Occupational Mobility and Wage Inequality*

Gueorgui Kambourov[†] University of Toronto Iourii Manovskii[‡] University of Pennsylvania

First version: January 15, 2000

This version: January 10, 2007

Abstract

In this study we argue that wage inequality and occupational mobility are intimately related. We are motivated by our empirical findings that human capital is occupation-specific and that the fraction of workers switching occupations in the United States was as high as 16% a year in the early 1970s and had increased to 21% by the mid 1990s. We develop a general equilibrium model with occupation-specific human capital and heterogeneous experience levels within occupations. We find that the model, calibrated to match the level of occupational mobility in the 1970s, accounts quite well for the level of (within-group) wage inequality in that period. Next, we find that the model, calibrated to match the increase in occupational mobility, accounts for over 90% of the increase in wage inequality between the 1970s and the 1990s. The theory is also quantitatively consistent with the level and increase in the short-term variability of earnings.

JEL Classification: E20, E24, E25, J24, J31, J62.

Keywords: Occupational Mobility, Wage Inequality, Within-Group Inequality, Human Capital, Sectoral Reallocation.

^{*}We have benefited from numerous discussions with our colleagues in the profession. It would be impossible to acknowledge all of them individually in this space, but we must express our deep gratitude to Andrés Erosa, Tim Kehoe, and Gustavo Ventura. We would also like to thank seminar participants at Arizona State, the Atlanta Fed, Calgary, California-Davis, Carnegie Mellon, Chicago, Maryland, the Minneapolis Fed, Minnesota, Northwestern with the Chicago Fed, UPenn, Québec-Montréal, Queen's, the Richmond Fed, Rochester, Simon Fraser, Southern California, Tilburg, Western Ontario, Wisconsin, Yale, 2001 CEA, 2002 SED, 2003 NBER Summer Institute, 2003 RESTUD Tour, 2003 CMSG, 2004 AEA, and 2006 CEPR ESSIM for their helpful and insightful comments.

[†]Department of Economics, University of Toronto, St. George St., Toronto, ON, M5S 3G7 Canada. E-mail: g.kambourov@utoronto.ca.

[‡]Department of Economics, University of Pennsylvania, 160 McNeil Building, 3718 Locust Walk, Philadelphia, PA, 19104-6297 USA. E-mail: manovski@econ.upenn.edu.

1 Introduction

Despite an active search for the reasons behind the large increase in (within-group) wage inequality in the United States over the last 30 years, identifying the culprit has proved elusive. In this paper we suggest that the increase in the variability of productivity shocks to occupations, coupled with the endogenous response of workers to this change, can account for most of the increase in within-group wage inequality.

Several facts, documented in detail in Section 2, characterize the changes in wage inequality in the U.S. from the early 1970s to the mid 1990s. (1) Inequality of hourly wages has increased over the period - the variance of logs has increased from 0.225 to 0.354, or 57%, while the Gini coefficient has increased from 0.258 to 0.346, or 34%. (2) Most of the increase in wage inequality was due to rising inequality within narrowly defined age-education subgroups. (3) The increase in wage inequality reflects increased dispersion throughout the entire wage distribution. (4) Individual earnings became substantially more volatile.

In Kambourov and Manovskii (2007) we document that there was a considerable increase in the fraction of workers switching occupations (e.g., cook, accountant, chemical engineer) over the same period. We find that the annual rate of occupational mobility in the U.S. has increased from 16% in the early 1970s to 21% in the mid 1990s. In addition, in Kambourov and Manovskii (2002) we find substantial returns to tenure in an occupation - an increase in wages of at least 12% after 5 years of occupational experience, holding other observables constant. This finding is consistent with the results from other studies discussed in Section 2.2 which, using different methodologies and data from different countries, provide evidence consistent with the occupational specificity of human capital and with the importance of the occupational search process.

Occupational mobility and wage inequality are interrelated because occupational mobil-

ity affects the distribution of occupational tenure and, thus, of human capital. In addition, occupations are characterized by fluctuating levels of productivity and demand for their services. Occupation-specific human capital ties people to their occupations and makes switching them difficult. Thus, the cross-sectional wage dispersion depends, among other things, on the distribution of occupational tenure in the population, and on the distribution of workers across occupations with different productivities and demands. To evaluate the connection between occupational mobility and wage inequality, one needs an empirically grounded general equilibrium model in which occupational mobility and wage inequality are endogenously determined.

The model we develop is based on the equilibrium search frameworks of Lucas and Prescott (1974) and Alvarez and Veracierto (2000). In these models agents can move between spatially separated local labor markets that the authors refer to as "islands," and, although each local market is competitive, there are frictions in moving between locations. We build on the random search environment in Alvarez and Veracierto (2000) but instead of adopting this spatial interpretation we think of "islands" as occupations. Further, we introduce a heterogeneity in workers with respect to their occupational experience levels and allow for occupation-specific human capital. Thus, when an individual enters an occupation, she has no occupation-specific experience. Then, given that she remains in that occupation, her level of experience increases over time. When an individual switches her occupation, she loses the experience accumulated in her previous occupation. Output and wages in each occupation are a function of the employed amount of effective labor. Occupations are subject to idiosyncratic productivity shocks. We argue that the variability of these shocks has increased from the early 1970s to the mid 1990s.

We quantify the effects of the increased variability of occupational productivity shocks

in the following experiment. We calibrate the parameters of the model to match a number of observations for the early 1970s. Next, keeping the rest of the parameters fixed, we recalibrate the parameters governing the variability of the productivity shocks to occupations in order to match several facts on occupational mobility for the mid 1990s. At no point in the calibration do we target wage inequality.

Two important results emerge from our analysis. The first result is that even though wage inequality is not targeted, the model, calibrated to match the facts on occupational mobility, generates wage inequality and wage instability similar to the within-group measures in the data. For example, the variance of log wages in the model is around 70% of its within-group counterpart in the data, while the log 90/10 ratio and the Gini coefficient in the model are around 90% of their respective within-group measures in the data. We show that the presence of occupation-specific human capital is of central importance for the model's ability to generate substantial levels of wage dispersion - a version of the model without occupation-specific human capital, calibrated to the facts on occupational mobility, generates only a small amount of wage dispersion. The second major result is that the model captures almost all of the increase in within-group wage inequality and the increase in the short-term volatility of log earnings.

A number of papers, including Bertola and Ichino (1995) and Ljungqvist and Sargent (1998), have argued that the economy became more turbulent between the 1970s and the 1980s. Turbulence is typically defined as an unobservable increase in the rate of skill depreciation upon a job switch over the period. Despite the intuitive appeal of the notion of increased economic turbulence, identifying it in the data has proved difficult. We suggest that the observable increase in occupational mobility is one possible manifestation of the increased turbulence. We identify this part of the increase in turbulence with the increased

variability of the occupational productivity shocks.

Most of the research on the increase in wage inequality was concentrated on explaining the rise in the college premium (e.g., Krusell, Ohanian, Ríos-Rull, and Violante (2000)). The increase in the college premium, however, accounts for about a third of the overall increase in inequality. A distinguishing feature of this paper is that it provides a theory of within-group inequality. In essence, we argue that a substantial part of the variance of wages for individuals from the same age-education group is explained by the heterogeneity of their occupational experience and by the current level of demand for the services of the occupations in which these workers choose to be employed.

The existing theories of within-group inequality mainly rely on ex-ante differences in workers' abilities (e.g., Caselli (1999), Lloyd-Ellis (1999), and Galor and Moav (2000)). The increase in wage inequality between the 1970s and the 1990s is attributed to the increase in returns to unobserved individual abilities. This assumption implies that the increase in inequality should manifest itself in the increase in the dispersion of the persistent component of wages, a prediction at odds with the data on the increase in the transitory variance of wages. While the analysis in those articles is only qualitative, making it difficult to evaluate the quantitative importance of the increased returns to ability, the effects they describe are likely complementary to our theory. The fact that occupational mobility is observable and measurable reduces the degrees of freedom we have in accounting for the data.

The mechanism most closely related to our theory is proposed in Violante (2002). In his model, workers are randomly matched with machines that embody technologies of different vintages. Skills are vintage-specific, and the amount of skills that can be transferred to a newer machine depends on the technological distance between the vintages. He studies the effect of an increase in the productivity gap between vintages on wage inequality. Since

workers receive wages proportional to the productivity of their machine, this increase in the productivity distance between machines leads to an increase in wage inequality. Wage dispersion is further increased because of the decline in skill transferability. Quantitatively, Violante's model accounts for about 30% of the rise in within-group inequality.

The paper is organized as follows. In Section 2, we document the facts motivating our analysis. We present the general equilibrium model with specific human capital and define equilibrium in Sections 3 and 4. The calibration and the quantitative experiment we perform are detailed in Section 5. The results are described in Sections 6 and 7. In Section 8, we discuss the results and some of our modeling choices. Section 9 concludes.

2 Facts

2.1 Changes in the Labor Market

From the early 1970s until the mid 1990s the labor market underwent significant changes along several dimensions - wage inequality increased, wages became more volatile, and individuals switched occupations more often. Here we document these developments.

For most of the analysis, we use data from the Panel Study of Income Dynamics (PSID), which contains annual labor market information for a panel of individuals representative of the population of the United States in each year. We choose the PSID data for two major reasons. First, it is a panel data set - a feature that we exploit in our analysis. Second, the PSID is a unique data set that permits the construction of consistent measures of occupational mobility over the 1969-1997 period and one that allows us to deal with the problem of measurement error in occupational affiliation coding that plagues the analysis of mobility in any other U.S. data set. We restrict the sample to male heads of household,

¹To deal with the measurement error problem, we develop a method based on the Retrospective Occupation-Industry Supplemental Data Files released by the PSID in 1999. This method allows us

aged 23-61, who are not self- or dual-employed, and who are not working for the government. The resulting sample consists of 76,381 observations over the 1969-1997 period, with an average of 2,633 observations a year. Additional sample restrictions are imposed in some of the analysis and are discussed when relevant.

The Concept of Wages. Let w_{it} denote real hourly earnings of individual i in year t obtained by the PSID by dividing real annual earnings by total hours worked. We refer to this measure of wages as *Overall*. We also define two additional measures of wages that better correspond to the notion of wages in the model developed below.

1. First, age and education have some effects on wages that are not present in the model. Consequently, we proceed to define wages net of the effect of these two variables. Following the standard approach in the literature (e.g., Katz and Autor (1999)), we obtain such a measure of residual wages through the following regression:

$$ln w_{it} = \beta X_{it} + \epsilon_{it},$$
(1)

where X_{it} includes a constant term, a set of eight education dummies, a quartic in experience, and interactions of the experience quartic with three broad education categories.² Since returns to age and education are known to have changed over the period, we follow the standard practice and estimate this regression cross-sectionally for each year in the sample. Then, using the estimates $\hat{\beta}$ from the regression above, we define our first measure of residual (log) wages:

$$\ln w_{it}^r = \ln w_{it} - \hat{\beta} X_{it}.$$

to obtain the most reliable estimates of the levels and trends in occupational mobility in the literature. We discuss this in detail in Kambourov and Manovskii (2002, 2004, 2007).

²As in Katz and Autor (1999), the 8 education categories corresponding to years of schooling are: 0, 1-4, 5-8, 9, 10, 11, some college, college graduate and post-college. The experience quartic is interacted with dummies for less than high school, some college, and college or greater education. High school graduates are the omitted group.

We refer to this measure of wages as Within-Group 1.

2. The Within-Group 1 measure of wages, however, still does not provide a perfect match to the notion of wages in the model. It is too restrictive. First, occupational experience rises with age, on average. Second, the quality of occupational matches increases with age due to the search process. These are essential features of our model and their contribution should not be factored out from wages in the data. Thus, we include occupational tenure and occupational dummies into the regression and subtract from wages the contribution of age that is not driven by (i) the accumulation of occupational human capital, or (ii) the increased quality of occupational matches over the life-cycle. In particular, first we regress:

$$ln w_{it} = \theta X_{it} + \gamma Z_{it} + \epsilon_{it},$$
(2)

where X_{it} contains the same variables as in (1) while Z_{it} contains a set of dummy variables for 3-digit occupations and the tenure of individual i in his three-digit occupation.³ Then, using the estimates $\hat{\theta}$ from regression 2, we define the Within-Group 2 measure of residual (log) wages as:

$$\ln \widetilde{w}_{it}^r = \ln w_{it} - \hat{\theta} X_{it}.$$

This is the measure of wages which corresponds most closely to the measure of wages in our model.

In what follows, we document all three measures of wages in the data since two data limitations make our preferred *Within-Group 2* measure of wages not as precise as desired.

³We drop each year all observations which belong to a 3-digit occupation that has less than 7 observations in that year. The results are not sensitive to this cut-off.

