounding, based on
Equation (1). The treatment intensities are disaggregated by carrier. Standard errors are clustered by markets and carriers,
and reported in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.

Dependent Variables: Fuel Burn Fuel Cost Fuel Cost Route
Unit: Gallons/seat-100km $/seat-100km $/seat at route distance
Model: (1) (2) (3)

TreatedSouthwest × PostBan 0.35∗∗∗ 0.68∗∗∗ 8.2∗∗∗

(0.04) (0.07) (0.86)
TreatedAmerican × PostBan 0.10∗∗∗ 0.24∗∗∗ 2.7∗∗∗

(0.01) (0.02) (0.28)
TreatedUnited × PostBan 0.14∗∗∗ 0.23∗∗∗ 3.9∗∗∗

(0.04) (0.08) (0.96)
TreatedSouthwest -0.23∗∗∗ -0.42∗∗∗ -5.3∗∗∗

(0.03) (0.05) (0.47)
TreatedAmerican -0.14∗∗∗ -0.28∗∗∗ -2.2∗∗∗

(0.03) (0.05) (0.64)
TreatedUnited -0.25∗∗∗ -0.43∗∗∗ -5.2∗∗∗

(0.04) (0.06) (0.53)

Controls ✓ ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓

Mean of Dependent Variable 0.76 1.5 15.1
Observations 28,320 28,227 28,227
R2 0.50 0.54 0.98

Given that the typical flight in our sample comprises 170 seats and covers an average

distance of 1,040 kilometers, the fuel cost increase per flight subsequent to the grounding of

the MAX is approximately $1,202 for Southwest (0.68 × 170 × 1,040 km
100

) or $7 per passenger,

$424 for American (0.05 × 170 × 1,040 km
100

) or $2.5 per passenger, and $407 for United (0.039

× 170 × 1,040 km
100

) or $2.4 per passenger. Finally, the estimated increase in fuel costs that we

estimated for each carrier relative to its average consumption (reported in Table A5) is 50%

for Southwest (0.68/1.38), whereas it is 16% (0.24/1.46) and 17% (0.23/1.38) for American

and United. Overall, these results show that the grounding led to a much more substantial

increase in fuel consumption and costs Southwest’s compared to the other affected carriers.

26The interaction terms Treatedc × PostBan, where c denotes a carrier, reveal a significant surge in both
unit fuel consumption and costs across all three carriers impacted by the grounding during their subsequent
flights in treated markets. The post-grounding treatment effect per carrier on fuel consumption can be also
quantified by juxtaposing it against the average fuel consumption rate within the control group before the
grounding, which stands at 0.76 gps (see Table 2). The highest relative treatment effect compared to the
control group is observed in Southwest with a 46% increase in fuel consumption (calculated as 0.35/0.76),
followed by United at 18% (0.14/0.76), and American at 13% (0.10/0.76)
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VI Conclusions
We use the unforeseen grounding of the MAX in March 2019 as a quasi-experimental

setting to study pricing responses to supply shocks that affect the shadow price of existing

capacity. Our empirical analysis relies on a novel dataset covering nearly all domestic flights

of US carriers from 2017 to 2019. This dataset is compiled from real-time communications

between aircraft in flight and ground controllers, and is thus reliably free of measurement

errors. The unforeseen disruption caused by the grounding forced carriers to replace their

grounded MAX aircraft with less fuel-efficient aircraft. Leveraging the grounding as a nat-

ural experiment, we employ a DiD design to compare outcomes in treated carrier-market

pairs where the MAX was operational before the grounding to control pairs where it was

not. Our analysis shows a marginal increase of about $1.85 (0.88% in relative terms) in

average fares within treated carrier-markets post-grounding relative to the control group.

The average fare increase is most substantial in the case of Southwest at $4.12 (1.7%). In

fact, had carriers utilised the MAX exclusively for all their flights in treated markets before

the grounding, average fares in those markets could have risen by almost $16 (8% in relative

terms) after the grounding. We found substantial heterogeneity in the treatment effects

for two primary reasons. First, fare adjustments by the affected carriers varied across the

entire distribution. The higher percentiles of the fare distribution showed clear increases,

while the lowest percentiles remained unchanged. Second, the three impacted carriers in our

setting had adopted the MAX to different degrees in their fleets before the grounding. The

documented rise in middle to top fare percentiles post-grounding was correspondingly most

significant for Southwest, followed by American, while no noteworthy change was observed

for United. The initial cost advantage in treated carrier-markets, attributed to the use of

fuel-efficient MAX aircraft, quickly disappeared after the grounding. This resulted in a sig-

nificant increase in jet fuel consumption rates and costs, particularly affecting Southwest.

Carriers impacted by the grounding swiftly adjusted prices to counter the experienced rise

in fuel expenses. The corresponding pass-through rate of fuel costs to ticket fares is notably

high, indicating that some carriers faced significant supply-side capacity constraints in addi-

tion to the observed cost shocks from the grounding. We find evidence of strategic behaviour

from the competitors, who also raised their prices.

We conclude by acknowledging certain limitations in our paper and proposing avenues for

future research. First, our study examines a supply shock impacting a subset of firms that

were in the initial stage of adopting new technology. To assess the impact of technology

adoption, future work could explore more established technologies. Second, we did not

assess the impact of the grounding on business class fares due to insufficient data on seat
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configurations by fare class and passenger occupancies for specific flights. In fact, Southwest,

the main affected carrier in our setting, does not offer business class seats. Finally, while our

study focuses only on direct flights, future research could explore the impact of the grounding

on carriers’ strategic decisions regarding flight connections and code-sharing agreements.
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Internet Appendix



A Additional tables and figures

Figure A1: US domestic flight activity by aicraft type. NOTE. – Figure shows the total count of
domestic flights and corresponding flight hours operated by all US carriers from 2017 to 2019, categorized by
aircraft type. The flight data utilized for this analysis is from OpenSky. Dotted lines on the chart indicate
the timelines of the two crashes involving the Boeing 737 MAX aircraft. Following the second crash, the
FAA ordered an immediate grounding of all Boeing 737 MAX aircraft.