First, occupational tenure is not well measured in the early years of the sample. The PSID asks individuals to describe their current occupation but does not ask them about the number of years they have worked in their current occupation. Therefore, one needs to follow individual histories to construct occupational tenure. Since the PSID sample starts with a cross-section in 1968, before each of these individuals switches occupations for the first time in the sample we cannot be sure about their occupational tenure. Thus, at least until the mid to late 1970s the occupational tenure measures are imprecise.⁴

Second, the three-digit occupational dummies are noisy, especially in the 1981-1997 period. Prior to 1981 occupational affiliation data comes from the Retrospective Occupation-Industry Supplemental Data Files. These files allow us to precisely identify occupational switches. It is not clear, however, how well these files identify occupational names. For example, if we see an individual classified as a truck driver for three years and then his occupational code switches to that of a cook, we know with high degree of certainty that the individual switched his occupations. We are much less sure that the individual indeed was a truck driver before the switch. After 1981 the problem becomes even worse because only the noisy originally coded occupational affiliation data is available. In Kambourov and Manovskii (2002, 2007), we study various procedures for identifying genuine occupational switches in the originally coded data. While we find that it is possible to identify switches quite precisely, there is much uncertainty as to the precise names of the occupations in which individuals are working.

Finally, the demographic structure of the population has been changing over time while it is not changing in the model. Thus, we construct weights for each individual in each year such that the weighted age-education-race population structure remains constant over

⁴In an attempt to address this deficiency in the data we initialize occupational tenure in 1968 by employer tenure or, if that is not available, by position tenure.

time at its average level. When computing various statistics from the data, such as wage inequality, we weight each observation using these weights. The results are very similar whether we use the changing actual or the fixed average population structure and, while in the paper we focus on the average population structure, we also report the corresponding facts for the actual population structure in Appendix I.

2.1.1 Increase in Wage Inequality

Table 1 and Figures 1, 2, and 3 show that wage inequality has increased substantially over the 1969-1996 period.⁵ Overall inequality, as measured by the variance of log wages, increased from its average value of 0.225 in 1970-73 to 0.354 in 1993-96. Our measures of within-group inequality are consistent with the findings in the empirical literature on wage inequality (see Katz and Autor (1999)) and reveal that a substantial fraction of the increase in overall inequality was accompanied by an increase in within-group inequality. As expected, our *Overall* measure of wages delivers the highest level of inequality, followed by our *Within-Group 2* measure. The *Within-Group 1* measure exhibits the lowest level of inequality. The results for the other measures of wage dispersion, such as the Gini coefficient or the log 90/10 ratio, are similar.

In Figure 4 we plot the percentage change in real wages by percentiles of the wage distribution. The figure reveals that the increase in wage inequality between the early 1970s and mid 1990s reflects changes that affected all parts of the wage distribution. These findings are similar to those reported in Gottschalk (1997) and Topel (1997).

⁵For comparability with the results in the literature the sample is further restricted by dropping in each year (i) all observations with a nominal hourly wage which is lower than half the minimum wage in that year, and (ii) all observations which report less than 520 hours worked in that year.

⁶While we have data only on individual wages, a more relevant concept for our analysis might be that of total compensation. Using establishment survey data for the 1981-1997 period, Pierce (2001) finds that a changing distribution of nonwage compensation reinforces the finding of rising wage inequality. Nonwage compensation is strongly positively correlated with wages, and inequality of total compensation rose more than did wage inequality. If one incorporates workplace amenities, such as daytime versus evening/night

2.1.2 Decline in Wage Stability

Following Gottschalk and Moffitt (1994), one can decompose the log annual earnings y_{it} of individual i in year t = 1, 2, ..., T as:

$$y_{it} = \pi_i + \eta_{it},$$

where π_i is the mean log earnings of individual i over T years, while η_{it} is the deviation of y_{it} from the individual mean log earnings in year t. Denote by $var(\eta_i)$ the variance of η_{it} for individual i over the T years. Consider two nine-year periods – 1970-78 and 1988-96. Table 2 shows that on all three measures of wages the average (across individuals) variance of η_{it} increased substantially between the first and the second periods. These results imply that workers faced considerably higher wage variability in the 1990s than in the 1970s.

2.1.3 Increase in Occupational Mobility

As summarized in Table 3 and Figure 5, we find that occupational mobility in the U.S. has increased from 16% in the early 1970s to 21% in the mid 1990s, at the three-digit level (see Appendices III - V for the description of the occupational codes). Occupational mobility is defined as the fraction of currently employed individuals who report a current occupation different from their most recent previous report.⁸ The three-digit classification

work and injury rates, into the definition of compensation, Hamermesh (1999) suggests that the change in earnings inequality between the early 1970s and early 1990s has understated the change in inequality in returns to work measured according to this definition.

⁷The result that short-term income volatility has increased significantly over the period is robust to various alternative assumptions in modeling the covariance structure of the earnings process in, for instance, Moffitt and Gottschalk (1995) and Heathcote, Storesletten, and Violante (2004). Blundell and Preston (1998) use British consumption data to identify a strong increase in the variance of transitory income shocks between 1968 and 1992.

⁸For example, an individual employed in two consecutive years would be considered as switching occupations if she reports a current occupation different from the one she reported in the previous year. If an individual is employed in the current year, but was unemployed in the previous year, a switch will be recorded if current occupation is different from the one he reported when he was most recently employed.

In Kambourov and Manovskii (2007) we also show that computing mobility on the sample restricted only to workers who are employed both in the current year and in the previous year, would result in the

defines more than 400 occupations: architect, carpenter, and mining engineer are a few examples. Figure 6 also shows that even at the one-digit level - a classification that consists of only nine broad occupational groups - there was a substantial increase in occupational mobility. Rosenfeld (1979) suggests that occupational mobility did not exhibit any trend in the 1960s.⁹

Several additional results from Kambourov and Manovskii (2007) are relevant to this study. First, occupational mobility has increased for most age-education subgroups of the population: it increased for those with a high-school diploma as well as for those with a college degree and for workers of different ages. Second, mobility has increased in all parts of the occupational tenure distribution. Third, the increase in occupational mobility was not driven by an increased flow of workers into or out of a particular one-digit occupation. Thus, we find no evidence of an increase in stepping-stone mobility described in Jovanovic and Nyarko (1997). Finally, we note that occupational switches are fairly permanent: only around 20% of switchers return to their three-digit occupation within a four-year period.

2.2 Occupational Specificity of Human Capital

In Kambourov and Manovskii (2002) we found substantial returns to tenure in a three-digit occupation - an increase in wages of at least 12% after 5 years of occupational experience, holding other observables constant. This finding is consistent with a substantial fraction of workers' human capital being occupation-specific and is supported by a large and growing body of literature. In earlier papers, Shaw (1984, 1987) argued that invest-

level of occupational mobility and its increase that are slightly lower than under our preferred measure of mobility. Calibrating the model to this measure of mobility would not change any of the conclusions in this paper.

⁹Parrado and Wolff (1999) and Parrado, Caner, and Wolff (2005) also argue in favour of an increase in occupational mobility in the United States from the late 1960s till the early 1990s. Moscarini and Vella (2003), using the March CPS, and Moscarini and Thomsson (2006), using the matched monthly CPS, find a similar increase in occupational mobility on a sample similar to ours and for the overlapping 1979-1997 period.

ment in occupation-specific skills is an important determinant of earnings. McCall (1990) emphasized the importance of occupational matching. More recently, Kwon and Meyersson Milgrom (2004), using Swedish data, found that firms prefer to hire workers with relevant occupational experience, even when this involves hiring from outside of the firm. Zangelidis (2004), finds large returns to occupational tenure in British data. Pavan (2005) estimates a structural model using NLSY data and finds substantial returns to occupational tenure. Kambourov, Manovskii, and Plesca (2005), using data from the Canadian Adult Education and Training Survey, find substantial losses in human capital when workers switch occupations. Since the results in these and numerous other papers imply large returns to occupational tenure, understanding the effects of occupational mobility on wage inequality appears important. We explore this relationship below.

3 An Equilibrium Model with Occupation-Specific Experience

Environment. The economy consists of a continuum of occupations of measure one and ex-ante identical individuals of measure one. Individuals die (leave the labor force) each period with probability δ and are replaced by newly born ones. There are two experience levels in each occupation: workers are either inexperienced or experienced. Experience is occupation-specific, and newcomers to an occupation, regardless of the experience they had in their previous occupations, begin as inexperienced workers. Each period, an inexperienced worker in an occupation becomes experienced with probability p. Those who, at the beginning of the period, decide to leave their occupation, search for one period and arrive in a new occupation at the beginning of the next period. Search is random in the sense

¹⁰ The assumption that a worker switching occupations searches for one period is made in order to make the experiment we conduct in this paper more interesting. An alternative assumption would be to change the timing of the model so that the separation decisions are taken at the end of a period so

that the probability of arriving to a specific occupation is the same across all occupations.

Preferences. Individuals are risk-neutral and maximize:

$$E\sum_{t=0}^{\infty} \beta^t (1-\delta)^t c_t, \tag{3}$$

where β is the time-discount factor and c_t denotes consumption in period t. The decision rules and equilibrium allocations in the model with risk-neutral workers are equivalent to those in a model with risk-averse individuals and complete insurance markets.

Production. All occupations produce the same homogeneous good. Output y in an occupation is produced with the production technology

$$y = z \left[ag_1^{\rho} + (1 - a)g_2^{\rho} \right]^{\frac{\gamma}{\rho}}, \tag{4}$$

where $\rho \leq 1$, $0 < \gamma < 1$, 0 < a < 1, g_1 is the measure of inexperienced individuals working in the occupation, g_2 is the measure of experienced individuals working in the occupation, and z denotes the idiosyncratic productivity shock. The productivity shocks evolve according to the process

$$\ln(z') = \alpha + \phi \ln(z) + \epsilon', \tag{5}$$

where $0 < \phi < 1$ and $\epsilon' \sim N(0, \sigma_{\epsilon}^2)$. We denote the transition function for z as Q(z, dz').

There are a large number of competitive employers in each occupation, and the wages that the inexperienced and experienced workers receive in an occupation are equal to their respective marginal products. We assume that there are competitive spot markets for the

that a switching worker instantaneously starts the new period in a new occupation. This would imply that we force individuals to work for one period in an occupation they may not like. Thus an increase in the variance of idiosyncratic occupation productivity shocks will necessarily increase wage inequality. We choose to allow workers to escape the low realizations of occupation productivity shocks in order to make the relationship between occupational mobility and wage inequality truly endogenous.

fixed factor in each occupation, implied by the production function. Households own the same market portfolio of all the fixed factors in the economy which yields the same return. Since we study only the inequality of wages in this paper, without loss of generality, we do not explicitly model households' asset income.

Occupation Population Dynamics. Let $\psi = (\psi_1, \psi_2)$ denote the beginning of the period distribution of workers present in an occupation, where ψ_1 is the measure of inexperienced workers while ψ_2 is the measure of experienced ones. At the beginning of the period, the idiosyncratic productivity shock z is realized. Some individuals in an occupation (ψ, z) could decide to leave the occupation and search for a better one. Denote by $g(\psi, z) = (g_1, g_2)$ the end of the period distribution of workers in an occupation, where g_j is the measure of workers with experience j = 1, 2 who decide to stay and work in an occupation (ψ, z) .¹¹

Let S be the economy-wide measure of workers searching for a new occupation. Then, S and $g(\psi, z)$ determine the next period's starting distribution, ψ' , of workers over experience levels in each occupation. The law of motion for ψ in an occupation is

$$\psi' = (\psi_1', \psi_2') = \Gamma(g(\psi, z)) = (\delta + (1 - \delta)S + (1 - p)(1 - \delta)g_1, p(1 - \delta)g_1 + (1 - \delta)g_2).$$
 (6)

In the beginning of the next period, the number of inexperienced workers who will start in an occupation is equal to (i) the employed inexperienced workers this period who survive and do not advance to the next experience level, plus (ii) the newly arrived workers - those who are searching this period and survive, $(1 - \delta)S$, and the new entrants into the labor market, δ .¹² Similarly, the measure of experienced workers in the beginning of the next

¹¹In general, individual decisions depend on the aggregate state of the economy as well. Since we restrict our analysis to steady states, the aggregate variables in the economy are constant. Thus, we omit them to keep the notation concise.

¹²Since workers in the model have a choice of whether to stay in their occupation or leave, we find it

period is equal to the employed experienced workers this period who survive, plus those employed inexperienced this period who survive and become experienced next period.

Individual Value Functions. Consider the decision problem of an individual in an occupation (ψ, z) who takes as given $g(\psi, z)$, S, and V^s - the value of leaving an occupation and searching for a new one. Denote by $w_1(\psi, z)$ the wage of the inexperienced workers in occupation (ψ, z) . Then, $V_1(\psi, z)$, the value of starting the period in an occupation (ψ, z) as an inexperienced worker, is

$$V_1(\psi, z) = \max \left\{ V^s, w_1(\psi, z) + \beta(1 - \delta) \int \left[(1 - p)V_1(\psi', z') + pV_2(\psi', z') \right] Q(z, dz') \right\}.$$
 (7)

If the worker leaves the occupation, her expected value is equal to V^s . The value of staying and working in the occupation is equal to the wage received this period plus the expected discounted value from the next period on, taking into account the fact that with probability p she will become experienced next period and with probability δ she will die.

Similarly, $V_2(\psi, z)$, the value of an experienced worker in an occupation (ψ, z) , is

$$V_2(\psi, z) = \max \left\{ V^s, w_2(\psi, z) + \beta(1 - \delta) \int V_2(\psi', z') Q(z, dz') \right\}.$$
 (8)

As in the case of inexperienced workers, if an experienced worker leaves the occupation, her expected value is equal to V^s . The value of staying and working in the occupation is equal to the wage received this period plus the expected discounted value from the next period on.