(a) Number of flights

(b) Total flight hours
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Figure A2: Number of markets operated by carriers over time. NOTE. – Plots show the log
number of domestic markets served by US carriers. In each plot, markets are grouped into those where
the carrier exclusively offers economy class seats and those where economy and business class seats are sold
together. Dotted lines indicate the dates of the two crashes involding the Boeing 737 MAX aircraft. The
solid vertical line in each plot represents the date on which the FAA ban on the Boeing 737 MAX was
imposed.
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Figure A3: Inventories of narrow-body aircraft among US carriers. NOTE. – Log number of
narrow-body aircraft operated by US carriers, grouped into four types: legacy Airbus 320 family (including
all variants), Airbus 320 NEO, legacy Boeing 737 family (including all variants), and Boeing 737 MAX. Each
aircraft is counted only once based on its unique hexcodeNarrow-body aircraft have a seating configuration
comprising 6 seats per row. Smaller and larger aircraft, as defined in Section IV.B, are not considered in
these plots.

(a) All carriers

(b) American Airlines (c) United Airlines

(d) Southwest
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Figure A4: Fleet composition of carriers over time. NOTE. – Log number of unique aircraft
operated by US carriers. In each plot, the number of aircraft are shown in aggregate as well as grouped by
the six aircraft categories defined in Section IV.B. Dotted lines indicate the dates of the two crashes involding
the Boeing 737 MAX aircraft. The solid vertical line in each plot represents the date on which the FAA ban
on the Boeing 737 MAX was imposed.
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Figure A5: Impact of the grounding on ticket fares: dynamic estimates.NOTE. – figures show
the dynamic time-series estimates of economy fares between treated and control carrier-markets based on
Equation (2). Panel (a) shows the average fare estimates across control and treated carrier-markets over
time, with the treatment intensity set at the sample mean of 11% as outlined in Section V.A. Panel (b)
shows the estimated difference in average fares between the treated and control groups for each quarter. The
shaded area in grey depicts the period when Boeing 737 MAX aircraft were banned from flight operations by
the FAA. In all figures, the regressions include controls for carrier, year-quarter, carrier times year-quarter
fixed effects, respectively. Vertical bars represent 95% confidence intervals clustered by carrier and quarter.

(a) Evolution of fares (b) Event study estimates

Figure A6: Jet fuel prices over time. NOTE. – Daily prices of aviation turbine fuel (expressed in $ per
gallon) during the sample period as reported by the U.S. Energy Information Administration (EIA). The
black line shows daily jet fuel prices. The red and blue dotted lines show the predicted trends in jet fuel
prices during the periods before and after the grounding, respectively. Shaded areas in grey around each
dotted line show the 95% confidence intervals.
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Figure A7: Changes in economy fare percentiles around the MAX grounding.

(a) Fare 10th percentile

Evolution of fare percentiles Event study estimates

(b) Fare 25th percentile

Evolution of fare percentiles Event study estimates

(c) Fare 50th percentile

Evolution of fare percentiles Event study estimates
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Figure A8: Fare changes by percentiles. NOTE. – Time series estimates of mean ticket fare percentiles
between treated and control carriers based on the following equation pcmt = β1Dcmt+β2Dcmt×t+β3Xcmt+
γct+ ϵcmt, where m is a market, t is a vector of year-quarter dummies, and c is the carrier. The outcome pcmt

is the average percentile (10th, 25th, 50th, 75th, or 90th percentile) of the entire distribution of fares charged
by a carrier c servicing market m during quarter t. Dcm represents treatment intensity at the carrier-market
level as defined in Section V.A. Xcmt denotes a vector of market-carrier and market specific controls as
specified in Equation (1) Panel (a) shows the mean fare estimates across treated (β1 + β2 + β3) and control
(β2) carrier-markets over time. Panel (b) shows the coefficient estimates of the interaction terms β3. θt, µc,
and γct denote quarter, carrier, and carrier times quarter fixed effects, respectively. The shaded area in grey
depicts the period when Boeing 737 MAX aircraft were banned from flight operations by the FAA.

(a) Fare 75th percentile

Evolution of fare percentiles Event study estimates

(b) Fare 90th percentile

Evolution of fare percentiles Event study estimates
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Table A1: Fleet composition by carrier. NOTE. – Narrow-body aircraft counts by model in the fleets
of the sample carriers during the period 2018’Q1 to 2019’Q4. Refer to Section IV.B for the definitions of
aircraft model types.

Narrow-body aircraft

Carrier
Boeing
737 Max

Boeing
737

Airbus
320

Airbus
320 Neo

Large
Aircraft

Small
Aircraft

Boeing 737 Max
(% of narrow-body AC)

Alaska 0 158 59 8 0 80 0
Allegiant 0 0 82 0 0 0 0
American 26 304 176 1 342 525 5.13
Delta 0 206 119 0 349 440 0
Frontier 0 0 23 35 21 0 0
Hawaiian 0 0 0 11 24 8 0
JetBlue 0 0 130 0 63 7 0
Southwest 37 701 0 0 0 0 5.01
Spirit 0 0 92 11 30 0 0
Sun Country 0 24 0 0 0 0 0
United 15 338 162 0 246 503 2.91

Table A2: Differences in flight coverage between OpenSky and T-100 domestic segment.
NOTE. – Table provides a breakdown of the total flight hours operated by all US carriers from 2017 to
2019, categorized by aircraft type. Separate analyses are conducted using data from OpenSky and the T-100
domestic segment database.

Aircraft Type

Flight hours (1000s)

OpenSky
T-100 Domestic

Segment
Difference (%)

Boeing 737 Family 2738.10 1121.00 59.06
Boeing 737 MAX 37.70 0.00 100.00
Airbus A320 Family 1031.60 805.30 21.94
Airbus A320 NEO 90.90 72.50 20.24
Larger Aircraft 933.10 616.90 33.89
Smaller Aircraft 1688.60 486.70 71.18
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Table A3: Average treatment intensities.
NOTE. – Average treatment intensities during the pre-grounding period for each carrier affected by the
grounding. Treatment intensities are estimated for two available sample: (i) the full sample encompassing
all domestic airline markets in the US covered by OpenSky, and, (ii) a matched sample between OpenSky and
the DB1B database that contains the prices for a subset of routes, which covers only a subset of the markets
included in the full sample as explained in Section IV.B. Panel (a) presents that the average treatment
intensities across carrier-market combinations, conditional on them being treated before the grounding,
across the pre-treatment quarters for both samples. Panel (b) presents the unconditional treatment estimates,
taking into consideration both treated and non-treated carrier-market combinations.

(a) Conditional average treatment intensities

Full sample
(OpenSky)

Matched sample
(OpenSky & DB1B)

Year-Quarter American United Southwest American United Southwest

All quarters (pre-grounding) 21% 17% 10% 12% 11% 7%

2018 Q1 33% 0% 8% 9% 0% 6%
2018 Q2 23% 15% 10% 11% 10% 6%
2018 Q3 19% 26% 11% 12% 23% 7%
2018 Q4 27% 18% 11% 12% 8% 7%
2019 Q1 12% 12% 10% 12% 10% 7%

(b) Unconditional average treatment intensities

Full sample
(OpenSky)

Matched sample
(OpenSky & DB1B)

Year-Quarter American United Southwest American United Southwest

All quarters (pre-grounding) 0.6% 0.6% 4.8% 0.7% 0.9% 4.2%

2018 Q1 0.4% 0% 3.6% 0.2% 0% 3.5%
2018 Q2 0.5% 0.4% 4.6% 0.5% 0.5% 3.9%
2018 Q3 0.5% 0.6% 5% 0.7% 1.2% 4.2%
2018 Q4 1% 1.1% 6% 0.9% 1.1% 5%
2019 Q1 0.5% 0.6% 4.9% 1% 1.2% 4.6%
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Table A4: Impact of the grounding on average ticket fares: matched sample analysis.
NOTE. TBC. 1:3 matching without replacement

(a) Bseline estimates

Dependent Variables: Mean Fare Log(Fare Mean)

Model: (1) (2) (3) (4)

Treated × PostBan 33.2∗∗ 37.3∗∗∗ 0.167∗∗∗ 0.136∗∗∗

(14.1) (9.69) (0.054) (0.034)
Treated -37.0∗∗ -27.6∗∗∗ -0.066 -0.056∗

(15.6) (7.78) (0.069) (0.030)
Load Factor 23.0∗ 0.230∗∗∗

(13.6) (0.076)
Distance (1000 km) 44.1∗∗∗ 0.161∗∗∗

(1.71) (0.006)
Hub Route 4.31 0.038∗∗

(2.68) (0.015)

Year-Quarter x Carrier FE ✓ ✓ ✓ ✓
Market FE ✓ ✓

Observations 12,756 12,756 12,756 12,756
R2 0.85 0.95 0.89 0.96
Dependent variable mean 204.0 204.0 5.2 5.2
Mean DV (weighted) 236.8 236.8 5.4 5.4

(b) Treatment by carrier

Dependent Variables: Mean Fare Log(Fare Mean)

Model: (1) (2) (3) (4)

Treated × PostBan × Southwest 43.9∗∗∗ 23.5∗∗∗ 0.205∗∗∗ 0.097∗∗∗

(13.5) (8.05) (0.067) (0.036)
Treated × PostBan × United 12.2 77.5∗∗∗ 0.044 0.246∗∗∗

(33.8) (12.4) (0.102) (0.032)
Treated × PostBan × American -772.9 -1,586.4 -2.67 -6.18

(1,792.3) (1,003.5) (6.92) (4.02)
Treated × Southwest -47.7∗∗∗ -33.1∗∗∗ -0.049 -0.064

(18.2) (10.1) (0.089) (0.044)
Treated × United -16.6 -20.5∗ -0.092 -0.048

(33.4) (11.3) (0.101) (0.031)
Treated × American -691.4∗∗ -332.8∗∗ -2.38∗∗ -1.29∗∗

(281.1) (155.6) (1.14) (0.627)
Load Factor 23.5∗ 0.228∗∗∗

(13.4) (0.074)
Distance (1000 km) 44.1∗∗∗ 0.161∗∗∗

(1.71) (0.006)
Hub Route 4.33 0.038∗∗

(2.69) (0.015)

Year-Quarter x Carrier FE ✓ ✓ ✓ ✓
Market FE ✓ ✓

Observations 12,756 12,756 12,756 12,756
R2 0.85 0.95 0.89 0.96
Dependent variable mean 204.0 204.0 5.2 5.2
Mean DV (weighted) 236.8 236.8 5.4 5.4
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Table A5: Fuel efficiency among carriers around the grounding. NOTE. – Fuel consumption
rates and unit fuel costs incurred by individual carriers in the period surrounding the ban of the Boeing 737
MAX. Separate statistics are shown for carriers that were either affected (Panel A) or unaffected (Panel B)
by the grounding. For the affected carriers, the statistics are further grouped by treatment status as defined
in Section V.A, depending on whether or not a carrier operated the Boeing 737 MAX in a given market
prior to the grounding. Fuel consumption rates (Fuel Burn) are expressed in gallons per seat–100km and
unit fuel costs are expressed in dollars per seat–100km. The values shown reflect the mean and standard
deviations are displayed in parenthesis.

Fuel burn (gallons per seat–100km) Fuel cost ($ per seat–100km)

Carrier Sample Pre–Ban Post–Ban Pre–Ban Post–Ban

Panel A. Affected Carriers

Southwest (WN)
Control 0.79 (0.00) 0.79 (0.00) 1.57 (0.11) 1.49 (0.03)
Treated 0.70 (0.01) 0.79 (0.00) 1.38 (0.09) 1.49 (0.03)

American (AA)
Control 0.81 (0.11) 0.81 (0.10) 1.61 (0.23) 1.54 (0.20)
Treated 0.74 (0.05) 0.78 (0.06) 1.46 (0.13) 1.47 (0.12)

United (UA)
Control 0.84 (0.09) 0.86 (0.10) 1.68 (0.20) 1.63 (0.19)
Treated 0.79 (0.01) 0.79 (0.00) 1.38 (0.09) 1.49 (0.03)

Panel B. Other Carriers
Alaska (AS) Control 0.77 (0.06) 0.76 (0.06) 1.51 (0.15) 1.42 (0.11)
JetBlue (B6) Control 0.68 (0.01) 0.70 (0.04) 1.34 (0.09) 1.33 (0.08)
Delta (DL) Control 0.84 (0.10) 0.83 (0.09) 1.66 (0.24) 1.56 (0.17)
Frontier (F9) Control 0.65 (0.03) 0.65 (0.02) 1.31 (0.11) 1.22 (0.04)
Allegiant (G4) Control 0.74 (0.04) 0.75 (0.04) 1.45 (0.13) 1.40 (0.07)
Hawaiian (HA) Control 0.66 (0.11) 0.66 (0.10) 1.29 (0.25) 1.27 (0.28)
Spirit (NK) Control 0.68 (0.05) 0.66 (0.03) 1.36 (0.13) 1.26 (0.07)
Sun Country (SY) Control 0.79 (0.00) 0.79 (0.00) 1.54 (0.11) 1.49 (0.03)
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Table A6: Impact of the grounding on ticket fare percentiles. NOTE. – Table presents OLS
estimates comparing select percentiles of economy fares between treated and control carrier-markets in the
period surrounding the Boeing 737 MAX grounding, based on Equation (1). Panel (a) shows the baseline
regression estimates, while panel (b) presents regression estimates with treatment intensities disaggregated
by carrier. Standard errors are double-clustered by markets and carriers, and are reported in parantheses.
***, **, and * denote significance at the 1%, 5%, and 10% level, respectively.