Stationary Distribution. We are focusing on a stationary environment characterized by

reasonable and convenient to model new entrants this way - they start by observing the current economic conditions in a specific occupation and decide then whether to keep looking for another one or not. Forcing the new comers to enter as unemployed does not affect our results.

a stationary, occupation-invariant distribution $\mu(\psi, z)$:

$$\mu(\Psi', Z') = \int_{\{(\psi, z): \psi' \in \Psi'\}} Q(z, Z') \mu(d\psi, dz), \tag{9}$$

where Ψ' and Z' are sets of experience distributions and idiosyncratic shocks, respectively.

4 Equilibrium

Definition.¹³ A stationary equilibrium consists of value functions $V_1(\psi, z)$ and $V_2(\psi, z)$, occupation employment rules $g_1(\psi, z)$ and $g_2(\psi, z)$, an occupation-invariant measure $\mu(\psi, z)$, the value of search V^s , and the measure S of workers switching occupations, such that:

- 1. $V_1(\psi, z)$ and $V_2(\psi, z)$ satisfy the Bellman equations, given V^s , $g(\psi, z)$, and S.
- 2. Wages in an occupation are competitively determined:

$$w_1 = z\gamma a g_1^{\rho-1} \left[a g_1^{\rho} + (1-a) g_2^{\rho} \right]^{\frac{\gamma-\rho}{\rho}},$$

$$w_2 = z\gamma (1-a) g_2^{\rho-1} \left[a g_1^{\rho} + (1-a) g_2^{\rho} \right]^{\frac{\gamma-\rho}{\rho}}.$$

- 3. The occupation employment rule $g(\psi, z)$ is consistent with individual decisions:
 - (a) If $q_1(\psi, z) = \psi_1$ and $q_2(\psi, z) = \psi_2$, then $V_1(\psi, z) > V^s$ and $V_2(\psi, z) > V^s$.
 - (b) If $q_1(\psi, z) < \psi_1$ and $q_2(\psi, z) = \psi_2$, then $V_1(\psi, z) = V^s$ and $V_2(\psi, z) > V^s$.
 - (c) If $g_1(\psi, z) = \psi_1$ and $g_2(\psi, z) < \psi_2$, then $V_1(\psi, z) \ge V^s$ and $V_2(\psi, z) = V^s$.
 - (d) If $g_1(\psi, z) < \psi_1$ and $g_2(\psi, z) < \psi_2$, then $V_1(\psi, z) = V^s$ and $V_2(\psi, z) = V^s$.
- 4. Individual decisions are compatible with the invariant distribution:

$$\mu(\Psi', Z') = \int_{\{(\psi, z): \psi' \in \Psi'\}} Q(z, Z') \mu(d\psi, dz).$$

 $^{^{13}}$ Alvarez and Veracierto (2000) define equilibrium in an island economy with random search and analyze its properties. We extend their equilibrium notion to include accumulation of specific human capital.

5. For an occupation (ψ, z) , the feasibility conditions are satisfied:

$$0 \le g_j(\psi, z) \le \psi_j$$
 for $j = 1, 2$.

6. Aggregate feasibility is satisfied:

$$S = 1 - \int [g_1(\psi, z) + g_2(\psi, z)] \mu(d\psi, dz).$$

7. The value of search, V^s , is generated by $V_1(\psi, z)$ and $\mu(\psi, z)$:

$$V^{s} = (1 - \delta)\beta \int V_{1}(\psi, z)\mu(d\psi, dz).$$

The algorithm for computing equilibrium in this model is presented in Appendix II.¹⁴

5 Quantitative Analysis

5.1 The Experiment

The model parameters to be calibrated are:

- 1. δ the probability of an individual dying,
- 2. β the time discount rate,
- 3. p the probability of an inexperienced individual becoming experienced,
- 4. γ the curvature parameter of the production function,

¹⁴Given the postulated production function, in general, one cannot guarantee uniqueness of the candidate policy $g(\psi,z)$ consistent with equilibrium (as would be the case if experienced and inexperienced workers were perfectly substitutable). Given our estimates below, experienced and inexperienced workers are only mildly complimentary, and thus we do not encounter such multiplicity (anywhere in the state space) when computing the model. As a precaution, however, our computational algorithm allows for such multiplicity. In particular, if there existed multiple candidate policies $g(\psi,z)$ consistent with equilibrium, it would select one that maximizes the value function

$$H(\psi,z) = \max \left\{ z \left[a g_1^\rho + (1-a) g_2^\rho \right]^{\gamma/\rho} + \beta \int H(\psi',z') Q(z,dz') \right\}.$$

This procedure selects the equilibrium policy that maximizes the expected present discounted value of production in an occupation or, alternatively, total wages, or the returns to the (unobserved) fixed factor.

- 5. a the distribution parameter of the production function,
- 6. ρ the substitution parameter of the production function,
- 7. α the unconditional mean of the stochastic process generating shocks z,
- 8. ϕ the persistence parameter of the stochastic process generating shocks z,
- 9. σ_{ϵ}^2 the variance of the innovations in the stochastic process generating shocks z.

The main experiment we perform in this paper is as follows. The first six parameters above are assumed to be invariant over the 1969-96 period. The last three parameters, α , ϕ , and σ_{ϵ} , which govern the idiosyncratic occupational productivity shocks, are assumed to be different in the early 1970s and mid 1990s. Thus, we calibrate α , ϕ , and σ_{ϵ} to match the properties of occupational mobility separately in the 1970-73 and 1993-96 periods. At no point in the calibration do we target wage inequality.

5.2 Calibration Details

Most of the model parameters are directly imputed from the data. Other parameters are chosen to match observed moments, e.g., occupational mobility. We use the PSID data and maintain the sample restrictions described in the beginning of Section 2.

We choose the model period to be two months.¹⁵ Since the PSID has annual frequency, we observe only an annual rate of occupational mobility in the data. To maintain consistency between the model and the data we will pretend that we observe each individual in the model only every sixth period. We choose $\delta = 0.0042$ to generate an expected working lifetime of 40 years. We set $\beta = 1/(1+r)$, where r corresponds to an annual interest rate of 4%.

 $^{^{15}\}mathrm{With}$ this periodicity the model generates quite reasonable durations of unemployment - 9.4 weeks in the 1970s and 10.3 weeks in the 1990s. The level of unemployment in the model is also within a reasonable range - 4.01% in the first period and 6.01% in the second period.

An investigation of the estimated returns to occupational tenure suggests that the rate of growth of wages slows down considerably once an individual reaches approximately 10 years of occupational experience. Thus, we choose p = 0.0167, which implies that it takes, on average, 10 years for a newcomer to an occupation to become experienced in that occupation. We explore the sensitivity of the results with respect to p in Sections 6 and 7.

Production Function. We select $\gamma = 0.68$ to match the labor share implicit in the NIPA accounts. To obtain a and ρ , we employ the following procedure. Taking the ratio of the wages paid to the experienced and inexperienced workers in an occupation (defined by the choice of p), one obtains:

$$\left(\frac{w_2}{w_1}\right) = \frac{1-a}{a} \left(\frac{g_2}{g_1}\right)^{\rho-1}.$$
(10)

The parameters a and ρ are then estimated with the OLS, using the following regression model:

$$\ln\left(\frac{w_2}{w_1}\right)_{it} = \xi_0 + \xi_1 \ln\left(\frac{g_2}{g_1}\right)_{it} + \nu_{it},\tag{11}$$

where *i* indexes occupations, *t* indexes time, and ν_{it} is a classical measurement error. The parameters of interest are obtained from the following relations: $a = 1/(e^{\hat{\xi}_0} + 1)$ and $\rho = \hat{\xi}_1 + 1$. The results imply that a = 0.44 and $\rho = 0.73$. We investigate the sensitivity of the results with respect to these parameters in Sections 6 and 7.

Stochastic Process. We determine the shock values z_i and the transition matrix $Q(z, \cdot)$ for a 15-state Markov chain $\{z_1, z_2, ..., z_{15}\}$ intended to approximate the postulated continuous-valued autoregression. We restrict z_1 and z_{15} as implied by three unconditional standard deviations of $\ln(z)$ above and below the unconditional mean of the process, respectively.

We first choose ϕ and σ_{ϵ} to match the following observations for the 1970-73 period:

- 1. The average annual rate of occupational mobility at the three-digit level using the average population structure (summarized in Table 3).
- 2. The average number of switches for those who switched a three-digit occupation at least once over the period. This statistic is equal to 1.54 over the 1970-73 period and 1.71 over the 1993-96 period.¹⁶

Next, we choose ϕ and σ_{ϵ} to match the corresponding observations for the 1993-96 period. We normalize α to be equal to zero in the first period and adjust it in the second period to keep real average wages constant.¹⁷

Table 4 summarizes the values of the parameters assumed to be fixed in both periods. Table 5 contains the values of α , ϕ , and σ_{ϵ} with which the model exactly matches the calibration targets in both periods (see Table 6). The values of the shocks and the stationary distributions of occupations over shocks in both periods can be found in Table 7.

6 The Level of Wage Inequality and Wage Stability

We did not target the dispersion or volatility of wages when calibrating the model. Instead, we targeted occupational mobility and let the model determine wages endogenously. Thus, the first question we ask is whether the calibrated model with occupation-specific human

¹⁶This statistic distinguishes if most of the occupational mobility is accounted for by a subset of workers switching occupations repeatedly or by different workers switching occasionally. Subject to the environment, it is also a measure of how directed a search is, i.e., how long, on average, it takes a worker switching occupations to find a new one that she likes. To compute the average number of occupational switches in the 1970-73 period, we restrict the sample to those who satisfy our usual sample restrictions described in Section 2 and have an occupational code in every year of the 1969-73 interval. This implies that sample size is constant in every year. The procedure used to compute this statistic in the 1993-96 period is similar.

 $^{^{17}}$ The choice of values of α in either period has no effect on the values of the statistics we are interested in in this paper. There is some controversy in the literature whether average real wages of male workers have changed in the data between the early 1970s and mid 1990s. Depending on the choice of the deflator and of the exact years over which the comparison is made, some papers find them declining slightly while others find them slightly increasing. Since this choice has no importance for our results, we pick the middle point in the range of the available estimates.

capital generates reasonable levels of wage inequality and wage volatility. In the next section we will ask whether the increase in occupational mobility over time can help us understand the rise in the dispersion and in the volatility of wages.

6.1 Results

Table 8 reports the level of wage inequality and wage stability in the model and in the data for the 1970-1973 period.¹⁸ The results indicate that the model, calibrated to match the facts on occupational mobility in that period, generates wage inequality and wage instability similar to those in the data. For example, the variance of log wages in the model is around 70% of its within-group counterpart in the data, while the log 90/10 ratio and the Gini coefficient in the model are around 90% of their respective within-group measures in the data.

To investigate the sensitivity of these findings to the choice of the parameter values, we first conduct a "comparative statics" analysis - we change one by one the values of a, ρ , p, and γ , and, without recalibrating the model, investigate the effects such a change has on the results. The results of these experiments, summarized in Table 9, indicate that occupational mobility and wage inequality change slowly, smoothly and monotonically as we vary a, ρ , p, and γ .

Next, we investigate the sensitivity of the results with respect to p ranging from 0.0208 to 0.0139, implying that it takes either 8 or 12 years to become skilled in an occupation. Given the choice of p, we re-estimate the parameters of the production function a and ρ , and then recalibrate all the remaining parameters of the model to match the same targets as in the benchmark calibration. As seen in Table 11, both recalibrated models generate

¹⁸Even though the discussion in this section focuses on the performance of the model calibrated to the early 1970s, we would reach the same conclusions if we were to discuss the performance of the model calibrated to the mid 1990s.

substantial levels of wage inequality.

6.2 The Importance of Human Capital

What accounts for the model's ability to generate substantial levels of wage dispersion? As we discuss in this section, occupation-specific human capital is of central importance. To isolate its effect we now calibrate the model without occupation-specific human capital to match the same targets as in the benchmark calibration (the model remains exactly the same with the only change that people of various occupational experience levels are perfectly substitutable in occupational production and are equally productive). We find that in the model without human capital the variance of log wages drops to 0.03. This result echoes the findings in Hornstein, Krusell, and Violante (2006) that reasonably calibrated standard search and matching models of equilibrium unemployment generate only a small amount of frictional wage dispersion. Thus, it turns out that, without the loss of the specific human capital, the costs of switching occupations in terms of forgone earnings are too small to support a substantial wage dispersion. This is despite the fact that we do not model unemployment insurance, home production and the value of leisure (although we assume that individuals are risk-neutral - an assumption that decreases the cost of switching occupations in the model; and abstract from modeling the costs of training often associated with occupational switching).

There are several channels that account for the importance of occupation-specific human capital in generating substantial wage inequality.

First, and perhaps most importantly, the presence of human capital generates a lock-ineffect. Experienced workers who have accumulated a significant amount of specific human capital are willing to ride the shocks together with their occupations rather than switch them and destroy specific human capital. Less experienced workers are also less willing to switch occupations in the model not to forgo the accumulation of human capital in their occupation.

Second, the presence of occupation-specific human capital leads to the dispersion of human capital levels and wages within occupations. Since computing the model is fairly hard we allowed for only two levels of occupational human capital. This limits the wage dispersion within occupations in the model. But it is there, nevertheless.