Panel (a): Baseline estimates

Dependent Variables: Log(Fare Percentile)

10pct 25pct 50pct 75pct 90pct

Model: (1) (2) (3) (4) (5)

Treated × PostBan 0.01 0.10∗∗∗ 0.07∗∗∗ 0.11∗∗∗ 0.09∗∗∗

(0.10) (0.02) (0.02) (0.02) (0.02)
Treated -0.12 -0.15∗∗∗ -0.11∗∗∗ -0.06∗∗ 0.01

(0.11) (0.05) (0.03) (0.03) (0.03)

Controls ✓ ✓ ✓ ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓ ✓

Mean of the Fare Percentile 107.0 153.4 213.2 297.8 410.0
Observations 28,320 28,320 28,320 28,320 28,320
R2 0.71 0.87 0.88 0.87 0.87

Panel (b): Treatment by carrier

Dependent Variables: Log(Fare Percentile)

10pct 25pct 50pct 75pct 90pct

Model: (1) (2) (3) (4) (5)

TreatedSouthwest × PostBan -0.03 0.16∗∗∗ 0.18∗∗∗ 0.23∗∗∗ 0.19∗∗∗

(0.27) (0.04) (0.04) (0.04) (0.04)
TreatedAmerican × PostBan -0.02 0.03∗ -0.004 0.06∗∗∗ 0.08∗∗∗

(0.03) (0.02) (0.02) (0.02) (0.02)
TreatedUnited × PostBan 0.05 0.04 0.008 0.01 -0.04

(0.05) (0.04) (0.04) (0.04) (0.06)
TreatedSouthwest 0.20 0.0006 -0.07 -0.04 0.05

(0.27) (0.07) (0.06) (0.05) (0.06)
TreatedAmerican -0.50∗∗∗ -0.40∗∗∗ -0.22∗∗∗ -0.08∗∗ -0.004

(0.04) (0.05) (0.04) (0.04) (0.04)
TreatedUnited -0.02 -0.005 -0.02 -0.04 -0.01

(0.08) (0.07) (0.06) (0.05) (0.06)

Controls ✓ ✓ ✓ ✓ ✓
Carrier × Year-Quarter FE ✓ ✓ ✓ ✓ ✓

Mean of the Fare Percentile 107.0 153.4 213.2 297.8 410.0
Observations 28,320 28,320 28,320 28,320 28,320
R2 0.71 0.87 0.88 0.87 0.87
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Table A7: Impact of the grounding on average ticket fares: binary treatment. NOTE. – OLS
estimates comparing average economy fares in treated and control carrier-markets for the period surrounding
the Boeing 737 MAX grounding, based on Equation (1). Treated is a dummy variable equal to one if the
MAX has ever been used in a carrier–market prior to the grounding, and zero otherwise. Separate estimates
are provided with Mean Fare and Log(Mean Fare) as dependent variables. Panel (a) shows the baseline
regression estimates, while panel (b) presents regression estimates with treatment intensities disaggregated
by carrier. Standard errors are clustered by carriers and markets, and reported in parenthesis. ***, **, and
* denote significance at 1%, 5%, and 10% levels.

Panel (a): Baseline estimates

Dependent Variables: Mean Fare Log(Mean Fare)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Treated × PostBan 7.75∗∗∗ 7.38∗∗∗ 2.77 2.83 0.031∗∗∗ 0.028∗∗∗ 0.011∗∗ 0.011∗∗

(1.03) (2.07) (1.79) (1.80) (0.003) (0.006) (0.005) (0.005)
Treated 3.27 3.46 11.7∗∗∗ 11.3∗∗∗ 0.015 0.016 0.035∗∗∗ 0.035∗∗∗

(3.67) (3.63) (1.98) (2.12) (0.013) (0.013) (0.008) (0.008)
Load Factor 60.0∗∗∗ 0.296∗∗∗

(4.10) (0.018)
Distance (1000 km) -497.7∗∗∗ -1.65∗∗∗

(67.7) (0.272)
Hub Route 14.8∗∗∗ 0.073∗∗∗

(1.38) (0.006)

Controls ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓ ✓ ✓
Market FE ✓ ✓

Mean Fare 239.6 239.6 239.6 239.6 5.4 5.4 5.4 5.4
Observations 31,380 31,380 31,380 31,380 31,380 31,380 31,380 31,380
R2 0.70 0.70 0.94 0.93 0.81 0.81 0.95 0.95

Panel (b): Treatment by carrier

Dependent Variables: Mean Fare Log(Mean Fare)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

TreatedSouthwest × PostBan 5.14∗∗∗ 7.34∗∗∗ 2.71∗∗∗ 3.43∗∗∗ 0.025∗∗∗ 0.036∗∗∗ 0.012∗∗ 0.016∗∗∗

(0.757) (1.52) (0.957) (0.962) (0.003) (0.008) (0.005) (0.005)
TreatedAmerican × PostBan 3.78∗∗ 7.34∗∗∗ 4.20∗∗∗ 3.88∗∗∗ 0.011∗ 0.027∗∗∗ 0.016∗∗∗ 0.014∗∗∗

(1.59) (1.76) (1.26) (1.22) (0.006) (0.006) (0.005) (0.005)
TreatedUnited × PostBan 21.2∗∗∗ 6.30 1.81 1.56 0.066∗∗∗ 0.018 0.005 0.004

(3.71) (4.72) (4.03) (4.05) (0.010) (0.012) (0.010) (0.010)
TreatedSouthwest 7.23∗∗∗ 6.19∗∗ 4.83∗ 5.94∗∗ 0.036∗∗∗ 0.030∗∗ 0.021 0.026∗∗