Third, workers equalize expected present values of their earnings rather than current wages - workers are indifferent between a flat earnings profile and an increasing earnings profile as long as the present discounted values are the same. In the model some workers are willing temporarily to work at lower wages in their occupation because of the possibility of becoming experienced and earn substantially higher wages.¹⁹

7 The Increase in Wage Inequality and the Decline in Wage Stability

We now turn to analyzing the model's ability to account for the increase in wage inequality and the decline in wage stability in the 1969-1996 period. As mentioned earlier, the nature of the experiment is to recalibrate the process of the shocks to occupations in order to match the facts on occupational mobility without targeting in any way wage inequality.

¹⁹The relative wages of experienced and inexperienced workers in an occupation depend on the number of workers of each type. When an occupation experiences a good productivity shock, a larger fraction of the inexperienced workers who come to that occupation will decide to stay and work in that occupation. This decreases the wages of experienced workers but by less than the wages of inexperienced workers (since $\gamma < \rho$). Thus, some inexperienced workers may be induced to work in a highly productive occupation, despite receiving relatively low wages, in expectation of gaining experience and receiving higher wages in the future.

Note as well that the fact that the estimates of the production function parameters entail $\rho < 1$ implies that it is possible for experienced workers in an occupation to receive lower wages than the inexperienced ones do. This indeed happens occasionally in the calibrated model. However, the fraction of the population that works in the occupations where this happens is very small - less than 1%. Eliminating such occupations from the analysis altogether leaves all of our results virtually unchanged.

7.1 Results

The results, summarized in Table 10, show the change in wage inequality and wage stability as we move from the early 1970s to the mid 1990s. The main message from the results is that the model is quite successful in accounting for the changes in the wage structure over the period as it captures almost all of the observed increase in within-group wage inequality and decline in wage stability. To look deeper at the increase in wage inequality, we use the calibrated model to construct a graph of the relative change in wages by percentiles of the wage distribution. Figure 7 plots this change in the model and in the data.²⁰ The figure illustrates that the model does an excellent job matching the observation that the increase in within-group wage inequality in the data reflected changes that affected all parts of the wage distribution.

Inspecting the results in Table 11 from the re-calibrations of the model with different choices of p, one finds that both recalibrated models generate increases in wage inequality that are similar to those in the data. Similar to the benchmark calibration, in all cases it is necessary to increase the variance of the innovations in the productivity shock process and to decrease its persistence to match the increase in occupational mobility between the early 1970s and mid 1990s.

In the remainder of this section we discuss the economics behind the ability of the model to generate increases in occupational mobility and wage inequality similar to those in the data.

It turns out that the distribution of workers over the shocks (i.e., the fraction of workers on the lowest shock, second lowest, and so on to the highest shock) is very similar in the

 $^{^{20}}$ The graph for the data represents the percentage change in real hourly earnings by percentiles using the *Within-Group 2* measure of wages and average population structure. Figures 4 and A-4 show the corresponding graphs for the other measures of wages and the actual population structure.

1970s and 1990s. Given that the actual values of these shocks are different and more dispersed in the latter period, as can be seen in Table 7, wage inequality clearly increases. This is an interesting equilibrium outcome since (i) the new distribution of workers over the shocks is an equilibrium object, and (ii) even though this distribution is similar in the two periods, the actual patterns of mobility of workers in the model across occupations (and across productivity shocks) are quite different.

Consider, for example, an occupation which goes from being on shock 8 to shock 4 and consider what would happen to the workers on such an occupation in the 1970s and in the 1990s. Typically, some workers leave an occupation whose productivity declines. However, in the more volatile environment of the 1990s relatively more workers choose to remain in such an occupation. In other words, the marginal worker who leaves the occupation in the 1970s would choose to remain in that occupation in the 1990s. The reason for this is that in the more turbulent 1990s the gains of locating a productive occupations are higher but shorter lived and more people choose to preserve their human capital rather than taking a chance of building it in some temporarily more productive occupation.

This effect tends to reduce mobility and increase inequality. The decline in mobility is more than offset, however, by the fact that such transitions of occupations from, say, shock 8 to shock 4 occur considerably more often in the 1990s. The net effect is that more workers are "displaced" at the same time as some workers who would have left a relatively unproductive occupation in the tranquil 1970s choose to remain in it in the 1990s.

7.2 Evaluating Some Alternative Theories of the Increase in Occupational Mobility and Wage Inequality

In this Section we qualitatively study whether changes in occupational mobility and wage inequality could have been driven by the changes in the relative importance of occupationspecific human capital and changes in the non-human capital costs of switching occupations.

An increase in the relative productivity of experienced workers. The analysis of the model's performance with respect to a in Table 9 helps evaluate an alternative theory of the increase in wage inequality. It suggests that wage inequality might have increased because of an increase in the relative productivity of experienced workers. Suppose this is indeed what happened (say, a declined from 0.44 to 0.40) while the variability of occupational productivity shocks did not change over the period (it remained at its early 1970s level). Such a substantial (23 percent) increase in the relative productivity of experienced workers would indeed result in some increase in the variance of logs (from 0.120 to 0.149) and an increase in the variance of transitory log wages (from 0.096 to 0.110). The theory, however, would have the strongly counterfactual prediction of a decline in occupational mobility from 0.159 to 0.102. These results are similar in spirit to those in Den Haan, Haefke, and Ramey (2001) and are intuitive. If the returns to occupational experience increase, individuals respond by accumulating more human capital and switching their occupations less often.

Decline in the importance of the occupation-specific human capital. Alternatively, one may ask what would have happened to occupational mobility and wage inequality if human capital generated by occupation-specific experience became less important over time. We evaluate this theory in Table 9 by increasing a from 0.44 to 0.48, implying a substantial (19 percent) decline in the relative productivity of experienced workers. As one might expect, the decline in importance of occupation-specific human capital in the model will result in an increase in occupational mobility (from 0.159 to 0.211). It would, however, imply a decline in wage inequality (the variance of logs will decrease from 0.120

to 0.101) and the variance of transitory log wages (from 0.096 to 0.086) that is clearly in conflict with the data.

Decline in non-human-caital costs of switching occupations. Finally, suppose that the only change in the economic environment between the early 1970s and the mid 1990s was the decline in the cost of search that was not related to the destruction of human capital. Is this consistent with the stylized facts motivating this paper? Formally, we perform the following experiment. The model is calibrated to match the targets in the early 1970s. Then we decrease the model period from two months to one month. We recompute all the time-invariant parameters of the model to be consistent with the new model period. Since the model period is now twice shorter, we rescale the persistence of the productivity shocks $\phi^{new} = \sqrt{\phi^{old}}$ and the standard deviation of its innovations, $\sigma^{new}_{\epsilon} = \sigma^{old}_{\epsilon}/\sqrt{1 + (\phi^{new})^2}$. The rationale for this rescaling is that we want to keep the environment constant in the following sense: conditional on a realization of the shock in period t, we keep the expected value and the expected variance of the shock in period t + 2 identical to what they would have been in period t + 1 with a twice longer model period.²¹

The results of this experiment indicate that a substantial decline in search costs is compatible with the data on occupational mobility. The predictions about wage inequality, however, are strongly counterfactual: both the dispersion and the volatility of wages decline by approximately 10%. We conclude from this experiment that if the cost of switching occupations did decrease over the period, the observed increase in wage inequality is substantially lower than what it would have been otherwise. If this is true, economists have a considerably more difficult puzzle to tackle when trying to account for the increase in

 $^{^{21}}$ The relationship is not exact because when moving from the two to one month model period we maintain the AR(1) assumption on the evolution of shocks. Quantitatively, however, the effect of this inconsistency is negligible.

wage inequality.

8 Discussion

8.1 Results

Inequality Within and Across Occupations. In the calibrated model the increase in the variability of occupational productivity shocks results in a sizable increase in the dispersion of wages across occupations with a smaller increase of wage dispersion within occupations. We now contrast this implication of the model with the data. In Table 12 we summarize the variance of log wages between and within three-digit occupations in the 1970-1973 and 1993-1996 periods.²²

The results indicate that, using the *Overall* measure of wages, the inequality between occupations increases substantially from 0.099 to 0.192 while the inequality within occupations increases from 0.127 to 0.154. As we move to the *Within-Group 1* and the *Within-Group 2* measures of wages, mainly between-occupation inequality is affected suggesting that there is much greater heterogeneity by age and education across occupations than within occupations. The *Within-Group 2* measure of wages, which is the one closest to the notion of wages in our model, displays an increase in inequality between occupations from 0.067 to 0.141 and an increase in the inequality within occupations from 0.109 to 0.140.

Recall that names of occupations are noisy in the PSID, especially in the 1981-1996 period. Misclassifying the occupational affiliation of workers tends to increase the level of within-occupation inequality and to decrease the level of between-occupation inequality. Due to higher noise in occupational names in the 1990s, when only the originally coded

²²We define between-occupation wage inequality as the variance of the mean of log wages in an occupation while within-occupation inequality is defined as the average (across all occupations) variance of log wages within an occupation.

data are available from the PSID, the computed increase in within-occupation inequality is most likely an upper bound on the actual increase in the data.

The level and increase in between-occupation inequality in the model is similar to that in the data. Our model has much less to say about within-occupation inequality. In the data, the level of within-occupation inequality appears significant and the increase is probably not negligible either. For computational reasons we have only two experience levels in an occupation as a result of which we cannot generate the levels of within-occupation inequality observed in the data. In addition, we have abstracted from any ex ante heterogeneity.²³

Properties of the Shock Process. We found that in order to account for the change in occupational mobility the persistence of shocks to occupations must have declined and their variance increased. What are the possible economic reasons for this? Can we obtain some independent evidence of this happening in the data? We discuss these two questions in this Section.

Evaluating what caused the increase in the variability of occupational shocks is well beyond the scope of this paper. Here, without presuming to be thorough and rigorous, we suggest a number of alternatives potentially accounting for the increase in the variance and decline in the persistence of occupational shocks. Distinguishing (quantitatively) between the importance of these and other mechanisms, we believe, provides a promising avenue for future research.

1. There is evidence suggesting that nowadays technologies arrive at a faster rate than 30 or 40 years ago (e.g., Violante (2002)). One would expect that the arrival of a new technology would not affect uniformly all occupations. Instead it would benefit some

²³We have also abstracted from idiosyncratic shocks to individuals, firms and industries. Introducing such shocks may help account for the level of within-occupation inequality.

at the expense of others resulting in a higher variance of the occupational shocks. It could also decrease the persistence of these shocks - the relative productivity of an occupation might increase in response to a technological change today, but decline in response to another change tomorrow.²⁴

- 2. Opening the economy to international trade makes occupations more exposed to shocks than before. First, productivity changes in particular sectors in foreign countries have an impact on corresponding sectors in the domestic economy and, as a result, affect a certain set of occupations. Second, changes in foreign demand also affect particular sectors (and occupations) of the domestic economy. Since sectoral changes in the rest of the world might hurt a particular domestic occupation in the current period while increasing its relative importance in the near future, the plausible net outcome is an increase in the variance of the occupational shocks and a decline in their persistence.
- 3. Other mechanism may also play an important role. Labor unions that span several occupations may insulate workers from short-term fluctuations in demands for the services of particular occupations. De-unionization exposes workers to those shocks. Similarly, each firm employs workers from different occupations. Risk-averse workers who do not have access to perfect insurance may want firms to smooth their transient occupational shocks. If capital markets become more efficient over time, the demand for such insurance declines, and workers again become more exposed to occupational shocks that are, from the workers' point of view, more dispersed and less persistent.

Thus, while it does not appear unreasonable that occupational shocks became more

²⁴One may, for example, recall the booming demand for web page designers just a few years ago that all but disappeared when simple web page programming software became widely available.

dispersed and less persistent, is there any evidence of this in the data? Consider the change in the persistence of average wages in occupations and the change in the variance of the innovations to them. In particular, we use the PSID and our usual sample restrictions to construct a panel of the log of average wages of 3-digit occupations. Next, we use the 1969-1980 and 1985-1996 sub-periods to estimate two AR(1) processes roughly corresponding to the two steady states of the model. We find that the persistence of log average wages in an occupation declined from 0.27 in the 1970s to 0.19 in the 1990s. The standard deviation of the innovations to occupational average wages increased from 0.12 in the 1970s to 0.20 in the 1990s. We find similar trends when using the Within-Group 1 and Within-Group 2 measures of wages and coarser occupational classifications.²⁵

The increase in the variance and decline in the persistence of the average occupational wages suggest an increase in the variance and decline in the persistence of the occupational productivities. Unfortunately due to data limitations, we cannot directly estimate the change in the shock process in the data. In order to measure the shocks to occupations as residuals from the wage equations (using our model) we need to know (i) one's tenure in his occupation each year, and (ii) the actual occupation that he is working in. However, as discussed in Section 2.1, until the mid to late 1970s the occupational tenure measures are imprecise, and the three-digit occupational dummies are noisy, more so in the 1981-1996 period. Thus it does not appear possible to infer from the data the changes in the shock process with any degree of certainty.²⁶ Instead, we use the model and our calibration strategy in order to infer how the shock structure must have changed in order to match the

²⁵The presence of noise in the occupational affiliation data and the relatively small size of the PSID have an ambiguous but possibly large effect on these levels of persistence and variance. Their change is more likely to be informative, however.