(2.56) (2.61) (2.59) (2.48) (0.013) (0.014) (0.013) (0.012)
TreatedAmerican -74.6∗∗∗ -81.5∗∗∗ 25.2 -15.6 -0.266∗∗∗ -0.296∗∗∗ 0.060 -0.103

(17.8) (17.5) (24.5) (26.2) (0.069) (0.068) (0.109) (0.118)
TreatedUnited -51.5 -4.71 -7.79 -30.7 -0.166 -0.021 0.010 -0.089

(73.3) (70.0) (25.9) (30.2) (0.230) (0.223) (0.111) (0.117)

Controls ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓ ✓ ✓
Market FE ✓ ✓

Mean Fare 239.6 239.6 239.6 239.6 5.4 5.4 5.4 5.4
Observations 31,380 31,380 31,380 31,380 31,380 31,380 31,380 31,380
R2 0.70 0.70 0.94 0.93 0.81 0.81 0.95 0.95
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Table A8: Impact of the grounding on average ticket fares: treatment intensity measured
over entire pre-grounding period. NOTE. – OLS estimates comparing average economy fares of treated
and control carrier-markets, based on Equation (1). Treated is the treatment intensity measured as the
percentage of MAX-operated flights by a carrier in a market throughout the entire pre-grounding period.
Separate estimates are provided for Mean Fare and Log(Mean Fare) as dependent variables. Panel (a) shows
the baseline regression estimates, and panel (b) presents regression estimates with treatment intensities
disaggregated by carrier. Standard errors are clustered by carrier and market, and reported in parenthesis.
***, **, and * denote significance at the 1%, 5%, and 10% levels.

Panel (a): Baseline estimates

Dependent Variables: Mean Fare Log(Mean Fare)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

Treated × PostBan 62.3∗∗∗ 41.2∗∗∗ 24.8∗∗∗ 21.0∗∗ 0.282∗∗∗ 0.177∗∗∗ 0.113∗∗∗ 0.096∗∗∗

(15.1) (11.8) (8.01) (8.56) (0.061) (0.042) (0.031) (0.033)
Treated 50.9 59.6 -6.48 -35.5∗ 0.312∗ 0.353∗ 0.002 -0.104

(42.1) (44.0) (18.4) (19.4) (0.187) (0.198) (0.076) (0.082)
Load Factor 61.5∗∗∗ 0.300∗∗∗

(4.19) (0.018)
Distance (1000 km) -448.5∗∗∗ -1.53∗∗∗

(67.7) (0.274)
Hub Route 15.1∗∗∗ 0.074∗∗∗

(1.45) (0.006)

Controls ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓ ✓ ✓
Market FE ✓ ✓

Mean Fare 239.6 239.6 239.6 239.6 239.6 239.6 239.6 239.6
Observations 31,380 31,380 31,380 31,380 31,380 31,380 31,380 31,380
R2 0.70 0.70 0.93 0.93 0.81 0.81 0.95 0.95

Panel (b): Treatment by carrier

Dependent Variables: Mean Fare Log(Mean Fare)

Model: (1) (2) (3) (4) (5) (6) (7) (8)

TreatedSouthwest × PostBan 106.2∗∗∗ 118.1∗∗∗ 64.3∗∗∗ 66.4∗∗∗ 0.530∗∗∗ 0.500∗∗∗ 0.243∗∗∗ 0.255∗∗∗

(15.5) (19.9) (12.2) (13.2) (0.063) (0.096) (0.052) (0.056)
TreatedAmerican × PostBan 1.33 19.8∗∗ 14.0∗ 7.05 -0.003 0.075∗∗ 0.062∗∗ 0.029

(7.66) (8.77) (7.42) (7.59) (0.029) (0.033) (0.028) (0.029)
TreatedUnited × PostBan 93.6∗∗ -10.4 -1.79 -6.86 0.323∗∗ -0.002 0.054 0.031

(42.5) (46.8) (21.3) (21.1) (0.131) (0.136) (0.070) (0.067)
TreatedSouthwest 332.1∗∗∗ 327.5∗∗∗ -91.2∗∗∗ -89.8∗∗∗ 1.63∗∗∗ 1.64∗∗∗ -0.148 -0.093

(58.0) (57.6) (30.4) (32.5) (0.294) (0.298) (0.133) (0.137)
TreatedAmerican -74.6∗∗∗ -56.4∗∗∗ -15.6 -0.266∗∗∗ -0.193∗∗∗ -0.103

(17.8) (15.1) (26.2) (0.069) (0.060) (0.118)
TreatedUnited -51.5 -9.74 -30.7 -0.166 -0.047 -0.089

(73.3) (44.1) (30.2) (0.230) (0.139) (0.117)

Controls ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓ ✓ ✓
Market FE ✓ ✓

Mean Fare 239.6 239.6 239.6 239.6 239.6 239.6 239.6 239.6
Observations 31,380 31,380 31,380 31,380 31,380 31,380 31,380 31,380
R2 0.70 0.71 0.93 0.93 0.81 0.82 0.95 0.95
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Table A9: Heterogenous impact of the MAX grounding on average ticket fares.

(a) Differential impact of the grounding by market structure: heterogeneity by carrier

Dependent Variable: Log(Fare Mean)

Model: (1) (2) (3) (4)

Treated × PostBan × Southwest 0.161∗∗ 0.173∗∗∗ 0.162∗∗ 0.173∗∗∗

(0.069) (0.039) (0.069) (0.039)
Treated × PostBan × American 0.036 0.041∗∗ 0.037 0.044∗∗

(0.023) (0.021) (0.023) (0.021)
Treated × PostBan × United -0.069 0.004 -0.066 0.008

(0.062) (0.045) (0.062) (0.045)
PostBan × Direct Competitors 0.080 0.158∗

(0.098) (0.083)
Treated × Southwest 0.568∗∗∗ -0.005 0.568∗∗∗ -0.005

(0.106) (0.053) (0.106) (0.053)
Treated × American -0.174∗∗∗ -0.130∗∗∗ -0.172∗∗∗ -0.132∗∗∗

(0.056) (0.039) (0.056) (0.039)
Treated × United 0.028 -0.026 0.030 -0.029

(0.086) (0.056) (0.086) (0.056)
Direct Competitors 0.052 -0.089

(0.181) (0.146)