²⁶One possible alternative avenue is to note that occupations are not uniformly distributed across industries. Using the industry-based stock price data, as in Loungani, Rush, and Tave (1990) and Brainard and Cutler (1993), we can attempt to infer the implied shocks to occupations. While complicated, such analysis may prove fruitful.

change in occupational mobility, which we can measure precisely.

8.2 Modeling Choices

Productivity vs. Demand Fluctuations. We have modeled occupations as producing a homogeneous good and occupational shocks as shocks to the production function in an occupation. There is an isomorphic representation of occupations as producing different goods and shocks are to the demand for services of different occupations. In particular, assume that each occupation produces a differentiated good and faces a Marshallian demand function p = p(z, O), where p is the relative price of the good and O is the total quantity produced in the occupation. Individuals value not only the product produced in their occupation but also products of all other occupations - e.g., through a CES utility function with a weight assigned to each occupational good. As a result, having produced the good in their occupation, they exchange it for goods produced by the other occupations. With these assumptions, the idiosyncratic shocks z, modeled as a shock to the weights in the utility function can be interpreted as a demand shock (we can instead use also, or only, productivity shocks modeled as a shock to the occupational production function). A higher realization of the shock z in an occupation (higher weight in the utility function) implies that the demand for the services of that occupation has increased. That allows workers in that occupation to charge a higher price for a given level of total output in the occupation and, in return, buy more of the goods produced in the other occupations. Of course, we would expect an inflow of labor and capital into a high demand occupation. Suppose that we have free capital and (to some extent) labor mobility across occupations and a constant returns to scale production function in labor and capital. Then, doubling the amount of capital and labor in the occupation would double output, but since an increase in the output O decreases the price of the product p, the marginal revenue product for

an additional worker in that occupation is declining. As a result, the economy behaves as if we had occupations producing the same good but with a decreasing returns to labor technology (and a fixed factor) which is being subject to productivity shocks each period. In fact, the original Lucas and Prescott (1974) paper describes the environment in terms of the above mentioned Marshallian demand functions and performs the analysis by placing the required restrictions directly on the revenue function on an island rather than on the production function on that island. Since the two versions of the model are indistinguishable from each other, our choice to work with a more convenient technology representation is inconsequential.

Random Search. We have assumed that search is random in the sense that, for a worker switching occupations, the probability of arriving at a specific occupation is the same across all occupations. An alternative is to assume that search is directed, similar to the original Lucas and Prescott (1974) model. The choice between these two modeling strategies is less important than it may appear. The short model period of two months allows workers to sample as many as six occupations in a given year and quickly locate an occupation with a sufficiently high productivity. Thus, search in our model is directed, but it takes some time for the workers to identify productive occupations. The cost imposed on workers by this imperfection of the search technology is not large. To see this, consider the dispersion in the present discounted value of lifetime earnings of inexperienced workers in the model. The 90 to 10 ratio is less than 1.03.²⁷

In the directed search version of our model, there will be an equilibrium condition stating that the expected value (not wages) of starting next period in a new occupation as

 $^{^{27}}$ To see this differently, if we take a worker from the worst occupation in the economy and randomly reallocate her to another occupation, her present value lifetime earnings would increase by only 0.4%.

an inexperienced worker is equalized across occupations that are receiving workers. Note that even with fully directed search, the present value of lifetime earnings will not be equalized across all occupations because of the cost of switching. There are occupations with relatively low values of lifetime earnings where nobody chooses to arrive and at the same time nobody decides to leave since the benefit of a higher value of starting in a different occupation is offset by the cost of reallocating.

We should emphasize that all the channels we analyze in the random search model are also present in the version of the model with perfectly directed search. The level of wage inequality may be somewhat higher or lower than in the model with random search. Similar to the model with random search, in response to the increase in the variance of the productivity shock process and to the decline in its persistence (needed to generate a higher level of mobility), there will be an increase in wage inequality in the directed search version of the model as well. The endogenous response of workers to the changing economic environment is the same in the two versions of the model. Therefore, even though we have random search in the model, we expect that quantitatively our model does not differ much from a directed search model.

Capital Mobility. We have assumed that while labor is perfectly mobile across occupations, capital is not. Allowing for capital mobility does not change our conclusions. Similar to Veracierto (2002) and Manovskii (2003), assume that there are a large number of competitive firms in each occupation that have access to a production technology:

$$y = F(L, K, z) = zL^{\gamma}K^{\kappa}, \tag{12}$$

where K represents the total amount of capital supplied to the production of output in an occupation, $L = [a_1 g_1^{\rho} + a_2 g_2^{\rho}]^{\frac{1}{\rho}}$, and $\gamma + \kappa \leq 1$. Capital is assumed to be perfectly mobile

across occupations, and thus its rental rate, r, is equalized across all occupations. Thus, the amount of capital allocated to an occupation with labor supply L is given by:

$$K = \left[\frac{r}{z\kappa}\right]^{\frac{1}{\kappa-1}} L^{\frac{\gamma}{1-\kappa}}.$$
 (13)

Wages for a worker with experience i are then given by:

$$w_i(L, z; r) = a_i z^{\frac{1}{1-\kappa}} \gamma g_i^{\rho-1} \left[\frac{r}{\kappa} \right]^{\frac{\kappa}{\kappa-1}} L^{\frac{\gamma+\kappa\rho-\rho}{1-\kappa}}. \tag{14}$$

This implies that capital will reallocate toward highly productive occupations, increasing wages of the workers present in those occupations and decreasing wages in less productive occupations. Thus, capital endogenously amplifies the volatility in the occupation-specific productivity shocks, so that with mobile capital in the model we would need a smaller level and a smaller increase in the variance of the shocks to match the facts on occupational mobility. We, however, are not interested in the shock process itself. We calibrate this process to match occupational mobility in both steady-states. In the presence of capital we will get a different process for the genuine z, but the combined effect of that z and the endogenous capital reallocation would lead to the same process for labor productivity that we use in this version of the paper. The interpretation would probably be more natural but, given our calibration strategy, the quantitative results, in particular the implications for wage inequality, would be unchanged.

9 Conclusion

In this paper we argue that wage inequality and occupational mobility are interrelated phenomena. The link between them is motivated with our empirical findings that human capital is occupation-specific and that the fraction of workers switching occupations in the U.S. increased from 16% a year in the early 1970s to 21% in the mid 1990s. We develop a

general equilibrium model with occupation-specific human capital and heterogeneous experience of workers within occupations. The model is characterized by endogeneity of wages and occupation separation rates (i.e., endogenous destruction of occupation-specific human capital in the economy). We find that the model, calibrated to match the facts on occupational mobility, exhibits levels of wage inequality and wage stability that are close to the within-group measures in the data. We show that the presence of occupation-specific human capital is of central importance for the model's ability to generate substantial levels of wage dispersion - a version of the model without occupation-specific human capital generates only a small amount of wage dispersion. Further, we find that the model, calibrated to match the observed increase in occupational mobility, accounts for almost all of the increase in within-group wage inequality and the decline in wage stability over the period. Using the model, we evaluate several reasons for the increase in occupational mobility and find that the one consistent with the data is the increase in the variability of productivity shocks to occupations. We describe the particular channels through which increased uncertainty in the economy leads to higher wage inequality.

Table 1: Wage Inequality in the United States, Average Population Structure.

	1970-73	1993-96
Variance	of log wage	es
Overall	0.225	0.354
Within-Group 1	0.162	0.248
Within-Group 2	0.177	0.293
Log 90,	/10 ratio	
Overall	1.167	1.448
Within-Group 1	0.975	1.192
Within-Group 2	0.999	1.293
Gini ce	pefficient	
Overall	0.258	0.346
Within-Group 1	0.215	0.273
Within-Group 2	0.223	0.299
Within-Group 2	0.223	0.299

Note - Authors' calculations from the PSID. The sample is restricted to male heads of household, aged 23-61, who are not self- or dual-employed, and who are not working for the government. In addition, we drop in each year (i) all observations with a nominal hourly wage which is lower than half the minimum wage in that year, and (ii) all observations which report less than 520 hours worked in that year.

Table 2: Wage Stability in the United States, Average Population Structure.

Average $var(\eta_i)$	1970-78	1988-96
Overall	0.087	0.175
Within-Group 1	0.086	0.173
Within-Group 2	0.126	0.207

Note - Authors' calculations from the PSID. $var(\eta_i)$ denotes the average (across individuals) variance of transitory wages. See Section 2.1.2 for details.

Table 3: Changes in the U.S. Labor Market: Occupational Mobility.

	1970-73	1993-96	Change
Actual Population Structure	0.157	0.205	30.6%
Average Population Structure	0.159	0.213	34.0%

Note - Authors' calculations from the PSID. Occupational mobility refers to the average annual rate of occupational mobility at the three-digit level over the corresponding period. See Kambourov and Manovskii (2007) for details.

Table 4: Calibrated Values of Time-Invariant Parameters.

δ	γ	β	a	ρ	p
0.0042	0.68	0.9935	0.44	0.73	0.0167

Table 5: Calibrated Values of Time-Dependent Parameters.

Parameter	1970-73	1993-96
ϕ	0.918	0.878
σ_ϵ	0.180	0.291
θ	0.454	0.608
α	0.000	-0.115

 ϕ - persistence of the log shocks.

 σ_{ϵ} - standard deviation of the white noise.

 θ - standard deviation of the log shocks.

 α - unconditional mean of the process.

Table 6: Matching the Calibration Targets.

	Target	197	70-73	199	93-96
		Data	Model	Data	Model
1.	3d occupational mobility	0.159	0.159	0.213	0.213
2.	The average number of switches for those who switched a 3-digit occupation at least once in a 4-year period	1.54	1.54	1.71	1.71

Note - The table describes the performance of the model in matching the targets. The data are computed by the authors from the PSID.

Table 7: Shock Values and the Stationary Distribution of Occupations over Shocks.

	1970	0-73	1998	3-96
	z	$\zeta(z)$	z	$\zeta(z)$
1.	0.256	0.004	0.143	0.003
2.	0.311	0.008	0.186	0.008
3.	0.378	0.020	0.241	0.019
4.	0.459	0.043	0.313	0.042
5.	0.558	0.077	0.406	0.076
6.	0.677	0.117	0.527	0.117
7.	0.823	0.150	0.683	0.152
8.	1.000	0.162	0.887	0.166
9.	1.215	0.150	1.151	0.152
10.	1.476	0.117	1.494	0.117
11.	1.794	0.077	1.939	0.076
12.	2.179	0.043	2.516	0.042
13.	2.648	0.020	3.266	0.019
14.	3.217	0.008	4.238	0.008
15.	3.908	0.004	5.500	0.003

z - values of the shocks.

 $[\]zeta(z)$ - stationary distribution of occupations over shocks.

Table 8: Results from the Calibrated Model: The Level of Wage Inequality and Wage Stability, 1970-1973.

	Model	Data		
		Within-Group 2	Within-Group 1	Overall
Variance of log wages	0.120	0.177	0.162	0.225
Log 90/10 ratio	0.854	0.999	0.975	1.167
Gini coefficient	0.198	0.223	0.215	0.258
Variance of transitory log wages	0.096	0.126	0.086	0.087

Note - In the data, the variance of transitory log wages is computed for the 1970-1978 period.

Table 9: Comparative Statics, 1970-1973.

Benchmark (1)	a=0.40 (2)	a=0.48 (3)	$\rho = 0.60$ (4)	ρ =0.85 (5)	p=0.0133 (6)	p=0.0233 (7)	$\gamma = 0.56$ (8)	$\gamma = 0.80$ (9)
Occupational mobi	lity:							
0.159	0.102	0.211	0.166	0.141	0.156	0.166	0.149	0.180
Variance of log wa	ges:							
0.120	0.149	0.101	0.126	0.118	0.124	0.115	0.114	0.137
Log 90/10 ratio:								
0.854	0.955	0.762	0.872	0.848	0.864	0.844	0.830	0.911
Gini coefficient:								
0.198	0.220	0.184	0.203	0.197	0.201	0.196	0.194	0.211
Variance of transit	tory log wa	iges:						
0.096	0.110	0.086	0.102	0.093	0.099	0.092	0.091	0.114

Note - Column (1) reports the statistics in the benchmark calibration of the model for the period 1970-73 in which a=0.44, $\rho=0.73,\ p=0.0167,\ {\rm and}\ \gamma=0.68$. The rest of the table reports how the statistics change if we keep all parameters at their benchmark-calibrated values in that period and one by one increase or decrease the values of $a,\ \rho,\ p,\ {\rm and}\ \gamma$.

44

Table 10: Results from the Calibrated Model: The Increase in Wage Inequality and the Decline in Wage Stability.

	Model	Data		
		Within-Group2	Within-Group1	Overall
Variance of log	g wages			
1970-1973	0.120	0.177	0.162	0.225
1993-1996	0.231	0.293	0.248	0.354
Log 90/10 rati	0			
1970-1973	0.854	0.999	0.975	1.167
1993-1996	1.185	1.293	1.192	1.448
Gini coefficien	t			
1970-1973	0.198	0.223	0.215	0.258
1993-1996	0.273	0.299	0.273	0.346
Variance of tre	ansitory log	wages		
1970-1978	0.096	0.126	0.086	0.087
1988-1996	0.181	0.207	0.173	0.175

Table 11: Recalibrating the Model with Different Estimates of a, ρ , and p.