Controls ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓

Observations 28,320 28,320 28,320 28,320
R2 0.81 0.89 0.81 0.89

(b) Differential impact of the grounding by market structure

Dependent Variable: Log(Fare Mean)

Model: (1) (2) (3) (4)

Treated × PostBan 0.051∗ 0.073∗∗∗ 0.052∗ 0.076∗∗∗

(0.027) (0.021) (0.027) (0.021)
Treated × PostBan × Monopoly 0.098 0.084 0.095 0.078

(0.082) (0.063) (0.082) (0.062)
PostBan × Monopoly -0.017∗∗∗ -0.013∗∗∗ -0.016∗∗∗ -0.013∗∗∗

(0.005) (0.004) (0.005) (0.004)
PostBan × Direct Competitors 0.063 0.137

(0.099) (0.085)
Treated 0.151∗ -0.054∗ 0.153∗∗ -0.054∗

(0.078) (0.029) (0.078) (0.029)
Treated × Monopoly 0.132 0.119∗ 0.127 0.120∗

(0.128) (0.067) (0.128) (0.068)
Monopoly 0.018∗∗ 0.037∗∗∗ 0.019∗∗ 0.036∗∗∗

(0.009) (0.006) (0.009) (0.006)

Controls ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓

Observations 28,131 28,131 28,131 28,131
R2 0.80 0.89 0.80 0.89
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Table A10: Heterogenous Impact of the MAX grounding on fares.
NOTE. – OLS estimates of heterogeneous treatment effects on mean economy fares based on Equation (1).
Separate estimates are shown including the competitors, the time since the grounding or and flight distance
variation. Monopoly Market is a dummy variable equal to one when a single carrier operated throughout
every quarter of 2018. Direct Competitors represents the combined treatment intensity at the route. Carrier
× year-quarter fixed effects are included. Standard errors are clustered by market and carrier, and reported
in parentheses. ***, **, and * denote significance levels at 1%, 5%, and 10%.

(a) Differential impact of the grounding by market structure: short- and longer-term impact

Dependent Variable: Log(Fare Mean)

Model: (1) (2) (3) (4)

Treated 0.154∗∗ -0.057∗∗ 0.155∗∗ -0.059∗∗

(0.075) (0.028) (0.075) (0.028)
Treated × Short term (Q2’2019) 0.195∗ 0.125∗∗ 0.197∗ 0.132∗∗

(0.114) (0.062) (0.114) (0.061)
Treated × Long term (Q3-Q4’2019) 0.033 0.075∗∗∗ 0.035 0.076∗∗∗

(0.028) (0.020) (0.029) (0.020)
Direct Competitors × Short term (Q2’2019) 0.144 0.402∗∗∗

(0.125) (0.114)
Direct Competitors × Long term (Q3-Q4’2019) 0.069 0.097

(0.118) (0.096)
Direct Competitors 0.074 -0.086

(0.182) (0.146)

Controls ✓ ✓ ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓

Observations 28,320 28,320 28,320 28,320
R2 0.80 0.89 0.80 0.89

(b) Differential impact of the grounding by market structure: heterogeneity by flight duration

Dependent Variable: Log(Fare Mean)

Model: (1) (2) (3) (4)

Treated × PostBan × Long Haul 0.065∗∗∗ 0.097∗∗∗ 0.065∗∗∗ 0.099∗∗∗

(0.024) (0.022) (0.024) (0.022)
Treated × PostBan × Short Haul -0.048 -0.015 -0.049 -0.012

(0.048) (0.047) (0.048) (0.047)
PostBan × Direct Competitors -0.092 -0.027

(0.159) (0.136)
PostBan × Direct Competitors × Long Haul 0.167 0.215

(0.175) (0.152)
Treated × Long Haul -0.149∗∗ -0.104∗∗∗ -0.158∗∗∗ -0.103∗∗∗

(0.059) (0.030) (0.058) (0.029)
Treated × Short Haul 0.294∗∗∗ 0.236∗∗∗ 0.300∗∗∗ 0.227∗∗∗

(0.100) (0.075) (0.101) (0.074)
Direct Competitors × Long Haul -0.214 0.228

(0.327) (0.293)
Long Haul 0.159∗∗∗ -0.004 0.161∗∗∗ -0.005

(0.007) (0.008) (0.007) (0.008)
Direct Competitors -0.121 -0.283

(0.251) (0.239)

Controls ✓ ✓ ✓ ✓
Year-Quarter x Carrier FE ✓ ✓ ✓ ✓

Observations 28,320 28,320 28,320 28,320
R2 0.85 0.89 0.85 0.89

A17



B Flight tracking by OpenSky
OpenSky is a collaborative research project that aims to enhance the tracking and mon-

itoring of aircraft movements during flight. Unlike traditional flight tracking methods that

use radar-based systems, OpenSky relies on a global community network of more than 6,400

ground-based receivers to track and share aircraft data. Setting up such a receiver is very

easy and costs as little as $200. These receivers typically have a coverage radius of up to

600 kilometres. Figure B1(a) shows one such receiver set up using electronic parts ordered

off online marketplaces such as Amazon. Figure B1(b) shows the number of flights such a

receiver tracked continuously in real time. Lastly, figure B1(c) depicts the extensive cover-

age of the US airspace (excluding Alaska, Hawaii, and its island territories) by the OpenSky

receiver network as of January 1, 2018.

OpenSky leverages cutting-edge technologies to provide real-time flight tracking infor-

mation, improving situational awareness for aviation stakeholders ranging from air traffic

controllers and carriers to researchers and aviation enthusiasts. Researchers can use Open-

Sky data for studying air traffic patterns, aircraft behavior, and airspace congestion, while

aviation enthusiasts can track flights in real-time and access historical data. At its core,

OpenSky relies mainly on two main types of surveillance technologies, namely Mode S and

Automatic Dependent Surveillance-Broadcast (ADS-B), to monitor and collect data on air-

craft movements in real-time. These technologies are described in detail below.

B.1 Flight tracking with Mode S

Mode S, which stands for Mode Select, is a crucial component of OpenSky’s data collection

infrastructure. Mode S is an enhancement of the traditional radar system. It was developed

to overcome limitations of the earlier Mode A and Mode C transponders, which provided

basic information like an aircraft’s identity and altitude. Mode S, on the other hand, offers a

more sophisticated and versatile way to communicate between aircraft and air traffic control

(ATC) facilities. Under Part 91.215 of the FAA Regulations, Mode S transponders are

mandatory for all aircraft operating in Class A airspace, which generally extends from 18,000–

60,000 feet above mean sea level, as well as within 30 nautical miles around busy airports

and in areas with heavy air traffic.

One of the key features of Mode S is its ability to transmit a unique 24-bit aircraft ad-

dress (ICAO address). This address acts like a digital fingerprint for each aircraft, ensuring

that controllers can positively identify each aircraft in their airspace. This is a significant

improvement over older systems, where the same address could be assigned to multiple air-

craft, leading to confusion. Mode S transponders also constantly transmit important data,

including the aircraft’s current position, altitude, groundspeed, and more. This information
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Figure B1: OpenSky receiver profile and coverage.
NOTE. Panel (a) shows an OpenSky receiver built from inexpensive, easily procurable electronic compo-
nents. Panel (b) shows real-time flight tracking by one such receiver, capable of tracking multiple flights
simultaneously; the typical coverage radius is up to 600 km. Panel (c) maps the extent of US air-space
coverage provided by the full OpenSky receiver network.

(a) Receiver setup (b) Aircraft tracking receiver

(c) OpenSky receiver coverage across US (1 Jan 2018)

is updated multiple times per second, allowing controllers to track the aircraft’s movements

with exceptional accuracy. Moreover, Mode S transponders can provide additional data,
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such as the aircraft’s heading, rate of climb or descent, and even emergency alerts.27 Mode

S further includes a technology called Enhanced Surveillance (EHS). EHS provides even

more detailed information about an aircraft’s status, such as its vertical intent (whether it’s

climbing, descending, or level), the aircraft’s true airspeed, and its indicated airspeed. This

wealth of data is invaluable for ATCs as it enables them to manage traffic more efficiently

and reduce the risk of mid-air collisions. Consquently, Mode S has transformed the way

aircraft are tracked during flight. Its ability to provide unique identifiers, transmit a wealth

of real-time data, and facilitate communication between aircraft make it an indispensable

tool for air traffic management. Figure B2 presents a simple schematic showing how Mode

S surveillance operates.

The ground-based infrastructure supporting Mode S is a network of Mode S radar sta-

tions, often referred to as Monopulse Secondary Surveillance Radar (MSSR). These stations

are strategically located to cover large sections of airspace. They continuously interrogate

aircraft in their coverage area, and when an aircraft responds, the radar decodes the Mode

S transmissions, extracting vital information about the aircraft’s identity and status. Open-

Sky tracks flights using Mode S by relying on a volunteer-driven network of MSSR receivers

strategically placed around the world. These receivers continuously query each observed

aircraft within their coverage area, often multiple times per second. The data collected by

these receivers is then transmitted to the OpenSky platform, where it is decoded, processed,

and made available to registered users.

B.2 Flight tracking with ADS-B

While Mode S plays a significant role in OpenSky’s flight monitoring process, ADS-B is an-

other key technology integrated into the platform. Unlike traditional radar-based systems,

ADS-B relies on aircraft broadcasting their own positional data, thereby offering a more

efficient, accurate, and comprehensive means of surveillance. Each aircraft equipped with

ADS-B technology continuously transmits data packets, including its GPS-derived position,

altitude, airspeed, heading, and more. These packets are broadcast at a high rate, typi-

cally every second, to nearby aircraft and ground receivers. OpenSky’s network of receivers

captures these ADS-B broadcasts, decodes them, and makes the information available to

registered users.

As per FAA Regulations, specifically Parts 91.225 and 91.227, all aircraft operating within

controlled US airspace at altitudes exceeding 18,000 feet above mean sea level must be

27An additional feature of Mode S is its ability to interrogate other nearby aircraft. This feature, known as
Mode S Interrogation, enables aircraft to communicate with each other and share vital information. For
example, if an aircraft is on a collision course with another, the Mode S transponders can automatically
coordinate to initiate collision avoidance maneuvers, significantly enhancing safety in crowded skies.
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equipped with ADS-B transponders by January 2020. One of the fundamental advantages

of ADS-B is its accuracy and real-time nature. With precise GPS data being constantly

transmitted, the system enables ATCs to track aircraft with unparalleled precision. This is

a significant improvement over radar-based systems that update at a slower rate and may

suffer from inaccuracies due to radar beam limitations. ADS-B also promotes situational

awareness among pilots. Equipped with ADS-B receivers, aircraft can receive data from

other nearby aircraft. This means that pilots can not only see their own aircraft’s position

but also the positions of surrounding aircraft, providing them with valuable information to

enhance safety and collision avoidance. With ADS-B, it has also become possible to extend

surveillance coverage to remote areas where radar coverage is limited or non-existent. This

makes it an invaluable tool for tracking flights in regions like oceans, mountains, and remote

forest regions. ADS-B also offers major benefits to carriers, who can use it to monitor their

fleets in real-time, optimizing routes, fuel consumption, and maintenance scheduling.

Figure B2: Flight tracking via Mode S and ADS-B. NOTE. – Figure depicts the differences in the
flight tracking modes of Mode S and ADS-B. Mode S depends on selective interrogation by ground-based
radars and receivers, which must first identify each aircraft and send an interrogration query requesting the
aircraft’s position, altitude, direction, and speed. Mode S transponders are mandatory under FAA regulations
for all aircraft operating at 18,000 feet above mean sea level, as well as within 30 nautical miles around busy
airports. ADS-B technology, on the other hand, involves repreated broadcasts of the position, direction,
and speed by the aircraft itself. An aircraft fitted with ADS-B technology will first obtain its position from
a global positioning system (GPS) satelite. This information, along with the aircraft’s altitude, direction,
and speed are then broadcast autonomously so that it can be picked up by ground receivers. Under FAA
requirements, all aircraft operating within controlled US airspace at altitudes exceeding 18,000 feet above
mean sea level must be equipped with ADS-B transponders by January 2020. Image source: (Strohmeier
et al., 2017)
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C What caused the Boeing 737 MAX crashes?
The widespread adoption of the 737 MAX by carriers was interrupted by two fatal crashes.