_	$a=0.41, \rho=0.85, p=0.0208$		$a=0.48, \rho=0.60, p=0.0139$
	1970-73	1993-96	1970-73 1993-96
Variance of log wages	0.135	0.273	0.077 0.165
Log 90/10 ratio	0.916	1.282	0.665 0.989
Gini coefficient	0.214	0.297	0.160 0.231
Variance of transitory log wages	0.107	0.226	0.062 0.132

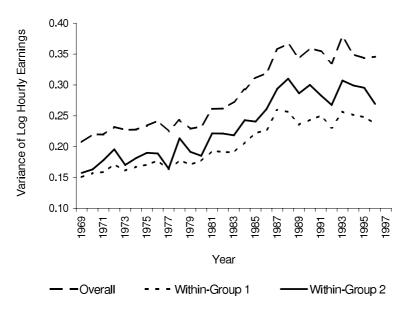

Note - In the benchmark calibration of the model p=0.0167, implying that it takes 10 years to become experienced in an occupation. This table reports the behavior of the model if the value of p is changed. In the first case, the value of p implies that it takes, on average, eight years to become experienced in an occupation. In the second case, the value of p implies that one becomes experienced in an occupation after 12 years. In each of the cases, given p, we reestimate the values of a and p, and then recalibrate the parameters governing the occupational shock process.

Table 12: Between-Occupation and Within-Occupation Wage Inequality: Variance of Log Wages, Three-Digit Level.

	1970-73	1993-96
Overall		
Between-occupation	0.099	0.192
Within-occupation	0.127	0.154
Within-Group 1		
Between-occupation	0.058	0.108
Within-occupation	0.112	0.148
Within-Group 2		
Between-occupation	0.067	0.141
Within-occupation	0.109	0.140

Note - Between-occupation wage inequality is measured as the variance of the mean log wages in an occupation while within-occupation inequality is the average (across all occupations) variance of log wages within an occupation. We use the PSID and the sample is restricted to male household heads, aged 23-61, who are not self- or dual-employed, are not working for the government, and have worked at least 520 hours during the year. Each year we restrict to occupations which have at least four observations in that year.

Figure 1: Variance of Log Real Hourly Earnings in the United States, 1969-1996, PSID, Average Population Structure.

Source: Authors' calculations from the PSID.

Figure 2: Log 90/10 Ratio of Real Hourly Earnings in the United States, 1969-1996, PSID, Average Population Structure.

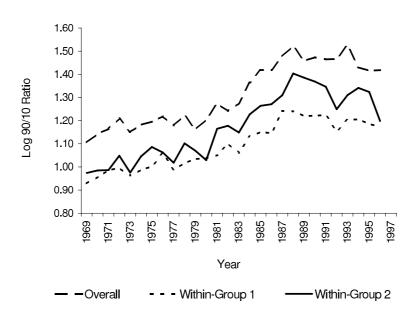
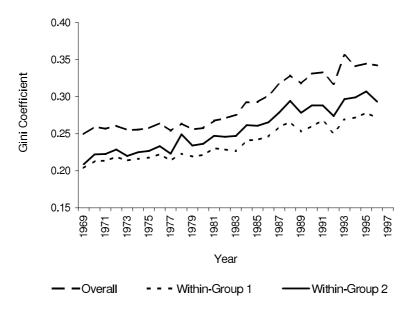



Figure 3: Gini Coefficient of Real Hourly Earnings in the United States, 1969-1996, PSID, Average Population Structure.

Source: Authors' calculations from the PSID.

Figure 4: Percentage Change in Real Hourly Earnings by Percentiles of the Distribution, 1993-96 vs. 1970-73, Average Population Structure.

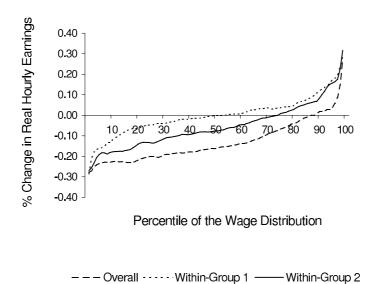
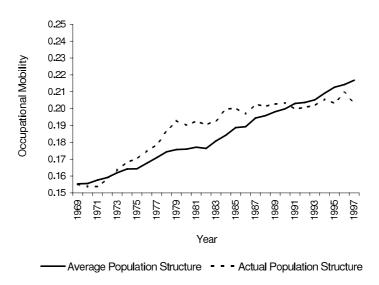
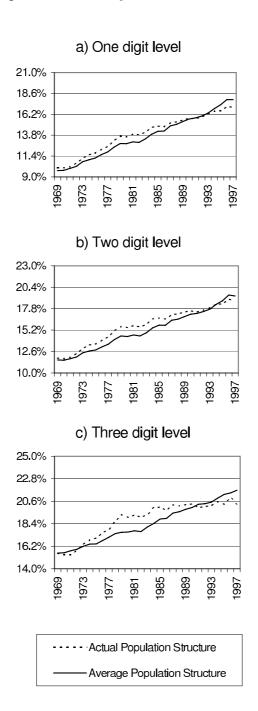




Figure 5: Occupational Mobility in the United States, 1969-1997, Three Digit Level.

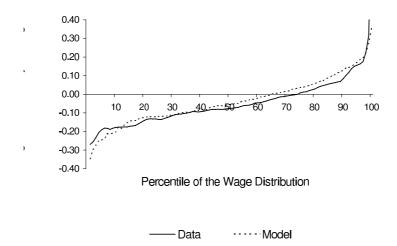

Source: Kambourov and Manovskii (2007).

Figure 6: Occupational Mobility in the United States, 1969-1997.

Source: Kambourov and Manovskii (2007).

Figure 7: Percentage Change in Real Hourly Earnings by Percentiles of the Wage Distribution, 1993-96 vs. 1970-73, Model vs. Data.

Note - The graph for the data represents the percentage change in real hourly earnings by percentiles using the *Within-Group 2* measure of wages and average population structure. Figures 4 and A-4 show the corresponding graphs for the other measures of wages and the actual population structure.

References

- ALVAREZ, F., AND M. VERACIERTO (2000): "Equilibrium Search and Labor Market Policies: a Theoretical Analysis," mimeo, University of Chicago.
- Bertola, G., and A. Ichino (1995): "Wage Inequality and Unemployment: United States vs. Europe," in *NBER Macroeconomics Annual*, ed. by B. Bernanke, and J. Rotemberg. The MIT Press.
- Blundell, R., and I. Preston (1998): "Consumption Inequality and Income Uncertainty," *Quarterly Journal of Economics*, 113(2), 603–640.
- Brainard, S. L., and D. M. Cutler (1993): "Sectoral Shifts and Cyclical Unemployment Reconsidered," *Quarterly Journal of Economics*, 108(1), 219–243.
- Caselli, F. (1999): "Technological Revolutions," American Economic Review, 89(1), 78–102.
- DEN HAAN, W., C. HAEFKE, AND G. RAMEY (2001): "Shocks and Institutions in a Job Matching Model," NBER Working Paper W8493.
- Galor, O., and O. Moav (2000): "Ability-Based Technological Transition, Wage Inequality, and Economic Growth," *Quarterly Journal of Economics*, 115(2), 469–497.
- Gottschalk, P. (1997): "Inequality, Income Growth, and Mobility: The Basic Facts,"

 Journal of Economic Perspectives, 11(2), 21–40.
- Gottschalk, P., and R. Moffitt (1994): "The Growth of Earnings Instability in the U.S. Labor Market," *Brookings Papers on Economic Activity*, 2, 217–272.

- Hamermesh, D. S. (1999): "Changing Inequality in Markets for Workplace Amenities," Quarterly Journal of Economics, 114(4), 1085–1123.
- Heathcote, J., K. Storesletten, and G. L. Violante (2004): "The Cross-Sectional Implications of Rising Wage Inequality in the United States," mimeo, New York University.
- HORNSTEIN, A., P. KRUSELL, AND G. L. VIOLANTE (2006): "Frictional Wage Dispersion in Search Models: A Quantitative Assessment," Working Paper 06-7, Federal Reserve Bank of Richmond.
- JOVANOVIC, B., AND Y. NYARKO (1997): "Stepping Stone Mobility," Carnegie-Rochester Conference Series on Public Policy, 46(1), 289–326.
- Kambourov, G., and I. Manovskii (2002): "Occupational Specificity of Human Capital," mimeo, The University of Western Ontario.
- ———— (2007): "Rising Occupational and Industry Mobility in the United States: 1968–1997," International Economic Review, forthcoming.
- Kambourov, G., I. Manovskii, and M. Plesca (2005): "Returns to Government Sponsored Training," mimeo, University of Pennsylvania.
- Katz, L. F., and D. H. Autor (1999): "Changes in Wage Structure and Earnings Inequality," in *Handbook of Labor Economics*, ed. by O. Ashtenfelter, and D. Card, vol. 3A, pp. 1463–1555. Amsterdam: North Holland.

- Krusell, P., L. E. Ohanian, J.-V. Ríos-Rull, and G. L. Violante (2000): "Capital-Skill Complementarity and Inequality: A Macroeconomic Analysis," *Econometrica*, 68, 1029–1053.
- Kwon, I., and E. Meyersson Milgrom (2004): "Boundaries of Internal Labor Markets: The Relative Importance of Firms and Occupations," mimeo, Stanford University Graduate School of Business.
- Ljungqvist, L., and T. J. Sargent (1998): "The European Unemployment Dilemma,"

 Journal of Political Economy, 106(3), 514–550.
- LLOYD-ELLIS, H. (1999): "Endogenous Technological Change and Wage Inequality,"

 American Economic Review, 89(1), 47–77.
- Loungani, P., M. Rush, and W. Tave (1990): "Stock Market Dispersion, Unemployment, and GNP," *Journal of Monetary Economics*, 25(3), 367–388.
- Lucas, R. J., and E. Prescott (1974): "Equilibrium Search and Unemployment,"

 Journal of Economic Theory, 7, 188–209.
- Manovskii, I. (2003): "Productivity Gains from Progressive Taxation of Labor Income," mimeo, University of Pennsylvania.
- McCall, B. P. (1990): "Occupational Matching: A Test of Sorts," *Journal of Political Economy*, 98(1), 45–69.
- MOFFITT, R., AND P. GOTTSCHALK (1995): "Trends in Covariance Structure of Earnings in the U.S.: 1969-1987," mimeo, Boston College.

- MOSCARINI, G., AND K. THOMSSON (2006): "Occupational and Job Mobility in the US," mimeo, Yale University.
- Moscarini, G., and F. Vella (2003): "Aggregate Worker Reallocation and Occupational Mobility in the United States: 1976-2000," mimeo, Yale University.
- PARRADO, E., A. CANER, AND E. WOLFF (2005): "Occupational and Industrial Mobility in the United States, 1969-1993," Working Paper No. 416, The Levy Economics Institute of Bard College.
- PARRADO, E., AND E. WOLFF (1999): "Occupational and Industry Mobility in the United States, 1969-1992," Working paper, C.V. Starr Center, New York University.
- PAVAN, R. (2005): "Career Choice and Wage Growth," Working paper, University of Rochester.
- PIERCE, B. (2001): "Compensation Inequality," Quarterly Journal of Economics, 116(4), 1493–1525.
- ROSENFELD, C. (1979): "Occupational Mobility During 1977," Monthly Labor Review, 102(12), 44–48.
- SHAW, K. (1984): "A Formulation of the Earnings Function Using the Concept of Occupational Investment," *Journal of Human Resources*, 14, 319–40.
- TOPEL, R. H. (1997): "Factor Proportions and Relative Wages: The Supply-Side Determinants of Wage Inequality," *Journal of Economic Perspectives*, 11(2), 55–74.

- VERACIERTO, M. (2002): "On the Cyclical Behavior of Employment, Unemployment and Labor Force Participation," Working Paper 2002-12, Federal Reserve Bank of Chicago.
- VIOLANTE, G. L. (2002): "Technological Acceleration, Skill Transferability and the Rise in Residual Inequality," *Quarterly Journal of Economics*, 117(1), 297–338.
- Zangelidis, A. (2004): "Profitable Career Paths: The Importance of Occupational and Industry Expertise," Research Paper No. 2004-10, Center for European Labor Market.

APPENDICES

I Facts on the Actual Population Structure

Table A-1: Wage Inequality in the United States, Actual Population Structure.

	1970-73	1993-96	
Variance of logs			
variance of togo			
Overall	0.225	0.367	
Within-Group 1	0.161	0.264	
Within-Group 2	0.176	0.305	
Log 90/10 ratio			
Overall	1.171	1.473	
Within-Group 1	0.977	1.223	
Within-Group 2	1.009	1.336	
$Gini\ coefficient$			
Overall	0.257	0.351	
Within-Group 1	0.214	0.280	
Within-Group 2	0.223	0.306	

Note - Authors' calculations from the PSID. The sample is restricted to male heads of household, aged 23-61, who are not self- or dual-employed, and who are not working for the government. In addition, we drop in each year (i) all observations with a nominal hourly wage which is lower than half the minimum wage in that year, and (ii) all observations which report less than 520 hours worked in that year.

Table A-2: Wage Stability in the United States, Actual Population Structure.

Average $var(\eta_i)$	1970-78	1988-96
Overall	0.087	0.190
Within-Group 1	0.087	0.188
Within-Group 2	0.124	0.221

Note - Authors' calculations from the PSID. $var(\eta_i)$ denotes the average (across individuals) variance of transitory wages. See Section 2.1.2 for details.