The first incident occurred on October 29, 2018, when a Lion Air-operated 737 MAX crashed

shortly after takeoff from Jakarta’s Soekarno–Hatta International Airport, killing all 189

passengers onboard. Despite the tragedy, aviation regulators initially allowed carriers to

continue operating the aircraft type. However, approximately six months later, on March

10, 2019, another 737 MAX operated by Ethiopian Airlines crashed shortly after takeoff from

Addis Ababa, resulting in the deaths of all 157 people onboard. This second crash prompted

aviation regulators worldwide, including the US Federal Aviation Administration (FAA), to

ground the 737 MAX just three days later on March 13, 2019, pending further investigation.

The 737 MAX incorporated the newly introduced CFM LEAP engine, which consumes

up to 16% less fuel than older engine models (Flight Global, 2009). However, this engine

needed to be installed much further forward on the aircraft wing and higher off the ground,

which disrupted the 737 MAX’s aerodynamic design, introducing instability (Flight Global,

2017; Forbes, 2019). To address this issue, Boeing introduced a new flight control feature

called the Maneuvering Characteristics Augmentation System (MCAS), which was another

notable innovation developed by Boeing for the MAX series. The crashes were attributed to

erroneous readings from onboard aircraft sensors and malfunctioning of the MCAS system.

This system would trim the horizontal stabilizer towards the nose-down direction when the

aircraft’s angle of attack (AoA), as measured by the onboard AoA sensors, exceeded safety

limits that could cause the aircraft to stall and crash. Figure C1 illustrates the working

mechanism of the MCAS.

However, while most modern aircraft have redundant AoA sensors to ensure safety and

minimize erroneous readings due to accumulation of ice or other debris, the MCAS relied

upon just one sensor for its inputs. Additionally, the MCAS operated autonomously, without

requiring inputs from the pilot (Sumwalt, Landsberg, and Homendy, 2019). These measures

were implemented to minimize pilot training requirements and make the 737 MAX more

attractive to customers. Unfortunately, these safety compromises were not adequately com-

municated to pilots and were even omitted from the 737 MAX’s pilot handbook (Leeham

News, 2018). During the MAX’s certification by the FAA, the safety analysis of the MCAS

was not as thorough as it should have been. The FAA relied heavily on Boeing’s test flights of

the MAX, which appeared to show that the MCAS was effective, even in extreme situations

(Washington Post, 2019).

The MCAS had a significant flaw that made it prone to failure. It relied on a single angle

of attack (AoA) sensor, which could cause it to misinterpret the aircraft’s orientation and
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activate incorrectly. If the sensor signaled that the aircraft was ascending at an unstable

angle, the MCAS would respond by pitching the aircraft downward and cause it to dive. Even

if the pilot tried to correct the angle by pulling back on the control yoke, the MCAS would

continue to counteract this by moving the stabilizer trim wheel in the opposite direction,

pushing the aircraft further downward. The MCAS would continue to do this as long as the

AoA sensor indicated a high angle of attack, overwhelming the pilot’s attempts to regain

control of the aircraft (Federal Aviation Administration, 2020).

The issues with the MCAS (Maneuvering Characteristics Augmentation System) came to

light after two fatal crashes involving the 737 MAX of Lion Air Flight 610 and Ethiopian

Airlines Flight 302 within a short span of five months. In both instances, a faulty AoA

sensor had provided incorrect data immediately after takeoff, leading to the MCAS system

taking control of the flight from the pilot and causing the aircraft to stall (New York Times,

2019). Figure C2 provides a comparison of flight statistics of the 737 MAX aircraft flown as

Lion Air Flight 610 and Ethiopian Airlines Flight 302 on the day they crashed with previous

flights flown by these same aircraft. The figure shows unusual flight patterns by both aircraft

just before crashing, which investigators later attributed to the triggering of the MCAS due

to a malfunctioning AoA sensor onboard these aircraft. The pilots of these flights were not

adequately trained to handle such situations, given their lack of training on the 737 MAX.

They were unaware of the steps required to switch off the MCAS. In fact, as shown in Figure

C3, deactivating the MCAS system required several complex steps, which would have been

challenging to execute in an emergency without proper training.
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Figure C1: MCAS on Boeing 737 MAX aircraft. NOTE. – Panel (a) depicts the location of the
Angle of Attack (AoA) sensor on a typical Boeing 737 MAX aircraft (Image source: Leeham News). Panel
(b) illustrates the functioning of the Maneuvering Characteristics Augmentation System (MCAS) on the
Boeing 737 MAX, which relies on data provided by the onboard AoA sensor. If the AoA sensor indicates
that the aircraft is ascending too rapidly and could potentially stall, the MCAS takes over flight control and
attempts to lower the nose of the aircraft by manipulating the horizontal tail stabilizers positioned at the
rear of the plane (Image source: Seattle Times).

(a) Angle of attack (AOA) sensor

(b) Maneuvering Characteristics Augmentation System (MCAS)
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Figure C2: Flight statistics of 737 MAX aircraft involved in crashes. NOTE. – Flight data are
from Opensky and Flightradar24. In each panel, the first plot compares flight statistics of Lion Air flight
LNI610 that crashed on 28th October, 2018 with two other flights (LNI792 on 11th September, 2018 and
LNI748 on 25th September, 2018) operated by the airline previously using the same 737 Max aircraft (ICAO
identification 8A0711). The second plot compares flight statistics of Ethiopian Airlines flight ETH302 that
crashed on 10th March, 2019 with another flight (ETH415 on 31st January, 2019) operated by the airlines
previously using the same 737 MAX aircraft (ICAO identification 040152).

(a) Ground speed

(b) Vertical speed

(c) Altitude
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Figure C3: Steps to disable MCAS during flight.
NOTE. – Panel (a) shows a 737 MAX cockpit with the throttle levers (A), flaps (B), spoilers (C), and trim
controls (D) highlighted in red. Black wheels on either side are connected to the horizontal tail and will spin
if the stabilizer swivels. The instruments next to each wheel have green indicators showing the angle of the
stabilizer trim, with 0 being maximum nose-down (Image source: Chicago Tribune). In Panel (b), the two
switches at bottom right labeled “STAB TRIM” are the cutoff switches that will end automated movement
of the horizontal tail by disabling the MCAS system (Image source: Seattle Times). Panel (c) illustrates the
intricate steps that a pilot must take to deactivate the MCAS system while in flight. (Image source: New
York Times).

(a) Cockpit of a 737 MAX 8 aircraft

(b) Flight controls closeup

(c) Flight controls closeup
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