Figure A-1: Variance of Log Real Hourly Earnings in the United States, 1969-1996, PSID, Actual Population Structure.

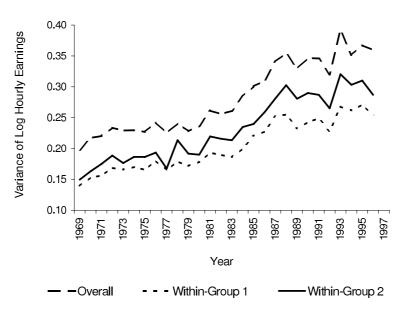
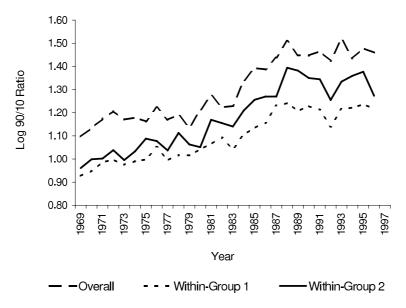



Figure A-2: Log 90/10 Ratio of Real Hourly Earnings in the United States, 1969-1996, PSID, Actual Population Structure.

Source: Authors' calculations from the PSID.

Figure A-3: Gini Coefficient of Real Hourly Earnings in the United States, 1969-1996, PSID, Actual Population Structure.

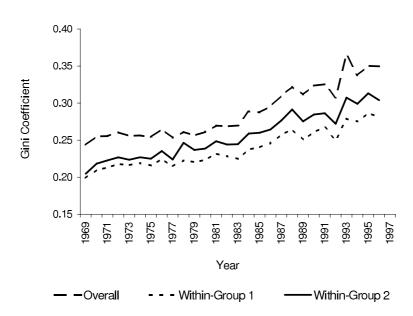


Figure A-4: Percentage Change in Real Hourly Earnings by Percentiles of the Wage Distribution, 1993-96 vs. 1970-73, Actual Population Structure.

--- Overall ---- Within-Group 1 ---- Within-Group 2

II Computational Algorithm

- 1. Guess S and V^s .
- 2. Define a grid of points on (ψ_1, ψ_2, z) .
- 3. Guess a function $V_1^0(\psi_1, \psi_2, z)$ that is (weakly) decreasing and (weakly) convex in ψ_1 , a function $V_2^0(\psi_1, \psi_2, z)$ that is (weakly) decreasing and (weakly) convex in ψ_2 , and a function $H^0(\psi_1, \psi_2, z)$ that is (weakly) increasing in ψ_1 and ψ_2 .
- 4. For each point on the (ψ_1, ψ_2, z) grid, find the optimal policies g_1 and g_2 in the following way. Set $G = (\psi_1, \psi_2)$. Then,
 - (a) If both $V_1(\psi_1, \psi_2, z) \geq V^s$ and $V_2(\psi_1, \psi_2, z) \geq V^s$, everybody present in the occupation will choose to stay and thus $g_1 = \psi_1$ and $g_2 = \psi_2$ is a consistent policy. Go to 5.
 - (b) If the condition in (a) is not satisfied, then
 - i. Set $G = (\bar{g_1}, \psi_2)$, where $\bar{g_1}$ solves the following equation:

$$z\gamma a\bar{g_1}^{\rho-1} \left[a\bar{g_1}^{\rho} + (1-a)\psi_2^{\rho} \right]^{\frac{\gamma-\rho}{\rho}} +$$

$$\beta(1-p) \sum_{z'} V_1(\delta + (1-\delta)(S+(1-p)\bar{g_1}), (1-\delta)(p\bar{g_1} + \psi_2), z') Q(z, z') +$$

$$\beta p \sum_{z'} V_2(\delta + (1-\delta)(S+(1-p)\bar{g_1}), (1-\delta)(p\bar{g_1} + \psi_2), z') Q(z, z') = V^s.$$

Check whether under this policy $V_2(\psi_1, \psi_2, z) \geq V^s$ and whether \bar{g}_1 is feasible. If not, then this G cannot be a consistent policy. If yes, then G is a candidate for the optimal policy.

ii. Set $G = (\psi_1, \bar{g}_2)$, where \bar{g}_2 solves the following equation:

$$z\gamma(1-a)\bar{g_2}^{\rho-1}[a\psi_1^{\rho}+(1-a)\bar{g_2}^{\rho}]^{\frac{\gamma-\rho}{\rho}}+$$

$$\beta \sum_{z'} V_2(\delta + (1 - \delta)(S + (1 - p)\psi_1), (1 - \delta)(p\psi_1 + \bar{g}_2), z')Q(z, z') = V^s$$

Check whether under this policy $V_1(\psi_1, \psi_2, z) \geq V^s$ and whether \bar{g}_2 is feasible. If not, then this G cannot be a consistent policy. If yes, then G is a candidate for the optimal policy.

- iii. Set $G = (\bar{g}_1, \bar{g}_2)$ where \bar{g}_1 and \bar{g}_2 jointly solve the equations in i and ii above. Check whether \bar{g}_1 and \bar{g}_2 are feasible. If not, then this G cannot be a consistent policy. If yes, then G is a candidate for the optimal policy.
- iv. The optimal policy is a candidate policy from the previous three cases that maximizes the value function $H(\psi_1, \psi_2, z)$, where

$$H(\psi, z) = \max \left\{ z \left[ag_1^{\rho} + (1 - a)g_2^{\rho} \right]^{\gamma/\rho} + \beta \sum_{z'} H(\psi', z')Q(z, z') \right\}$$

- 5. Given the optimal policy $G=(g_1,g_2)$ obtained above, update the value functions and get $V_1^1(\psi_1,\psi_2,z), V_2^1(\psi_1,\psi_2,z)$, and $H^1(\psi_1,\psi_2,z)$.
- 6. Use V_1 , V_2 , and H obtained above as the new guess in step 3.
- 7. Repeat steps 4 through 6 until the policy and value functions converge.
- 8. Simulate a large number of occupations until the distribution of occupations generates an invariant V^s and S, scaling the economy at each iteration to have measure one of individuals.
- 9. Compare the obtained V^s and S with the initial guess in 1. If they are the same, stop. If not, make a new guess in 1 that is a convex combination of the previous guess and the simulated values.

III Three-Digit Occupational Codes

PROFESSIONAL, TECHNICAL, AND KINDRED WORKERS 28

001 Accountants

002 Architects

Computer specialists

003 Computer programmers

004 Computer systems analysts

005 Computer specialists, not elsewhere classified

Engineers

006 Aeronautical and astronautical engineers

010 Chemical engineers

011 Civil engineers

012 Electrical and electronic engineers

013 Industrial engineers

014 Mechanical engineers

015 Metallurgical and materials engineers

020 Mining engineers

021 Petroleum engineers

022 Sales engineers

023 Engineers, not elsewhere classified

024 Farm management advisors

025 Foresters and conservationists

026 Home management advisors

Lawyers and judges

030 Judges

031 Lawyers

Librarians, archivists, and curators

032 Librarians

033 Archivists and curators

Mathematical specialists

034 Actuaries

035 Mathematicians

036 Statisticians

Life and physical scientists

042 Agricultural scientists

043 Atmospheric and space scientists

044 Biological scientists

045 Chemists

051 Geologists

²⁸Source: PSID wave XIV - 1981 documentation, Appendix 2: Industry and Occupation Codes. 052 Marine scientists

053 Physicists and astronomers

054 Life and physical scientists, not elsewhere classified

055 Operations and systems researchers and analysts

056 Personnel and labor relations workers

Physicians, dentists, and related practitioners

061 Chiropractors

062 Dentists

063 Optometrists

064 Pharmacists

065 Physicians, medical and osteopathic

071 Podiatrists

072 Veterinarians

073 Health practitioners, not elsewhere classified

Nurses, dietitians, and therapists

074 Dietitians

075 Registered nurses

076 Therapists

Health technologists and technicians

080 Clinical laboratory technologists and technicians

081 Dental hygienists

082 Health record technologists and technicians

083 Radiologic technologists and technicians

084 Therapy assistants

085 Health technologists and technicians,

not elsewhere classified

Religious workers

086 Clergymen

090 Religious workers, not elsewhere classified

Social scientists

091 Economists

092 Political scientists

093 Psychologists

094 Sociologists

095 Urban and regional planners

096 Social scientists, not elsewhere classified

Social and recreation workers

100 Social workers

101 Recreation workers

Teachers, college and university

102 Agriculture teachers

103 Atmospheric, earth, marine, and space teachers

104 Biology teachers

105 Chemistry teachers

- 110 Physics teachers
- 111 Engineering teachers
- 112 Mathematics teachers
- 113 Health specialties teachers
- 114 Psychology teachers
- 115 Business and commerce teachers
- 116 Economics teachers
- 120 History teachers
- 121 Sociology teachers
- 122 Social science teachers, not elsewhere classified
- 123 Art, drama, and music teachers
- 124 Coaches and physical education teachers
- 125 Education teachers
- 126 English teachers
- 130 Foreign language teachers
- 131 Home economics teachers
- 132 Law teachers
- 133 Theology teachers
- 134 Trade, industrial, and technical teachers
- 135 Miscellaneous teachers, college and university
- 140 Teachers, college and university, subject not specified

Teachers, except college and university

- 141 Adult education teachers
- 142 Elementary school teachers
- 143 Prekindergarten and kindergarten teachers
- 144 Secondary school teachers
- 145 Teachers, except college and university, not elsewhere classified

Engineering and science technicians

- 150 Agriculture and biological technicians, except health
- 151 Chemical technicians
- 152 Draftsmen
- 153 Electrical and electronic engineering technicians
- 154 Industrial engineering technicians
- 155 Mechanical engineering technicians
- 156 Mathematical technicians
- 161 Surveyors
- 162 Engineering and science technicians, not elsewhere classified

Technicians, except health, and engineering and science

- 163 Airplane pilots
- 164 Air traffic controllers
- 165 Embalmers
- 170 Flight engineers
- 171 Radio operators
- 172 Tool programmers, numerical control
- 173 Technicians, not elsewhere classified
- 174 Vocational and educational counselors

Writers, artists, and entertainers

- 175 Actors
- 180 Athletes and kindred workers

- 181 Authors
- 182 Dancers
- 183 Designers
- 184 Editors and reporters
- 185 Musicians and composers
- 190 Painters and sculptors
- 191 Photographers
- 192 Public relations men and publicity writers
- 193 Radio and television announcers
- 194 Writers, artists, and entertainers, not elsewhere classified
- 195 Research workers, not specified

$\begin{array}{ll} \text{MANAGERS AND ADMINISTRATORS,} \\ \text{EXCEPT FARM} \end{array}$

- 201 Assessors, controllers, and treasurers; local public administration
- 202 Bank officers and financial managers
- 203 Buyers and shippers, farm products
- 205 Buyers, wholesale and retail trade
- 210 Credit men
- 211 Funeral directors
- 212 Health administrators
- 213 Construction inspectors, public administration
- 215 Inspectors, except construction, public administration
- 216 Managers and superintendents, building
- 220 Office managers, not elsewhere classified
- 221 Officers, pilots, and pursers; ship
- 222 Officials and administrators; public administration, not elsewhere classified
- 223 Officials of lodges, societies, and unions
- 224 Postmasters and mail superintendents
- 225 Purchasing agents and buyers, not elsewhere classified
- 226 Railroad conductors
- 230 Restaurant, cafeteria, and bar managers
- 231 Sales managers and department heads, retail trade
- 233 Sales managers, except retail trade
- 235 School administrators, college
- 240 School administrators, elementary and secondary
- 245 Managers and administrators, not elsewhere classified

SALES WORKERS

- 260 Advertising agents and salesmen
- 261 Auctioneers
- 262 Demonstrators
- 264 Hucksters and peddlers
- 265 Insurance agents, brokers, and underwriters
- 266 Newsboys
- 270 Real estate agents and brokers
- 271 Stock and bond salesmen
- 280 Salesmen and sales clerks, not elsewhere classified

Salesmen were divided into 5 categories dependent on industry. The industry codes are shown in parentheses.

281 Sales representatives, manufacturing industries (Ind. 107-399)

282 Sales representatives, wholesale trade (Ind. 017-058, 507-599)

283 Sales clerks, retail trade (Ind. 608-699 except 618, 639, 649, 667, 668, 688)

284 Salesmen, retail trade (Ind. 607, 618, 639, 649, 667, 668, 688)

285 Salesmen of services and construction (Ind. 067-078, 407-499, 707-947)

CLERICAL AND KINDRED WORKERS

301 Bank tellers

303 Billing clerks

305 Bookkeepers

310 Cashiers

311 Clerical assistants, social welfare

312 Clerical supervisors, not elsewhere classified

313 Collectors, bill and account

314 Counter clerks, except food

315 Dispatchers and starters, vehicle

320 Enumerators and interviewers

321 Estimators and investigators, not elsewhere classified

323 Expediters and production controllers

325 File clerks

326 Insurance adjusters, examiners, and investigators

330 Library attendants and assistants

331 Mail carriers, post office

332 Mail handlers, except post office

333 Messengers and office boys

334 Meter readers, utilities

Office machine operators

341 Bookkeeping and billing machine operators

342 Calculating machine operators

343 Computer and peripheral equipment operators

344 Duplicating machine operators

 $345~{
m Key}$ punch operators

350 Tabulating machine operators

355 Office machine operators, not elsewhere classified

360 Payroll and timekeeping clerks

361 Postal clerks

362 Proofreaders

363 Real estate appraisers

364 Receptionists

Secretaries

370 Secretaries, legal

371 Secretaries, medical

372 Secretaries, not elsewhere classified

374 Shipping and receiving clerks

375 Statistical clerks

376 Stenographers

381 Stock clerks and storekeepers

382 Teacher aides, except school monitors

383 Telegraph messengers

384 Telegraph operators

385 Telephone operators

390 Ticket, station, and express agents

391 Typists

392 Weighers

394 Miscellaneous clerical workers

395 Not specified clerical workers

CRAFTSMEN AND KINDRED WORKERS

401 Automobile accessories installers

402 Bakers

403 Blacksmiths

404 Boilermakers

405 Bookbinders

410 Brickmasons and stonemasons

411 Brickmasons and stonemasons, apprentices

412 Bulldozer operators

413 Cabinetmakers

415 Carpenters

416 Carpenter apprentices

420 Carpet installers

421 Cement and concrete finishers

422 Compositors and typesetters

423 Printing trades apprentices, except pressmen

424 Cranemen, derrickmen, and hoistmen

425 Decorators and window dressers $\,$

426 Dental laboratory technicians

430 Electricians431 Electrician apprentices

433 Electric power linemen and cablemen

434 Electrotypers and stereotypers

435 Engravers, except photoengravers

436 Excavating, grading, and road machine operators, except bulldozer

440 Floor layers, except tile setters

441 Foremen, not elsewhere classified

442 Forgemen and hammermen

443 Furniture and wood finishers

444 Furriers

445 Glaziers

446 Heat treaters, annealers, and temperers

450 Inspectors, scalers, and graders; log and lumber

452 Inspectors, not elsewhere classified

453 Jewelers and watchmakers

454 Job and die setters, metal

455 Locomotive engineers

456 Locomotive firemen

461 Machinists

462 Machinist apprentices

Mechanics and repairmen

470 Air conditioning, heating, and refrigeration

- 471 Aircraft
- 472 Automobile body repairmen
- 473 Automobile mechanics
- 474 Automobile mechanic apprentices
- 475 Data processing machine repairmen
- 480 Farm implement
- 481 Heavy equipment mechanics, including diesel
- 482 Household appliance and accessory installers and mechanics
- 483 Loom fixers
- 484 Office machine
- 485 Radio and television
- 486 Railroad and car shop
- 491 Mechanic, except auto, apprentices
- 492 Miscellaneous mechanics and repairmen
- 495 Not specified mechanics and repairmen
- 501 Millers; grain, flour, and feed
- 502 Millwrights
- 503 Molders, metal
- 504 Molder apprentices
- 505 Motion picture protectionists
- 506 Opticians, and lens grinders and polishers
- 510 Painters, construction and maintenance
- 511 Painter apprentices
- 512 Paperhangers
- 514 Pattern and model makers, except paper
- 515 Photoengravers and lithographers
- 516 Piano and organ tuners and repairmen
- 520 Plasterers
- 521 Plasterer apprentices
- 522 Plumbers and pipe fitters
- 523 Plumber and pipe fitter apprentices
- 525 Power station operators
- 530 Pressmen and plate printers, printing
- 531 Pressman apprentices
- 533 Rollers and finishers, metal
- 534 Roofers and slaters
- 535 Sheetmetal workers and tinsmiths
- 536 Sheetmetal apprentices
- 540 Shipfitters
- 542 Shoe repairmen
- 543 Sign painters and letterers
- 545 Stationary engineers
- 546 Stone cutters and stone carvers
- 550 Structural metal craftsmen
- 551 Tailors
- 552 Telephone in stallers and repairmen $\,$
- 554 Telephone linemen and splicers
- 560 Tile setters
- 561 Tool and die makers
- 562 Tool and die maker apprentices
- 563 Upholsterers
- 571 Specified craft apprentices, not elsewhere classified
- 572 Not specified apprentices
- 575 Craftsmen and kindred workers, not elsewhere classified

ARMED FORCES

600 Members of armed forces

OPERATIVES, EXCEPT TRANSPORT

- 601 Asbestos and insulation workers
- 602 Assemblers
- 603 Blasters and powdermen
- 604 Bottling and canning operatives
- 605 Chainmen, rodmen, and axmen; surveying
- 610 Checkers, examiners, and inspectors; manufacturing
- 611 Clothing ironers and pressers
- 612 Cutting operatives, not elsewhere classified
- 613 Dressmakers and seamstresses, except factory
- 614 Drillers, earth
- 615 Dry wall installers and lathers
- 620 Dvers
- 621 Filers, polishers, sanders, and buffers
- 622 Furnacemen, smeltermen, and pourers
- 623 Garage workers and gas station attendants
- 624 Graders and sorters, manufacturing
- 625 Produce graders and packers, except factory and farm
- 626 Heaters, metal
- 630 Laundry and dry cleaning operatives, not elsewhere classified
- 631 Meat cutters and butchers, except manufacturing
- 633 Meat cutters and butchers, manufacturing
- 634 Meat wrappers, retail trade
- 635 Metal platers
- 636 Milliners
- 640 Mine operatives, not elsewhere classified
- 641 Mixing operatives
- 642 Oilers and greasers, except auto
- 643 Packers and wrappers, except meat and produce
- 644 Painters, manufactured articles
- 645 Photographic process workers

Precision machine operatives

- 650 Drill press operatives
- 651 Grinding machine operatives
- 652 Lathe and milling machine operatives
- 653 Precision machine operatives, not elsewhere classified
- 656 Punch and stamping press operatives
- 660 Riveters and fasteners
- 661 Sailors and deckhands
- 662 Sawyers
- 663 Sewers and stitchers
- 664 Shoemaking machine operatives
- 665 Solderers
- 666 Stationary firemen

Textile operatives

- 670 Carding, lapping, and combing operatives
- 671 Knitters, loopers, and toppers
- 672 Spinners, twisters, and winders

- 673 Weavers
- 674 Textile operatives, not elsewhere classified
- 680 Welders and flame-cutters
- 681 Winding operatives, not elsewhere classified
- 690 Machine operatives, miscellaneous specified
- 692 Machine operatives, not specified
- 694 Miscellaneous operatives
- 695 Not specified operatives

TRANSPORT EQUIPMENT OPERATIVES

- 701 Boatmen and canalmen
- 703 Bus drivers
- 704 Conductors and motormen, urban rail transit
- 705 Deliverymen and routemen
- 706 Fork lift and tow motor operatives
- 710 Motormen; mine, factory, logging camp, etc.
- 711 Parking attendants
- 712 Railroad brakemen
- 713 Railroad switchmen
- 714 Taxicab drivers and chauffeurs
- 715 Truck drivers

LABORERS, EXCEPT FARM

- 740 Animal caretakers, except farm
- 750 Carpenters' helpers
- 751 Construction laborers, except carpenters' helpers
- 752 Fishermen and oysterman
- 753 Freight and material handlers
- 754 Garbage collectors
- 755 Gardeners and groundskeepers, except farm
- 760 Longshoremen and stevedores
- 761 Lumbermen, raftsmen, and woodchoppers
- 762 Stock handlers
- 763 Teamsters
- 764 Vehicle washers and equipment cleaners
- 770 Warehousemen, not elsewhere classified
- 780 Miscellaneous laborers
- 785 Not specified laborers

FARMERS AND FARM MANAGERS

- 801 Farmers (owners and tenants)
- 802 Farm managers

FARM LABORERS AND FARM FOREMEN

- 821 Farm foremen
- 822 Farm laborers, wage workers
- 823 Farm laborers, unpaid family workers
- 824 Farm service laborers, self-employed

SERVICE WORKERS, EXCEPT PRIVATE HOUSEHOLD

Cleaning service workers

- 901 Chambermaids and maids, except private household
- 902 Cleaners and charwomen
- 903 Janitors and sextons

Food service workers

- 910 Bartenders
- 911 Busboys
- 912 Cooks, except private household
- 913 Dishwashers
- 914 Food counter and fountain workers
- 915 Waiters
- 916 Food service workers, not elsewhere classified, except private household

Health service workers

- 921 Dental assistants
- 922 Health aides, except nursing
- 923 Health trainees
- 924 Lay midwives
- 925 Nursing aides, orderlies, and attendants
- 926 Practical nurses

Personal service workers

- 931 Airline stewardesses
- 932 Attendants, recreation and amusement
- 933 Attendants, personal service, not elsewhere classified
- 934 Baggage porters and bellhops
- 935 Barbers
- 940 Boarding and lodging house keepers
- 941 Bootblacks
- 942 Child care workers, except private household
- 943 Elevator operators
- 944 Hairdressers and cosmetologists
- 945 Personal service apprentices
- 950 Housekeepers, except private household
- 952 School monitors
- 953 Ushers, recreation and amusement
- 954 Welfare service aides

Protective service workers

- 960 Crossing guards and bridge tenders
- 961 Firemen, fire protection
- 962 Guards and watchmen
- 963 Marshals and constables
- 964 Policemen and detectives
- 965 Sheriffs and bailiffs

PRIVATE HOUSEHOLD WORKERS

- 980 Child care workers, private household
- 981 Cooks, private household
- 982 Housekeepers, private household
- 983 Laundresses, private household
- 984 Maids and servants, private household

IV Two-Digit Occupational Codes

PROFESSIONAL, TECHNICAL AND KINDRED WORKERS (001-195)²⁹

- 10. Physicians (medical + osteopathic), Dentists (062,065)
- 11. Other Medical and Paramedical: chiropractors, optometrists, pharmacists, veterinarians, nurses, therapists, healers, dieticians (except medical and dental technicians, see 16) (061,063,064,071-076)
- 12. Accountants and Auditors (001)
- 13. Teachers, Primary and Secondary Schools (including NA type) (141-145)
- 14. Teachers, College; Social Scientists; Librarians; Archivists (032-036,091-096,102-140)
- 15. Architects; Chemists; Engineers; Physical and Biological Scientists (002,006-023,042-054)
- 16. Technicians: Airplane pilots and navigators, designers, draftsmen, foresters and conservationists, embalmers, photographers, radio operators, surveyors, technicians (medical, dental, testing, n.e.c.) (003-005,025,055,080-085,150-173,183,191)
- 17. Public Advisors: Clergymen, editors and reporters, farm and home management advisors, personnel and labor relations workers, public relations persons, publicity workers, religious, social and welfare workers (024,026,056,086,090,100-101,184,192)
- 18. Judges; Lawyers (030,031)
- 19. Professional, technical and kindred workers not listed above (174,175-182,185,190,193-195)

MANAGERS, OFFICIALS AND PROPRIETORS (EXCEPT FARM) (201-245)

- 20. Not self-employed
- 31. Self-employed (unincorporated businesses)

CLERICAL AND KINDRED WORKERS

- 40. Secretaries, stenographers, typists (370-372,376,391)
- 41. Other Clerical Workers: agents (n.e.c.) library assistants and attendants, bank tellers, cashiers, bill collectors, ticket, station and express agents, etc., receptionists (301-364,374-375,381-390, 392-395)

SALES WORKERS

45. Retail store salesmen and sales clerks, newsboys, hucksters, peddlers, traveling salesmen, advertising agents and sales- men, insurance agents, brokers, and salesmen, etc. (260-285)

CRAFTSMEN, FOREMEN, AND KINDRED WORKERS

- 50. Foremen, n.e.c. (441)
- 51. Other craftsmen and kindred workers (401-440.442-580)
- 52. Government protective service workers: firemen, police, marshals, and constables (960-965)

OPERATIVES AND KINDRED WORKERS

- 61. Transport equipment operatives (701-715)
- 62. Operatives, except transport (601-695)

LABORERS

- 70. Unskilled laborers—nonfarm (740-785)
- 71. Farm laborers and foremen (821-824)

SERVICE WORKERS

- 73. Private household workers (980-984)
- 75. Other service workers: barbers, beauticians, manicurists, bartenders, boarding and lodging housekeepers, counter and fountain workers, housekeepers and stewards, waiters, cooks, midwives, practical nurses, babysitters, attendants in physicians' and dentists' offices (901-965 except 960-965 when work for local, state, or federal government)

FARMERS AND FARM MANAGERS

80. Farmers (owners and tenants) and managers (except code 71) (801-802)

MISCELLANEOUS GROUPS

- 55. Members of armed forces
- 99. NA; DK
- 00. Inap.; No to C42; unemployed; retired, permanently disabled, housewife, student; V7706=3-8; V7744=5 or 9

 $^{^{29}}$ Numbers in parentheses represent the 3-digit codes from the 1970 Census of Population.

V One-Digit Occupational Codes

- 01. Professional, technical, and kindred workers $(10-19)^{30}$
- 02. Managers, officials, and proprietors (20)
- 03. Self-employed businessmen (31)
- 04. Clerical and sales workers (40-45)
- 05. Craftsmen, foremen, and kindred workers (50-52)
- 06. Operatives and kindred workers (61-62)
- 07. Laborers and service workers, farm laborers (70-75)
- 08. Farmers and farm managers (80)
- 09. Miscellaneous (armed services, protective workers) (55)

 $^{^{30}\}mathrm{Numbers}$ in parentheses represent 2-digit occupation codes, recoded by the authors based on PSID documentation.